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Abstract

We consider a broadcast model involving multiple transmitters and receivers.
Transmission is performed in rounds, where in each round any transmitter is al-
lowed to broadcast a single message, and each receiver can receive only a single
broadcast message, determined by a priority permutation over the transmitters.
The message received by receiver R in a given transmission round is the one sent
by the first transmitter among all those broadcasting in that round according to
the permutation of R. In our model, each pair of transmitter and receiver has a
unique message which the transmitter has to send to the receiver. We prove upper
and lower bounds on the minimal number of rounds needed for transmitting all the
messages to their respective receivers. We also consider the case where the priority
permutations are determined geometrically.

1. Introduction

Consider the following broadcast model: There are k transmitters, and n receivers. Each
transmitter has a (unique) message for each receiver which has to be sent. Transmission
is performed in rounds of broadcasting, in each round some transmitters send messages
where each transmitter can only send a single message in each broadcasting round (it
can also send none). When multiple transmitters broadcast at the same time, collisions
between transmissions may occur at the receiver. Such collisions are resolved by having a
priority permutation associated with each receiver, determining the message that will get
through according to the transmitter’s priority. One possible example for such priority
permutations is the one where transmitters are sorted by their respective distance to each
receiver, and hence the receiver will always receive the message which was broadcasted
by the closest transmitter.
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In this paper we are interested in finding the minimum possible number of transmission
rounds ¢ = ¢(k,n) needed to transmit messages in a network with & transmitters and
n receivers. For the case n = 2 of two receivers we show that ¢(k,2) = k + 1 and
determine for each two given permutations the minimum number of required rounds.
For the case of networks with n = 3 and n = 4 receivers we establish lower and upper
bounds on the minimum number of required rounds. We provide a general lower bound
of g(k,n) = nlog k and show that it is tight for n = k!. Finally, we provide general upper
bounds realizable by permutations corresponding to distances in the plane and in higher
dimensions. The higher dimension construction shows that g(n,n) < n-O(eVieenloslogn)
for the case n = k of equal number of receivers and transmitters.

In the appendix we consider those sets of permutations which can be realized as dis-
tances in d-dimensional space, and show that their number is negligible compared to the
total number of sets of permutations of the same size.

2. Related work

The problem studied in this paper is closely related to the investigation of radio networks,
that is, the study of propagation of messages in a network of nodes that can transmit
or receive messages. There are several different models, each having different constraints
on how messages can be sent and received between nodes and the type and number of
messages transmitted.

The study of such networks dates back to the 1980s [13]| and since then underwent
extensive research. The first network model, introduced by [13]|, considered networks
defined as directed graphs, where the vertices are nodes which both transmit and re-
ceive messages, and edges indicate to which nodes the message can propagate when it is
broadcasted. The basic model is of a multi-hop network, where a single message is emit-
ted from a distinguished node called the source node and then propagates to the entire
network. In their paper, they consider collisions, which happen when multiple neighbors
of a node transmit simultaneously, and optimality measures for protocols considering the
maximum time and average time needed for the broadcasted message to propagate from
the source node to all others.

The collision model used in [13] deals with two scenarios: If collision occurs because
two neighbors of a vertex transmit simultaneously, the receiving vertex detects the col-
lision but not its origin. However, if a collision occurs because a vertex is transmitting
while a neighbor of it tries to transmit as well, none of the parties involved detects the
collision. This collision model can be altered in order to further consider additional mod-
els: Collisions are not distinguishable from non-transmissions ([16, 5]) while in another
model in the case of multiple transmissions, one of the signals gets through. This is
the model considered in the present paper. Some papers, such as [4], use a model where
collisions can be detected as noise but in practice this additional information is discarded
and treated as silence.

The original radio-broadcast model considered a single message that needs to be broad-
casted to the entire graph. [19] generalizes this model to include set to set broadcasting,



and introduces the concept of sets of receivers and transmitters where each transmitter
has a unique message to be delivered to each receiver. [10, 11, 6] consider a different
generalization where multiple messages have to be transmitted to different receivers, but
some receivers have prior knowledge of messages intended to others.

A variant of the multiple-message model studied in [2, 5|, considered network-coding:
Instead of treating each message separately when routing them, the model allows taking
multiple messages, combining them by means of a coding that merges information from
multiple messages into a single packet. This model of broadcasting, the so-called network-
coding model, sometimes performs better than the traditional routing model.

For a more extensive review of broadcasting in radio networks, see [18|.

3. The model

The model of broadcasting used in this paper is as follows: We have two kinds of nodes:
transmitters and receivers. We denote the number of transmitters by k& and the number
of receivers by n. FEach pair of transmitter and receiver has a unique message that
needs to be transmitted between them. The transmissions are performed in rounds
of broadcasting, where the transmissions in each round are performed simultaneously.
Associated with each receiver is a permutation of the transmitters, denoting their priority.
This permutation is used for solving broadcast collisions in the sense that when two or
more transmitters transmit in the same round, a receiver gets the message sent by the
transmitter appearing first in its associated permutation. This happens regardless of
whether or not that transmitter transmitted a message addressed for that particular
receiver. More formally, suppose 1,...,k are the transmitters and ¢ is a permutation
that is associated with one of the receivers. Consider a given round in which i1,...,1%,
are the transmitters that sent messages. Then, the only message that gets through to
that receiver is the one transmitted by the transmitter with minimal index in o, that is,
the message sent by i; where j satisfies o(i;) = min’,_; o (i,).

We are interested in studying the limits on how many transmission rounds are nec-
essary in a given network (defined by the number of transmitters, receivers and the
corresponding permutations) in order for each transmitter to deliver its messages to the
corresponding receivers.

4. Networks with two receivers

The case n = 2 is fully understood, as shown in the following theorem.

Theorem 4.1. For any k, q(k,2) = k+ 1. In addition, for a given pair of permutations
o and T of the set [k] = {1,2,...,k} of senders, the minimum number q of rounds
that suffices to transmit all 2k messages is k + t, where t is the minimum number of
parts in a partition of [k] into disjoint parts so that each part is increasing in o and
decreasing in 7. In particular, this is easy to compute, given o and T, and for a pair
of random permutations the expected number of rounds needed is k + (2 + o(1))Vk (the
exact distribution is known as well).



Proof. We start with the lower bound. At most two senders can transmit simultaneously
in each round. Furthermore, the last two senders in each permutation can only transmit
alone, as any other sender transmitting will block their transmission. Hence we need at
least k + 1 transmission rounds.

The following 1-dimensional construction proves that the bound is tight: Place the
senders S1,...,Sk, in that order, between the two receivers, Ry and Rs. Let the permu-
tations over the transmitters associated with each receiver be determined by the distance
between that receiver and each transmitter. In the first round S; transmits its message
to Ro. In the ith round for 2 < ¢ < k, S;_1 transmits its message to Ry while S; transmits
its message to Ry. In the (k + 1)th and final round, Sj transmits to R;. It is clear that
in the transmission schedule above each transmitter succeeds in sending its messages to
its two receivers.

We next consider the minimum number of rounds in an arbitrary network with two
receivers. Given a transmission schedule for two permutations o and 7, assume, with-
out loss of generality, that o = (1,2,3,...,k). Construct the following bipartite graph
(AUB,FE) with A = B ={1,2,...,k} where (i,j) € E for i € A, j € B, iff i trans-
mits to the first receiver in the same round j transmits to the second receiver, or ¢ = j.
We may further assume that there are no redundant transmissions, that is, no sender
transmits its message twice to the same receiver. It follows directly that each vertex
is connected to at most one other vertex besides the copy of itself, hence, for every
v € AU B, deg(v) < 2. Thus every connected component in the graph is either a
path or a cycle. Next we show that it cannot be a cycle. Assume to the contrary that
(il, i1), (i1, ig), (ig, i2), (i2, ig), ceey (Z‘kfl, ik), (g, i), (ig,71) form a cycle in the bipartite
graph. Since (i1,i2) is an edge, ¢; transmits to R; in the same round is transmits to Ra.
Hence, i1 <, i and is <; ¢1. This reasoning of course can be applied to every other edge,
resulting in i1 <, io <, -+ <5 1 <, %1 which is a contradiction. Therefore, every con-
nected component is a path of the form (i1, 1), (i1, i2), (42, 42), (i2,43), . . ., (ik—1, ik), (K, i%),
where i1 <, s <5 -+ <5 ig and i <;oip1 <p 000 <701

If a path corresponds to ¢ transmission rounds of pairs, it has 2¢ + 2 vertices, and
vice-versa. Hence, the total number of pairs transmitting simultaneously is k — ¢ where
t is the number of connected components in the graph. We need two additional rounds
corresponding to the transmissions of the endpoints of each path. Hence the total number
of rounds is k + t. Furthermore, if [k] can be partitioned into ¢ parts each increasing in
o and decreasing in 7, then it is easy to see that an appropriate transmission schedule
can be constructed such that the connected components in the transmission graph will
match the parts of the partition.

Dilworth’s Theorem ([14]) states that given a partially ordered set, the size of the
maximum antichain, that is, a set where every two distinct elements are non-comparable,
is equal to the minimum number of chains (sets where every two elements are comparable)
that cover the set.

Consider the following partial order over [k]

r<y <= <, YNy <;wT.

Every chain in this partial order corresponds to a path in the graph whose vertices



Figure 1: Consider the two permutations above. The vertices can be split into 3 parts
each increasing in o and decreasing in 7: (1,2,3,6), (4,5), (7). These corre-
spond to the graph shown above and 10 transmission rounds.

increase in ¢ and decrease in 7. Hence, by Dilworth’s Theorem, the minimum number of
such paths required to cover all vertices is equal to the size of the maximum antichain.
However, an antichain set is simply a common subsequence of both permutations, o and
7. For the case of random permutations, the length of the longest common subsequence
has the well studied statistics of the length of the longest increasing subsequence of a
random permutation, see [8]. In particular its expectation is (2 + o(1))Vk. O

We note that finding the largest common subsequence of two permutations can be
done easily in polynomial time. Hence, we can efficiently find the optimal transmission
schedule for any two given permutations.

5. Bounds on networks with three and four receivers

For any fixed n > 3 the situation already changes and ¢(k,n) — k tends to infinity with
k. We describe the cases n = 3, n = 4 separately, as these are simpler.

Theorem 5.1.
k+ |EY3) < q(k,3) < q(k,4) < k+ O(Vk)

Moreover, permutations achieving the upper bound can be realized by distances between
senders and receivers in the plane.

Proof. Applying the Erdés-Szekeres Theorem ([15]) twice (see, e.g. [9]), we conclude that
any three permutations contain two that have a common subsequence of length at least
|k'/3|. Because a schedule for three permutations induces a schedule for any two of the



permutations (not necessarily an optimal one), by Theorem 4.1 and its proof the schedule
must contain at least k + [k'/3| rounds.

As any valid schedule for a set of permutations induces a valid schedule for any subset
of the permutations we clearly have ¢(k,3) < q(k,4). Thus, it is sufficient to provide a
construction for n = 4 receivers that proves the upper bound. Suppose that k = s? and
consider the grid in the plane

{0,1,2,...,s} x{0,1,2,...,s}.

We place the senders on each point of the grid with non-zero coordinates, namely, in
each point (i,j) with i,7 € 1,...,s we have a sender. We place four receivers, called
NE (for North-East), SE (South-East), SW (South-West) and NW (North-West). The
permutation for NE is according to the projection of the location of the senders on the
line x = y, with ties broken arbitrarily, and highest priority point being the North-East
sender located at (s, s). The permutation of SW is opposite, and those of SE and NW are
according to the projections on the line y = —x. Now we can complete the transmissions
in (s+1)? rounds corresponding to the squares of the grid: For each square with vertices
(4,7),(i+1,5),(4,j+1),(i+1,7+1) (4,5 €0,...,s) we add a transmission round where
each sender sends its message to the receiver to whom it is closest (compared to the
other transmitters in the square). Namely, the sender at (7, ) transmits its message to
SW, that in (7 + 1, j) sends its message to SE, and so on. When i or j are equal to s
or 0 some of the points in the squares above may not represent senders, as those are
located only on {1,...,s} x {1,...,s}. In that case we simply ignore these vertices and
no corresponding transmission is made.

Clearly, each transmitter has a round where it transmits to each receiver and is closest
to it among the transmitting senders at that transmission round. Hence, the construction
yields a valid schedule with (s +1)? = k + O(vk) transmission rounds.

We further note that by placing the receivers far enough away in the direction of North-
East, South-West, and so on, the permutations above are simply the ones obtained by
distances in the plane. O

Remark: It is known, see [9, 12], that there are collections of Q(k'/?) permutations of
[k], so that no two have a common subsequence of size exceeding ©(k'/3). Therefore, the
proof of the lower bound above does not yield a larger bound for ¢(k,n) for any fixed n
and sufficiently large k than for n = 3.

6. The general case: lower bound

Note, first, that the transmitters with the lowest priority for each receiver must transmit
independently from any other transmitter, otherwise they will be blocked. Hence, every
schedule has to contain n transmission rounds for those transmitters. Additionally, be-
cause each receiver can only receive a single transmission in each round, every round is
limited to n participating transmitters. This means that the remaining n(k — 1) mes-
sages will be transmitted using at least k — 1 transmission rounds. Therefore, we get the



following trivial lower bound:
q(k,n)>n+k—1.

This trivial bound can be generalized by the following observation: Consider the set of
n messages to each receiver with the (k — 1)-th priority (with respect to the appropriate
receiver). Each such message can only be sent with another single message (one that
corresponds to a transmitter with the kth priority for the respective receiver). Further-
more, a round that includes a message which originates from a transmitter with priority
1 and reaches its destination, can only include k£ — i additional messages—messages of
transmitters which have lower priority for the given receiver. Hence, assuming that there
are no redundant transmissions which do not reach their destinations, the round may
contain up to k—i+ 1 messages, as any additional message will necessarily be redundant.

We can use this fact to give a better lower bound on the number of transmissions
rounds needed. Associate with each message a weight: The weight of a message from a
transmitter with priority ¢ to the corresponding receiver will be 1/(k — i+ 1). Thus the
sum of weights of all messages participating in a single round is at most 1. Indeed, let 7
be the maximum index in a priority permutation of a message in the round. Then there
are at most k —i-+ 1 messages in that round, and each has a weight at most 1/(k—i+1),
hence the total weight of all messages in that round is 1. Summing the weights of all
the messages gives us a lower bound on the number of rounds required to complete the
transmission of all the messages. This proves the following theorem:

Theorem 6.1. For every n and k,

k
1
q(k,n) an; > nlog, k.

i=1

We note that for the case k > n this can be slightly improved as each round cannot
contain more than n messages. Therefore, if we modify the definition of the weight
associated with each message to max{1/(k—i+1),1/n}, we get that q(k,n) > n(log, n—
1)+ k.

7. The general case: upper bound

The case k = n appears difficult, but for & far smaller than n (specifically, for n > k!)
we can show that g(k,n) = ©(nlogk).

Theorem 7.1. Forn =k!, q(k,n) = anzl %

The upper bound of O(nlogk) for n > k! follows by splitting the set of receivers into
groups of size at most k!, and by handling the messages to each such group separately,
using the schedule in the proof of Theorem 7.1.

Proof. Let the priority permutations of the n receivers be all the n = k! possible permu-
tations of the k transmitters. For each subset I of the transmitters, |I| = r, let J be the



subset of receivers whose priority permutations have the transmitters in I in the last r
places. Thus |J| = rl(k — r)!l. Note that each transmitter in I has the highest priority
among the transmitters in I in m, = (r — 1)!(k — r)! permutations in J.

We define the following transmission schedule: For each subset I, it is possible to split
the receivers in J into m, sets, each of size r, such that those transmitters with the
highest priority among the transmitters in I are distinct. To see this, for each of the
(k — r)! possible permutations 7 of the receivers not in I, and each cyclic permutation
v of the receivers in I, take the r cyclic shifts of v concatenated with 7 as a set of
r permutations. This gives the required m, sets. For each such r permutations, the
corresponding r transmitters with the highest priority will transmit in a single round to
their respective receivers (according to the permutation they have the highest priority
among the transmitters in I). This ensures that each transmitter participating in the
round is indeed able to deliver its message to the corresponding receiver.

Given a transmitter ¢ and receiver j, consider the set I that includes ¢ and every other
transmitter whose priority (with regards to j’s permutation) is lower than i’s. Now j € J,
where J is the subset of receivers whose priority permutations have the transmitters in
I in the last = |I| places. Thus the transmission schedule defined above ensures that
1 successfully transmits its message to j in one of the rounds associated with I and J.
Therefore, every transmitter is able to send its message to every receiver in one of the
rounds of the transmission schedule. The number of rounds is

q—Zk:(f)mr—zk:<f)(r—1)!(k—r)!—k!§;i

r=1 r=1

which completes the proof. O

For any n > k!, one can split the receivers to sets of size k!. Repeating the construction
from the proof for each set shows that ¢(k,n) = ©(nlogk). For n < k! one can split
the senders into groups of size logn/loglogn and handle each such group separately
according to the last theorem. This implies that for all n < k!

(log log n)2> _

<
q(k,n) <O (lm log 1

In particular, for £ = n the arguments here imply:

2 2

(1 + o(L))nlogn < g(n,n) < (1 + o(1))"-1B1EM)
logn

It is possible, however, to get a better upper bound using the basic construction in [7]. In
that paper it is shown that there is a positive constant ¢ > 0 and a bipartite graph with
classes of vertices A = B = [n] and with n? —n?~¢ edges, whose edges can be decomposed
into at most n2~¢ induced matchings. View A as the set of senders and B as the set
of receivers. For each b € B define a permutation on A by placing all a € A connected
to B before all other members of A (with the permutation being arbitrary otherwise).
Now the messages corresponding to each of the induced matchings can be transmitted in



one round, for each of the matchings. The remaining messages can be sent in separate
rounds. This completes the schedule in at most 2n?~¢ rounds, which gives

g(n,n) < O(n”~°)

for some constant ¢ > 0.
In the next section we prove a much stronger upper bound showing that in fact

q(n’ n) — plto(1)

7.1. A general upper bound

The construction used for getting the upper bound on n = 3 and n = 4 receivers can
be generalized to an arbitrary number of receivers n, provided that the number of trans-
mitters is sufficiently large. This is done by taking a digital convex n-gon, that is a
convex n-gon whose vertices lie on lattice points, and placing the receivers on the lines
perpendicular to arbitrarily chosen supporting lines of each vertex of the n-gon, while
the senders will be located far enough on a square of size Vk x Vk centered around the
origin.

We cover the senders using overlapping translates of the convex n-gon, such that each
sender is covered by every vertex of the n-gon (using different translates of it). Each
transmission round will correspond to one n-gon participating in the cover. Each sender
covered by the n-gon will transmit its message to the corresponding receiver according to
the vertex that covers it. It can be seen that such sender is the closest to the corresponding
receiver among all other senders covered by that n-gon. Thus, this is a valid and complete
transmission schedule.

It has been shown in [17] and [1] that such convex n-gons can be constructed so that
they can be inscribed inside a square grid of side-size 9(n3/ 2). Therefore, by using
such convex n-gon, our senders can be covered, according to the construction above,
using (Vk + O(n?/?))? = k + O(n3/?Vk 4+ n?) n-gons, hence the schedule requires k +
O(n3?\/k + n?) transmission rounds.

We have thus proved the following theorem:

Theorem 7.2. For any k and n, q(k,n) < k + On**Vk 4+ n®) with permutations
corresponding to distances in the plane.

One such family of convex polygons with diameter O(n®/2) is the one constructed
as follows: For a given t consider the Farey sequence of order ¢, that is the set of ir-
reducible fractions between 0 and 1, where the denominator is at most ¢, for example

F3; = %, %, %, %, %} Now, consider the bijection p/¢ — p/(¢ — p) applied to the Farey
sequence (omitting the last term), e.g., F3 = {%, %, %, %} One can verify that the bi-

jection preserves the increasing monotonicity of the Farey sequence. Now, starting at
(0,0), treat each fraction as a 2-tuple and add it coordinate by coordinate to the previous
point to create the next vertex of the polygon. The last example produces the follow-
ing vertex list: (0,0),(0,1),(1,3),(2,4), (4,5). This effectively constructs one quarter of
the polygon. We complete the polygon by rotating and repeating the process. Because
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Figure 2: Convex n-gon construction for ¢ = 4. Here n = 24 and the n-gon is bounded
by a 17 x 17 square.

the elements in the list were monotonely increasing, so is the slope of the corresponding
edges. Therefore, the constructed polygon is indeed convex. As the sum of the numer-
ator and denominator of each term in the modified sequence is bounded by ¢, the total
change to both coordinates in each quarter is bounded by t times the number of terms
in the modified Farey sequence of order t. The number of terms of the modified Farey
sequence is one less than in the original sequence, that is Y2'_, (i) = ©(t?), where (i)
is Euler’s totient function, namely the number of positive integers smaller than ¢ that are
relatively prime to i. Therefore, the total change in both coordinates is O(t3), making the
diameter of the polygon O(3) as well. The number of vertices in the polygon is O(?)
(the same order as the number of terms in the sequence). Therefore a digital convex
n-gon constructed in this manner will have a diameter of O(n®/2). Such a construction
is illustrated in Figure 2.

Theorem 7.2 can be used to derive a non-trivial upper bound for the case of equal
number of receivers and senders (n = k), with permutations corresponding to distances
in the plane. We start by partitioning the set of receivers into n%/3 sets of n!/3
each. For each such subset of receivers in the partition and the set of all transmitters,

receivers
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apply the construction of Theorem 7.2. This results in
n?% - (k+ O(n'PPPVE + (n'/?)?) = O(n®/?)
rounds. This proves the following corollary:

Corollary 7.3. For any n, q(n,n) = O(n5/ 3) with permutations corresponding to dis-
tances in the plane.

Finally, we consider a higher dimensional analogue of the construction, by using a
d-dimensional sphere instead of the convex n-gon.

Theorem 7.4.

(I+o0(1))nlogn < q(n,n) <n-0 (wm) (= nlte® ),

Proof. Consider the d-dimensional ball. It is well known that the volume of the unit ball
in R? (for even d) is:
/2
Y= ()
and hence the number of lattice points in a ball of radius 7 is (1 + o(1))Vyr?. Now if
we consider the ball of radius m and all the spheres of integral square radius at most
m? we get that by the pigeonhole principle there exists such a sphere (henceforth the
"small" sphere) which has at least (14 o(1))Vym92 lattice points on its boundary. Let
the permutations of the receivers correspond to projections to lines perpendicular to the
supporting hyperplanes of these lattice points. Thus we have n = (1 4+ o(1))Vym4=2.
Let the transmitters be the lattice points inside a ball of radius dm. Thus k = (1 +
0(1))Vg(dm)?. The transmission rounds will correspond to shifts of the "small" sphere
centered in the lattice points of a ball of radius (d+2)m. Thus the number of transmission
rounds is

d
(I+0(1))V4((d+ 2)m)d = (1+0(1)) <1 + Z) k< (1+o(1)e’k

If we take m? = d% we get that k = nd®?. In this case we have d2¢ = n°®) as

n > de(d—z)/z which implies logn > (1 + o(1))d?/2 - logd and hence k < n -

O(e\/m ) which gives

a(n,n) < q(k,n) < (1+0(1))e’k < n - O(eYIB"elEm) — pitelt),

11



8. Concluding remarks

The problem of determining g(k,n) or estimating it more accurately is still unresolved
except for the extreme cases of n = 2 and k > n!. In networks with n = 3 and n = 4, it is
still unclear where between k +O(kY/3) and k + O(v'k) are the real values of ¢(k,n). For
n = k, the gap between the lower bound nlog n and the upper bound n-O(eviesnloglogn)
is still substantial and it will be interesting to improve it.

One might consider the problem limited to the case where the permutations are realized
as distances in the plane. In this case, the k + O(n3/2v/k +n?) bound gives good results
for fixed number of receivers (fixed n). However, if we consider the special case of equal
number of receivers and transmitters (n = k), then the bound above is trivial, but as
shown in Corollary 7.3 can be improved to O(n5/ 3). It will be interesting to estimate
more accurately the minimum possible number of rounds that can be realized by distance
permutations in the plane when n = k.

A natural problem that arises from constructions that appeared in the proofs of the
bounds, is determining which sets of permutations are realizable as projections along
lines in a d-dimensional space. In the appendix we further investigate this problem and
prove upper bounds on the number of such sets of permutations whenever the dimension
is smaller than the number of permutations, showing that in this case most sets of
permutations are not realizable.

A. Distance permutations

The construction of the upper bound on networks with n = 3 and n = 4 receivers relies on
a set of permutations that can be realized as distances in the plane. The general question
of determining necessary and sufficient conditions such that a set of r permutations over
n points can be realized as distances from 7 points in a d-dimensional space is interesting
in its own right.

We focus on those permutations that can be realized as projections along arbitrary
directions. That is, each permutation is determined by the projection of the points on a
line through the origin in a given direction. Note that such a construction is equivalent
to distances from far away placed points.

Clearly, whenever r < d, every set of permutations is realizable, as we can consider the
permutations as projections along the axes, and place the points independently in each
axis according to the corresponding permutation.

Consider the case of r = 3 and d = 2. Let ¥, U, U3 be the vectors representing the
directions on which each permutation is projected, and let m;(p) be the projection of the
point p on v;. The vectors v, Vs, U3 are linearly dependent, hence there are ai,as, as
such that a177 + a9¥s + agvs = 0. Now let p1,p2 be two arbitrary points, and suppose,
without loss of generality, that aj(m(p1) — 7m1(p2)) and ag(ma(p1) — m2(p2)) both have
the same sign. In that case as(m3(p1) — 73(p2)) must have the opposite sign. If one of
the a;’s is 0, say aj, the condition simplifies to requiring that as(m2(p1) — m2(p2)) and
as(ms(p1) — m3(p2)) have opposing signs. This implies a necessary condition for a set of

12



three permutations to be realizable in the plane. Clearly, the condition can be generalized
to apply for every r > d.

For example, the following 3 permutations over 1,...,4 cannot be realized by projec-
tions in the plane:

7 = (1234)
Ty = (4132)
73 = (3124)

Indeed, assume to the contrary that the permutations are realizable in the plane, and
let U7, 7, U3 be the directions of the projections used for defining the permutations. Let
ai,as,as satisfy a1v7 + asth + agts = 0. As none of the permutations is the same or
an inverse of another, we have that a1, as,ag are all non-zero. Suppose that a; and
az have the same sign then aq(m(1) — 71(2)), a2(m2(1l) — m2(2)), a1 (w1 (1) — 71(3)) and
as(me(1)—m2(3)) all have the same sign. However, because m3(1)—73(2) and 73(1) —73(3)
have opposing signs, the necessary condition above requires ag to have both an opposite
sign and the same sign as a; and ao at the same time, which is a contradiction. Supposing
that a1 and as have opposing signs, we may consider the pairs of points 1,4 and 2, 3.
Using the same arguments, we get that as must have the same sign as a; and the opposite
sign as well, which is, again, a contradiction. Therefore, one cannot realize the above
permutations by projections in the plane.

The above condition, and its clear extension for r > d, presents a necessary condition
for a set of permutations to be realizable using projections along lines in the d-dimensional
case. However, it is not immediately clear from it how many such sets are indeed real-
izable. In the following subsection we show that the number of such sets in negligible
compared to the total number of sets of permutations when the number of permutations
is bigger than the dimension of the space used.

A.1. Upper bound on the number of realizable permutations

In order to bound the number of r-tuples of permutations realizable by projections in
the plane, consider the following set of polynomials over variables in R¢:

Pijk(xla sy Tpy ALy - e ar) = <1‘Z7ak> - <xja Oék)
where 1 <i< j<mn,1<k<r GivenasetA={x,...,z,} of n points in R? and a
set of vectors o, ..., a, € R?% the signs of the polynomials P;jj. determine the ordering
of the points in A when projected on the directions aq, ..., a,. That is, the pattern over

{-1, l}d(g) created by taking the sign of each polynomial over a given point in R "+7),

the so-called sign-pattern, represents a set of points and directions realizing a set of r
permutations over n points using projections in R,

Warren’s Theorem (|20], see also [3]) states that given a set of m polynomials P, ..., Py,
over R, the number of different sign-patterns in {£1}™ created by the polynomials is
bounded by (4ekm /)¢ where k is the maximum degree of the polynomials and assuming

13



m > {. We can use Warren’s Theorem to bound the number of different sign-patterns
created by {Pj;}, and thus bound the number of permutations realizable as projections.

In this case, the number of polynomials is m = r(g) and each polynomial is of degree
k = 2 and over ¢ = d(n +r) variables. Thus by Warren’s Theorem (assuming d(n+r) <

r(;)% the number of sign patterns s satisfies

dern? \ 47 nt-dr
S S <d(7‘L—i—7‘)) S (467“n/d)d +d .

Thus the number of ways to pick r permutations over n points which are realizable by
projections in R? is bounded by (4ern/d)? 9. Compare that number with the number
of ways to pick r arbitrary permutations over n points, which is (n!)” > (n/e)™". When
d < r are fixed, and n tends to infinity, we get that the number of r-tuples of permutations
realizable as projections in the d-space is negligible when compared to the total number
of r-tuples of permutations. On the other hand, the bound becomes trivial if d = r, as
expected, as in that case, every r permutations are realizable, for example by projecting
each permutation independently on a different axis.

The above discussion considered sets of permutations realizable by projections in the
d-dimensional space. A generalization of this model would be to consider sets of permu-
tations realizable as distances from 7 points in the d-dimensional space (projections are
distances from far away placed points). This generalization behaves similarly to the case
of projections, as we can still use the signs of a set of 'r(g) polynomials of degree 2 to
describe the permutations defined using the distances. Indeed, here

Pijr(r1,... xn,01,...,0) = dz(:zri,ak) — dz(xj, a)

where d?(z;, ;) is the square of the distance between z; and ;. Thus, the analysis is
the same as before and results in proving that the number of r-tuples of permutations
realizable as distances in the d-dimensional space is negligible compared to the total
number of r-tuples of permutations whenever d < r are fixed and n tends to infinity.
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