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Abstract

Let F (n, r, k) denote the maximum possible number of distinct edge-colorings of a simple graph
on n vertices with r colors, which contain no monochromatic copy of Kk. It is shown that for
every fixed k and all n > n0(k), F (n, 2, k) = 2tk−1(n) and F (n, 3, k) = 3tk−1(n), where tk−1(n)
is the maximum possible number of edges of a graph on n vertices with no Kk, (determined by
Turán’s Theorem). The case r = 2 settles a conjecture of Yuster. On the other hand, for every
fixed r > 3 and k > 2, the function F (n, r, k) is exponentially bigger than rtk−1(n). The proofs are
based on Szemerédi’s regularity lemma together with some additional tools in Extremal Graph
Theory, and provide an example of a precise result proved by applying this lemma.

1 Introduction

Given a graph G, denote by F (G, r, k) the number of distinct edge colorings of G with r colors which
contain no monochromatic copy of Kk, i.e., a complete graph on k vertices. Let

F (n, r, k) = max
{
F (G, r, k) | G is a graph on n vertices

}
.

In this paper we are interested in the behavior of F (n, r, k) for fixed r and k > 2 and sufficiently large
n. Denote by Tk−1(n) the complete (k − 1)-partite graph on n vertices with class sizes as equal as
possible, usually called the Turán graph (with parameters n and k − 1). Let tk−1(n) be the number
of edges in Tk−1(n). Then Turán’s theorem tells us that if G is a Kk-free graph of order n then the
number of edges of G, e(G), satisfies e(G) ≤ tk−1(n), with equality iff G = Tk−1(n). It is trivial to
see that F (n, r, k) ≥ rtk−1(n), since every r-edge coloring of the corresponding Turán graph contains
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no monochromatic k-clique. Therefore, it is natural to ask if this lower bound reflects the correct
behavior of F (n, r, k). Indeed, Erdős and Rothschild [4] (see also [5]) conjectured over twenty years
ago that F (n, 2, 3) = 2bn

2/4c for all large enough n. This conjecture was proved by Yuster [9]. He
also conjectured in [9] that the equality F (n, 2, k) = 2tk−1(n) holds for all values of k > 3, provided n
is sufficiently large. In this paper we obtain the following result, which in particular proves Yuster’s
conjecture.

Theorem 1.1 Let k ≥ 2 be an integer and let r = 2 or r = 3. Then there exists n(k), such that every
graph G of order n > n(k) has at most rtk(n) edge colorings with r colors that have no monochromatic
copy of Kk+1. Moreover, the only graph on n vertices for which F (G, r, k + 1) = rtk(n) is the Turán
graph Tk(n).

In this paper we present the proof of this theorem only for r = 3, which is the more difficult case. It
is rather straightforward to make the necessary changes in this proof to obtain the result for r = 2
and we will omit it here.

This result does not extend to more than three colors, and indeed for r > 3, k > 1 and all
sufficiently large n, there is a graph G on n vertices for which F (G, r, k + 1)� rtk(n). We will prove
the following results.

Theorem 1.2 F (n, 4, 3) =
(

31/221/4
)(n2)+o(n2)

, F (n, 4, 4) =
(

38/9
)(n2)+o(n2)

.

Theorem 1.3 For every fixed r ≥ 4 and k > 1, the function F (n, r, k + 1) satisfies the following

If
r(k − 1)

k
> e then F (n, r, k + 1) ≤

(
r
k − 1
k

)n2

2
+o(n2)

. (1)

If r ≥ k then F (n, r, k + 1) ≥
(
r
k − 1
k
− 2
√
r log r)

)(1− 1
r

)(n
2

2
+o(n2))

. (2)

For n� k + r � 1 F (n, r, k + 1) =
(
r
k − 1
k

(1 + o(1))
)n2

2

(3)

where the o(1) tends to 0 as max {k, r} tends to infinity.

The proof of Theorem 1.1 is presented in the next two sections. It uses several tools from Extremal
Graph Theory, including the regularity lemma of Szemerédi, and provides one of the rare examples
in which this lemma is used to prove a precise result (for all large n). The proofs of Theorems 1.2
and 1.3 are given in Section 4, and the final Section 5 contains some concluding remarks.
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2 The structure of graphs with many 3-edge colorings

As we already mentioned, we will only give the proof of Theorem 1.1 for r = 3, as the case r = 2 can
be treated similarly. As the first step in the proof, we determine here the structure of any potential
counterexamples. Our aim is to show that every such counterexample must be almost k-partite. For
integers k and t let Kk+1(t) be the complete (k + 1)-partite graph with t vertices in every class. We
obtain the following slightly more general result.

Lemma 2.1 Let k and t be two positive integers. Then, for all δ > 0 there exists n0, such that if
G is a graph of order n > n0 which has at least 3tk(n) Kk+1(t)-free 3-edge colorings then there is a
partition of the vertex set V (G) = V1 ∪ · · · ∪ Vk such that

∑
i e(Vi) < δn2.

To prove this lemma we use an approach similar to the one from [2], which is based on two
important tools, the Simonovits stability theorem and the Szemerédi Regularity Lemma. The stability
theorem ([7], see also [3], p. 340) asserts that a Kk+1-free graph with almost as many edges as the
Turán graph is essentially k-partite. The precise statement follows.

Theorem 2.2 For every α > 0 there exists β > 0, such that any Kk+1-free graph on m vertices
with at least

(
1 − 1

k

)
m2/2 − βm2 edges has a partition of the vertex set V = V1 ∪ · · · ∪ Vk with∑

i e(Vi) < αm2.

Our second tool is a multicolored version of Szemerédi’s Regularity Lemma. Here we will just give the
definitions and the statement of the result that we require. For more details, we refer the interested
reader to the excellent survey of Komlós and Simonovits [6], which discusses various applications of
this powerful result.

Let G = (V,E) be a graph, and let A and B be two disjoint subsets of V (G). If A and B are
non-empty, define the density of edges between A and B by

d(A,B) =
e(A,B)
|A||B|

.

For ε > 0 the pair (A,B) is called ε-regular if for every X ⊂ A and Y ⊂ B satisfying |X| > ε|A| and
|Y | > ε|B| we have

|d(X,Y )− d(A,B)| < ε.

Intuitively, such a pair (A,B) behaves approximately as if each possible edge between A and B had
been chosen randomly with probability d(A,B).

An equitable partition of a set V is a partition of V into pairwise disjoint classes V1, · · · , Vm of
almost equal size, i.e.,

∣∣|Vi| − |Vj |∣∣ ≤ 1 for all i, j. An equitable partition of the set of vertices V of
G into the classes V1, · · · , Vm is called ε-regular if |Vi| ≤ ε|V | for every i and all but at most ε

(
m
2

)
of

the pairs (Vi, Vj) are ε-regular.
A rough statement of the Regularity Lemma says that any graph can be approximated by a

multipartite graph with a bounded number of classes, where the distribution of the edges between
classes is in some sense as in a random graph. More precisely, Szemerédi [8] proved the following.
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Lemma 2.3 For every ε > 0, there is an integer M(ε) > 0 such that for every graph G of order
n > M there is a ε-regular partition of the vertex set of G into m classes, for some 1/ε ≤ m ≤M .

To prove Lemma 2.1 we will need a colored version of the Regularity Lemma. Its proof is a straight-
forward modification of the proof of the original result (see, e.g., [6] for details).

Lemma 2.4 For every ε > 0 and integer r, there exists an M(ε, r) such that if the edges of a graph
G of order n > M are r-colored E(G) = E1 ∪ · · · ∪ Er, then there is a partition of the vertex set
V (G) = V1 ∪ · · · ∪ Vm, with m ≤ M , which is ε-regular simultaneously with respect to all graphs
Gi = (V,Ei) for 1 ≤ i ≤ r.

A useful notion associated with a regular partition is that of a cluster graph. Suppose that G is a
graph with an ε-regular partition V = V1 ∪ · · · ∪Vm, and η > 0 is some fixed constant (to be thought
of as small, but much larger than ε.) The cluster graph H(η) is defined on the vertex set {1, · · · ,m}
by declaring ij to be an edge if (Vi, Vj) is an ε-regular pair with edge density at least η. From the
definition, one might expect that if a cluster graph contains a copy of a fixed clique then so does the
original graph. This is indeed the case, as established in the following well-known lemma (see [6]),
which says more generally that if the cluster graph contains a Kk+1 then, for any fixed t, the original
graph contains a complete (k + 1)-partite graph Kk+1(t).

Lemma 2.5 For every η > 0 and integers k, t > 0 there exist an 0 < ε = ε(η, k, t) and n0 = n0(η, k, t)
with the following property. Suppose that G is a graph of order n > n0 with an ε-regular partition
V = V1 ∪ · · · ∪ Vm. Let H(η) be the cluster graph of the partition. If H(η) contains a Kk+1 then G

contains a Kk+1(t).

Having finished all the preliminaries, we are now ready to prove the lemma, which tells us the
structure of any potential counterexample to Theorem 1.1.

Proof of Lemma 2.1. Suppose that a graph G = (V,E) has n vertices and at least 3tk(n) Kk+1(t)-
free 3-edge colorings. Fix some η > 0 (which we will later choose to be appropriately small) and let
ε be such as to satisfy the assertion of Lemma 2.5. We may also choose ε < η.

Consider any fixed 3-edge coloring of G without a monochromatic Kk+1(t). By applying Lemma
2.4 we get a partition V = V1∪ · · · ∪Vm with respect to which the graph of each of the three colors is
ε-regular. Let H1, H2, and H3 be the corresponding cluster graphs on the vertex set {1, · · · ,m}. To
simplify the notation we suppress the dependence on η here and in the rest of the proof. By Lemma
2.5 each cluster graph is Kk+1-free and thus by Turán’s theorem it has at most tk(m) edges.

First we bound the number of 3-edge colorings of G that could give rise to this particular partition
and these cluster graphs. Note that by definition, there are at most 4ε

(
n
2

)
edges that either lie within

some class of the partition or join a pair of classes that is not regular with respect to some color.
Also there are at most 3η

(
n
2

)
edges that join a pair of classes in which their color has density smaller

than η. Altogether, this gives no more than 7η
(
n
2

)
< 4ηn2 edges. There are at most

(n2/2
4ηn2

)
ways to
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choose this set of edges and they can be colored in at most 34ηn2
different ways. Now, for any pair

1 ≤ i 6= j ≤ m consider the remaining edges between Vi and Vj . If ij is an edge in exactly s of the
cluster graphs, where 0 ≤ s ≤ 3, then every remaining edge between Vi and Vj has only s possible
colors. Clearly e(Vi, Vj) ≤ (n/m)2, so there are at most s(n/m)2

ways of coloring these edges. Let
es denote the number of pairs (i, j), i < j that are edges in exactly s of the cluster graphs and let
ps = 2es/m2. Then, by the above discussion, the number of potential 3-edge colorings of G that
could give this vertex partition and these cluster graphs is at most(

n2/2
4ηn2

)
34ηn2

(
1e12e23e3

)n2/m2

≤ 2H(8η)n2/234ηn2
(

2p23p3

)n2/2
< 3
(
H(8η)+8η

)
n2/2

(
2p23p3

)n2/2
.

Here we use the well known estimate
(
a
xa

)
≤ 2H(x)a for 0 < x < 1, where H(x) = −x log2 x − (1 −

x) log2(1− x) is the entropy function. As we already mentioned, by Turán’s theorem e(Hi) ≤ tk(m)
for all i. Thus

p1 + 2p2 + 3p3 =
e1 + 2e2 + 3e3

m2/2
=
e(H1) + e(H2) + e(H3)

m2/2
≤ 3

k − 1
k

.

From this we deduce that p2 ≤ 3
2

(
k−1
k − p3

)
. Since 2 < 37/11 this implies that

2p23p3 ≤ 37p2/11+p3 ≤ 3
(

21 k−1
k

+p3

)
/22.

Next we claim that there must be some choice of our initial coloring for which p3 ≥ k−1
k − 200η−

22H(8η). Indeed, suppose that p3 <
k−1
k − 200η − 22H(8η) for all Kk+1(t)-free 3-edge colorings of

G. Then, by the above inequality we have 2p23p3 < 3
k−1
k
−9η−H(8η). Note that M is a constant and

there are at most nM+1 partitions of the vertex set of G into at most M parts. Also, for every such
partition there are at most 23M2/2 choices for cluster graphs H1, H2 and H3. All this implies that,
for sufficiently large n, the total number of possible Kk+1(t)-free 3-edge colorings is bounded by

nM+123M2/23
(
H(8η)+8η

)
n2/2

(
2p23p3

)n2/2
< nM+123M2/23

(
H(8η)+8η

)
n2/2

(
3
k−1
k
−9η−H(8η)

)n2/2
< 3tk(n),

which is a contradiction.
So we may suppose that p3 ≥ k−1

k − 200η − 22H(8η) for some choice of initial coloring. Fix
the partition V1 ∪ · · · ∪ Vm together with the cluster graphs Hi which correspond to this particular
coloring. Then we have

e1 + e2 =
(
p1 + p2

)
m2/2 ≤

(
p1 + 2p2

)
m2/2 ≤

(
3
k − 1
k
− 3p3

)
m2/2 ≤ 300ηm2 + 33H(8η)m2.

Let H be the graph of edges that are in all three cluster graphs. By definition, H is a Kk+1-free
graph with e3 = p3m

2/2 ≥
(
1− 1

k

)
m2/2− (100η + 11H(8η))m2 edges on the vertex set {1, · · · ,m}.

Suppose that δ > 0 is given. Since H(8η) tends to zero together with η, by Theorem 2.2 we could
have chosen η small enough so that there is a partition U1 ∪ · · · ∪ Uk of the set {1, · · · ,m} which
satisfies

∑
i eH(Ui) < (δ − 304η − 33H(8η))m2. Let Wi = ∪j∈UiVj , for 1 ≤ i ≤ k. Then

k∑
i=1

eG(Wi) ≤ 4ηn2 + (n/m)2
( k∑
i=1

eH(Ui) + e1 + e2

)
< δn2
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and we have found the partition that satisfies the assertion of the lemma. �

3 Proof of Theorem 1.1

In this section we complete the proof of our first theorem. We start by recalling some notation and
facts. Tk(n) denotes the Turán graph, which is a complete k-partite graph on n vertices with class
sizes as equal as possible, and tk(n) is the number of edges in Tk(n). Let δk(n) denote the minimum
degree of Tk(n). For future reference we record the following simple observations.

tk(n) = tk(n− 1) + δk(n), δk(n) = n− dn/ke, k − 1
k

n2/2− k < tk(n) ≤ k − 1
k

n2/2.

We also need one additional easy lemma, before we present the proof of Theorem 1.1.

Lemma 3.1 Let G be a graph and let W1, · · · ,Wk be subsets of vertices of G such that for every
i 6= j and every pair of subsets Xi ⊆ Wi, |Xi| ≥ 10−k|Wi| and Xj ⊆ Wj , |Xj | ≥ 10−k|Wj | there are
at least 1

10 |Xi||Xj | edges between Xi and Xj in G. Then G contains a copy of Kk with one vertex in
each set Wi.

Proof. We use induction on k. For k = 1 and k = 2 the statement is obviously true. Suppose it is
true for k − 1 and let W1, · · · ,Wk be the subsets of vertices of G which satisfy the conditions of the
lemma.

For every 1 ≤ i ≤ k − 1 denote by W i
k the subset of vertices in Wk which have less than |Wi|/10

neighbors in Wi. By definition, we have e(W i
k,Wi) < |W i

k||Wi|/10 and therefore |W i
k| < 10−k|Wk|.

Thus we deduce that
∣∣⋃k−1

i=1 W
i
k

∣∣ < (k − 1)10−k|Wk| < |Wk|/2. So in particular there exists a vertex
v in Wk which does not belong to

⋃k−1
i=1 W

i
k. For every 1 ≤ i ≤ k − 1 let W ′i be the set of neighbors

of v in Wi. By definition, W ′i has size at least |Wi|/10. Note that for every pair of subsets Xi ⊆ W ′i
and Xj ⊆ W ′j with sizes |Xi| ≥ 10−(k−1)|W ′i | ≥ 10−k|Wi| and |Xj | ≥ 10−(k−1)|W ′j | ≥ 10−k|Wj |, G
contains at least 1

10 |Xi||Xj | edges between Xi and Xj . By the induction hypothesis there exists a
copy of Kk−1 with one vertex in each W ′i , for 1 ≤ i ≤ k − 1. This copy, together with the vertex v,
forms a complete graph of order k with one vertex in each Wi. �

Proof of Theorem 1.1. Let n0 be large enough to guarantee that the assertion of Lemma 2.1 holds
for δ = 10−8k. Suppose that G is a graph on n > n2

0 vertices with at least 3tk(n)+m Kk+1-free 3-edge
colorings, for some m ≥ 0. Our argument is by induction with an improvement at every step. More
precisely, we will show that if G is not the corresponding Turán graph then it contains a vertex x

such that G − x has at least 3tk(n−1)+m+1 Kk+1-free 3-edge colorings. Iterating, we obtain a graph
on n0 vertices with at least 3tk(n0)+m+n−n0 > 3n

2
0 3-edge colorings. But a graph on n0 vertices has at

most n2
0/2 edges and hence at most 3n

2
0/2 3-edge colorings. This contradiction will prove the theorem

for n > n2
0.

Recall that δk(n) denotes the minimum degree of Tk(n), and tk(n) = tk(n − 1) + δk(n). If G
contains a vertex x of degree less than δk(n), then the edges incident with x have at most 3δk(n)−1
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colorings. Thus G−x should have at least 3tk(n−1)+m+1 Kk+1-free 3-edge colorings and we are done.
Hence we may and will assume that all the vertices of G have degree at least δk(n).

Consider a partition V1 ∪ · · · ∪ Vk of the vertex set of G which minimizes
∑

i e(Vi). By our
choice of n0 in Lemma 2.1, we have that

∑
i e(Vi) < 10−8kn2. Note that if |Vi| >

(
1/k + 10−6k

)
n,

for some i, then every vertex in Vi has at least δk(n) −
(
k−1
k n− 10−6kn

)
≥ 10−6kn − 1 neighbors

in Vi. Thus
∑

i e(Vi) > (10−6kn − 1)(1/k + 10−6k)n/2 > 10−8kn2, a contradiction. Therefore,
|Vi| − n/k ≤ 10−6kn for every i and also |Vi| = n−

∑
j 6=i |Vj | ≥ n/k − (k − 1)10−6kn. So for every i

we have
∣∣|Vi| −n/k∣∣ < 10−5kn. Let C denote the set of all possible Kk+1-free 3-colorings of the edges

of G. We will refer to the colors as red, blue and green.
First consider the case when there is some vertex with many neighbors in its own class of the

partition, say x ∈ V1 with |N(x) ∩ V1| > n/(300k). Our choice of partition guarantees that in this
case |N(x) ∩ Vi| > n/(300k) also for all 2 ≤ i ≤ k, or by moving x to another part we could reduce∑

i e(Vi). Let C1 be the subset of all the colorings in which for every i there is a subset Wi ⊂ Vi with
|Wi| ≥ n/(103k) such that all the edges from x to

⋃
iWi have the same color, and let C2 = C − C1.

Consider a coloring of G belonging to C1. Then, by definition, we have sets Wi ⊂ Vi with
|Wi| ≥ n/(103k) for each 1 ≤ i ≤ k such that all edges from x to ∪iWi have the same color, say
red. There is no red Kk+1, so by Lemma 3.1 there is a pair (i, j) and subsets Xi ⊂ Wi, Xj ⊂ Wj

with |Xi| ≥ 10−k|Wi| and |Xj | ≥ 10−k|Wj | with at most 1
10 |Xi||Xj | red edges between Xi and

Xj . Since there are at most |Xi||Xj | edges between these two sets, we have at most 2|Xi||Xj | ways
to color the remaining edges between Xi and Xj using blue and green colors. There are at most(
k
2

)( |Vi|
|Xi|
)( |Vj |
|Xj |
)
< 22n ways to choose Xi and Xj and at most

( |Xi||Xj |
|Xi||Xj |/10

)
≤ 2H(0.1)|Xi||Xj | ways to

choose the red edges between Xi and Xj . In addition, from the structure of G we know that there
are at most tk(n) + 10−8kn2 − |Xi||Xj | other edges in this graph, so the number of colorings in C1

can be bounded as follows

|C1| ≤ 3tk(n)+10−8kn2−|Xi||Xj | 22n2H(0.1)|Xi||Xj |2|Xi||Xj | ≤ 3tk(n)+10−8kn2−|Xi||Xj | 22n 2(3/2)|Xi||Xj |

= 3tk(n)+10−8kn2
22n (
√

8/3)|Xi||Xj | ≤ 3tk(n)+10−8kn2
22n (
√

8/3)10−2k−6k−2n2

< 3tk(n)+10−8kn2
22n
(

3−0.01
)10−2k−6k−2n2

= 3tk(n) 22n 3−(10−2k−8k−2−10−8k)n2

� 3tk(n)−1

In this estimate we used the facts that H(1/10) < 1/2, |Xi|, |Xj | ≥ n/(k10k+3),
√

8/3 < 3−0.01 and
that 10−2k−8k−2 − 10−8k > 0 for all k ≥ 2.

By the above discussion, |C2| contains at least |C| − |C1| ≥ 3tk(n)+m−1 colorings of G. Now we
consider one of them. By definition, there are classes Vi, Vj , and Vl, so that there are at most
n/(103k) red edges from x to Vi, at most n/(103k) green edges from x to Vj and at most n/(103k)
blue edges from x to Vl. Recall that |N(x) ∩ Vi| > n/(300k) for all 1 ≤ i ≤ k, so we can not have
i = j = l. Suppose first that i, j, and l are all distinct. Since the size of Vi is at most (1/k+ 10−5k)n,
we obtain that there are at most

((1/k+10−5k)n
n/(103k)

)
ways to pick the red edges between x and Vi. Since
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the remaining edges can only have color blue or green we obtain that the number of colorings of
edges between x and Vi is bounded by(

(1/k + 10−5k)n
n

103k

)
2
(

1/k+10−5k
)
n ≤ 2

(
H(0.001)+1

)(
1/k+10−5k

)
n ≤ 21.02

(
1/k+10−5k

)
n,

since H(0.001) < 0.02. This estimate is valid for the number of colorings of edges between x and Vj ,
and between x and Vl as well. Note that in addition x is incident to at most n− |Vi| − |Vj | − |Vl| ≤
(k−3
k + 3 · 10−5k)n other edges, which can have all three colors. Using the above inequalities together

with the facts that 23.06 < 31.95 and 4/(100k) > 5 · 10−5k for all k ≥ 2, we obtain that the number of
colorings of the edges incident at x is at most(

k

3

)(
21.02

(
1/k+10−5k

)
n

)3

3
(
k−3
k

+3·10−5k
)
n < 3

(
2
k
− 5

100k
+2·10−5k

)
n3
(
k−3
k

+3·10−5k
)
n ≤ 3

(
k−1
k
− 1

100k

)
n.

Next suppose that i = j 6= l. Then again there are at most 21.02(1/k+10−5k)n colorings of the edges
between x and Vl and there are at most(

(1/k + 10−5k)n
n

103k

)2

≤ 22H(0.001)
(

1/k+10−5k
)
n ≤ 20.04

(
1/k+10−5k

)
n

ways to choose the red and the green edges from x to Vi. Altogether, it gives at most 21.06(1/k+10−5k)n

colorings of the edges between x and Vi ∪ Vl. Also x is incident to at most n − |Vi| − |Vl| ≤ (k−2
k +

2 · 10−5k)n other edges which can be colored arbitrarily. Therefore, since 21.06 < 30.95, we can bound
the number of colorings of the edges incident at x again by(

k

2

)
21.06

(
1/k+10−5k

)
n3
(
k−2
k

+2·10−5k
)
n < 3

(
1
k
− 5

100k
+10−5k

)
n3
(
k−2
k

+2·10−5k
)
n < 3

(
k−1
k
− 1

100k

)
n.

But we had that |C2| ≥ 3tk(n)+m−1. Hence the number of Kk+1-free 3-edge colorings of G − x is at
least

3tk(n)+m−1−( k−1
k
−1/100k)n � 3tk(n−1)+m+1.

This completes the induction step in the first case.
Now we may assume that every vertex has degree at most n/(300k) in its own class. We may

suppose that G is not k-partite, or else by Turán’s theorem e(G) ≤ tk(n) and therefore |C| ≤ 3tk(n)

with equality only for G = Tk(n). So, without loss of generality, we suppose that G contains an edge
xy with x, y ∈ V1. Let C1 denote the set of all Kk+1-free 3-edge colorings of G in which there are sets
Wi ⊂ Vi, |Wi| ≥ n/(103k) for every 2 ≤ i ≤ k such that all the edges from both x and y to

⋃
iWi and

the edge xy itself have the same color. Let C2 = C − C1 denote the remaining colorings.
Consider a coloring of G from C1 and assume without loss of generality that xy is colored red.

Then, by definition, we have sets Wi ⊂ Vi with |Wi| ≥ n/(103k) for each 2 ≤ i ≤ k such that all
edges from both x and y to

⋃
iWi are red. There is no red Kk+1 in this coloring and therefore there

is no red Kk−1 with one vertex in each set Wi. Thus, by Lemma 3.1, there is a pair (i, j) and subsets
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Xi ⊂ Wi, Xj ⊂ Wj with |Xi| ≥ 10−(k−1)|Wi| and |Xj | ≥ 10−(k−1)|Wj | with at most 1
10 |Xi||Xj | red

edges between Xi and Xj . Arguing exactly as before in the first case we can prove that |C1| < 3tk(n)−1

and thus |C2| ≥ 3tk(n)+m−1.
Next consider a coloring of G from C2 and suppose again that xy is red. Then there is some

class Vi, i ≤ 2 ≤ k, in which x and y have at most n/(103k) common neighbors to which they are
both joined by red edges. Note that for any other vertex z in Vi, we can not color both edges zx
and zy red. Therefore we have at most 8 possibilities to color these edges. Since there are at most
(1/k + 10−5k)n vertices in Vi we have at most 8(1/k+10−5k)n ways to color such edges and at most(

(1/k + 10−5k)n
n

103k

)
≤ 2H(0.001)

(
1/k+10−5k

)
n ≤ 20.02

(
1/k+10−5k

)
n

possibilities to choose a set of red common neighbors of x and y in Vi. Using that 23.02 < 31.96, we
obtain that there are at most

20.02
(

1/k+10−5k
)
n 8
(

1/k+10−5k
)
n = 23.02

(
1/k+10−5k

)
n < 32

(
1/k−2/(100k)+10−5k

)
n

ways to color edges from x,y to Vi. Note that, since the degree of x and y in V1 is at most n/(300k)
we have that the number of edges from x, y to

⋃
j 6=i Vi is bounded by 2(k−2

k + 2 · 10−5k) + 2n/(300k)
Even if all these edges can be colored arbitrarily, since 1/(300k) > 3 ·10−5k and we have k−1 choices
for index i, we can bound the number of colorings of the edges incident at x and y by

(k − 1) 32
(

1/k−2/(100k)+10−5k
)
n 32
(
k−2
k

+ 1
300k

+2·10−5k
)
n < 32

(
k−1
k
−1/100k

)
n.

But we know that |C2| ≥ 3tk(n)+m−1. Thus the number of Kk+1-free 3-edge colorings of G−{x, y} is
at least

3tk(n)+m−1−2( k−1
k
−1/100k)n � 3tk(n−2)+m+2.

This completes two induction steps for the second case and proves the theorem. �

Finally, we remark that it is possible to modify the argument to apply to the general situation
of finding the number of H-free colorings, where H is any edge-color-critical graph. We say that a
graph H with chromatic number χ(H) = k + 1 is edge-color-critical if there is some edge e of H for
which χ(H − e) = k. Then the following generalization holds.

Theorem 3.2 Let H be an edge-color-critical graph with chromatic number k + 1 ≥ 3. Let r = 2 or
r = 3. Then there exists n(H), such that every graph G of order n > n(H) has at most rtk(n) edge
colorings with r colors having no monochromatic copy of H, with equality only for G = Tk(n).

Sketch of proof. Again we just give the argument for r = 3. It is known (see, e.g., [7]) for such
H that, for sufficiently large n, Tk(n) is the unique H-free graph on n vertices with as many edges
as possible. Note that if H has t vertices, then it is certainly contained in Kk+1(t), so if a coloring
is H-free it is also Kk+1(t)-free. Thus for sufficiently large n we have, by Lemma 2.1, that if a graph
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G on n vertices has at least 3tk(n) H-free 3-edge colorings then there is a partition of the vertex set
V (G) = V1 ∪ · · · ∪ Vk such that

∑
i e(Vi) = o(n2).

To apply the rest of our arguments, we need the following generalization of Lemma 3.1, whose
proof is essentially the same as that of Lemma 2.5 (see, e.g., [6]).

Lemma 3.3 For any α > 0 and any integers t, k > 0 there exists β > 0 such that the following
holds. Let G be a graph, and let W1, · · · ,Wk be subsets of vertices of G such that for every i 6= j and
pair of subsets Xi ⊆ Wi, |Xi| ≥ β|Wi| and Xj ⊆ Wj , |Xj | ≥ β|Wj | there are at least α|Xi||Xj | edges
between Xi and Xj in G. Then G contains a copy of Kk(t) with t vertices in each set Wi. �

The proof of Theorem 3.2 is now almost the same as for H = Kk+1. In the first case, when there
is some vertex with high degree in its class, we use Lemma 3.3 instead of Lemma 3.1 and also the
simple fact that H is a subgraph of the graph obtained by connecting the vertex x with all the vertices
of Kk(t). For the second case, to bound the number of colorings in C1 we need a slight modification.
We note that H is contained in the graph obtained by adding an edge to Kk(t). When we are given
sets Wi ⊂ Vi for each 2 ≤ i ≤ k such that all edges from both x and y to ∪iWi are red, we let
W1 = V1\{x, y}. Then we will apply Lemma 3.3 to the sets W1, · · · ,Wk. There are no significant
changes to the rest of the proof and we leave the remaining details to the interested reader. �

For example, odd cycles C2t+1 are edge-color-critical with chromatic number 3, so we have the
following corollary.

Corollary 3.4 For any integer t > 0 there exists n(t), such that for any graph G on n > n(t)
vertices, the number of C2t+1-free 2-edge and 3-edge colorings of G is at most 2bn

2/4c and 3bn
2/4c,

respectively, with equality only for G = T2(n).

4 Edge colorings with more than three colors

For two or three colors we were able to show in the previous sections that the number of Kk+1-free
colorings was largest for the corresponding Turán graph with k color classes. However, for four or
more colors this is no longer true. Moreover, it is not at all obvious how large the number of Kk+1-free
r-edge colorings of a graph of order n can be and which graphs have the maximum number of such
colorings. We start with two examples, which show that already for r = 4 and k = 2, 3 there are
graphs of order n which have more than 4tk(n) Kk+1-free 4-edge colorings.

Example 1. Let G be the complete 4-partite graph on n vertices with parts of almost equal size.
We will show that G has many more triangle-free 4-edge colorings than the Turán graph T2(n). Let
V1, V2, V3, V4 be the classes of the partition and let {a, b, c, d} be the set of colors. Consider the set
of colorings in which every edge between Vi and Vj must have one of the colors belonging to the set
c(i, j), where c(1, 2) = c(3, 4) = {a, b, d}, c(1, 3) = c(2, 4) = {a, b, c} and c(1, 4) = c(2, 3) = {c, d}. It
is easy to check that there are no monochromatic triangles in any of these colorings. The number of
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such colorings is

(
3422

)(n/4)2+Θ(1) =
(

31/221/4
)n2/2+Θ(1)

.

On the other hand, the number of triangle-free 4-edge colorings of T2(n) is 4(n/2)2+Θ(1) = 2n
2/2+Θ(1),

which is exponentially smaller, since 2 < 31/221/4.
Example 2. Let G be the complete 9-partite graph of order n with parts of almost equal size.

We will show that G has many more K4-free 4-edge colorings than T3(n). To describe the colorings
of G it is convenient to index the classes of the partition with the points of F2

3, the affine plane over
the finite field with 3 elements, i.e. V = ∪x∈F2

3
Vx. For x, d in F2

3 with d 6= 0, the line through x in
direction d consists of the three points {x, x+d, x+2d}. Note that d and 2d determine the same line,
so there are precisely four lines through each point. Also, for a fixed d 6= 0 there are three different
lines in direction d and they partition F2

3. Let d1, . . . , d4 be representative directions of the four lines
through any point. We consider the set of colorings with colors {1, 2, 3, 4} where for x, y in F2

3 we
allow an edge between Vx and Vy to have color i if the line joining x to y does not have direction di.
In other words, the graph of color i respects the tripartition defined by the three lines in direction di,
and is therefore contained in the Turán graph T3(n). It thus follows that all these colorings contain
no monochromatic K4. Note that there are precisely 3 colors available for each edge, so the number
of such colorings is (

3(9
2)
)(n/9)2+Θ(1)

=
(

38/9
)n2/2+Θ(1)

.

On the other hand, the number of K4-free 4-colorings of T3(n) is
(
43
)(n/3)2+Θ(1) =

(
24/3

)n2/2+Θ(1)
,

which is exponentially smaller, as 24/3 < 38/9.
Next we show that the exponents in these two examples are best possible.

Proof of Theorem 1.2. The above examples give the required lower bounds, so it remains to
obtain the upper bounds. We start with the proof of the upper bound on F (n, 4, 3).

Consider a graph G = (V,E) with n vertices and any fixed 4-edge coloring of G without a
monochromatic triangle. Fix any η > 0 and let ε < η be such as to satisfy the assertion of Lemma 2.5
(with t = 1). By applying Lemma 2.4 we get a partition V = V1∪· · ·∪Vm,m ≤M(η) with respect to
which the graph of each of the four colors is ε-regular. Let H1, · · · ,H4 be the corresponding cluster
graphs on the vertex set {1, · · · ,m}. By Lemma 2.5 each cluster graph is triangle-free and thus by
Turán’s theorem it has at most t2(m) edges.

First we bound the number of 4-edge colorings of G that could give rise to this particular partition
and these cluster graphs. As in the proof of Lemma 2.1 there are at most 4ηn2 edges that lie within
some class of the partition, or join a pair of classes that is not regular with respect to some color, or
join a pair of classes in which their color has density smaller than η. There are at most

(n2/2
4ηn2

)
ways

to choose this set of edges and they can be colored in at most 44ηn2
different ways. For 0 ≤ s ≤ 4,

let es denote the number of pairs (i, j), i < j that are edges in exactly s of the cluster graphs and
let ps = 2es/m2. Then the number of potential 4-edge colorings of G that could give this vertex
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partition and these cluster graphs is at most(
n2/2
4ηn2

)
44ηn2

(
1e12e23e34e4

)n2/m2

≤ 2H(8η)n2/2 44ηn2
(

2p23p34p4

)n2/2
.

As we already mentioned, by Turán’s theorem e(Hi) ≤ t2(m) for all i. Thus

p1 + 2p2 + 3p3 + 4p4 =
e(H1) + e(H2) + e(H3) + e(H4)

m2/2
≤ 2. (4)

Now consider the graph H on {1, · · · ,m} where (i, j) is an edge of H if it is an edge in exactly 3 of
the cluster graphs. Then e(H) = e3. Note that however one chooses 3 sets of size 3 from a 4 element
set of colors, there is a common color in all three. This implies that H is a triangle-free graph, since
every triangle in H corresponds to a triangle in one of the cluster graphs Hi. Therefore by Turán’s
theorem we have

p3 ≤ 1/2. (5)

Now we want to determine the maximum value of 2p2+2p43p3 subject to equations (4) and (5). Clearly
we should choose p1 = 0. Setting x = p2 + 2p4, we want to maximize x log 2 + p3 log 3, subject to
2x + 3p3 ≤ 2 and p3 ≤ 1/2. Since 1

3 log 3 > 1
2 log 2 the maximum occurs at p3 = 1/2, x = 1/4.

Hence there are at most 2H(8η)n2/244ηn2
(

31/221/4
)n2/2

triangle-free 4-edge colorings of G that give

this vertex partition and these cluster graphs. Note that M is a constant and there are at most nM+1

partitions of the vertex set of G into at most M parts. Also, for every such partition there are at
most 24(M2/2) choices for cluster graphs Hi. Since we can choose η to be arbitrarily small, we obtain
that for sufficiently large n

F (n, 4, 3) ≤ nM+1 22M2
2H(8η)n2/2 44ηn2

(
31/221/4

)n2/2
≤
(

31/221/4
)n2/2+o(n2)

.

Now we obtain the upper bound on F (n, 4, 4). Consider a graph G = (V,E) with n vertices
and any fixed 4-edge coloring of G without a monochromatic K4. Fix any η > 0 and let ε < η

be such as to satisfy the assertion of Lemma 2.5. By applying Lemma 2.4 we get a partition V =
V1 ∪ · · · ∪ Vm,m ≤M(η) with respect to which the graph of each of the four colors is ε-regular. Let
H1, · · · ,H4 be the corresponding cluster graphs on the vertex set {1, · · · ,m}. By Lemma 2.5 each
cluster graph is K4-free and thus by Turán’s theorem it has at most t3(m) edges.

First we bound the number of 4-edge colorings of G that could give rise to this particular partition
and these cluster graphs. Again there are at most 4ηn2 edges that lie within some class of the
partition, or join a pair of classes that is not regular with respect to some color, or join a pair of
classes in which their color has density smaller than η. There are at most

(n2/2
4ηn2

)
ways to choose this

set of edges and they can be colored in at most 44ηn2
different ways. For 0 ≤ s ≤ 4, let es denote the

number of pairs (i, j), i < j that are edges in exactly s of the cluster graphs and let ps = 2es/m2.
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Then the number of potential 4-edge colorings of G that could give this vertex partition and these
cluster graphs is at most(

n2/2
4ηn2

)
44ηn2

(
1e12e23e34e4

)n2/m2

≤ 2H(8η)n2/2 44ηn2
(

2p23p34p4

)n2/2
.

As we already mentioned, by Turán’s theorem e(Hi) ≤ t3(m) for all i. Thus

p1 + 2p2 + 3p3 + 4p4 =
e(H1) + e(H2) + e(H3) + e(H4)

m2/2
≤ 4

t3(m)
m2/2

≤ 8/3.

As before, since 1
3 log 3 > 1

2 log 2 = 1
4 log 4, the number of colorings is maximized when we choose p3

as large as possible, i.e. p3 = 8/9. This gives at most 2H(8η)n2/244ηn2
(

38/9
)n2/2

4-edge colorings of
G that give this vertex partition and these cluster graphs. Note that M is a constant and there are
at most nM+1 partitions of the vertex set of G into at most M parts. Also, for every such partition
there are at most 24(M2/2) choices for cluster graphs Hi. Since we can choose η to be arbitrarily
small, we obtain that for sufficiently large n

F (n, 4, 4) ≤ nM+1 22M2
2H(8η)n2/2 44ηn2

(
38/9

)n2/2
≤
(

38/9
)n2/2+o(n2)

.

This completes the proof of the theorem. �

So far we obtained rather accurate estimates for the values of F (n, 4, 3) and F (n, 4, 4). The
determination or estimation of F (n, r, k + 1) for all r and k seems to be a much harder problem.
Indeed, it is not even clear what the correct exponent should be. In general, the statement of Theorem
1.3 gives some indication on the asymptotic behavior of F (n, r, k + 1), when k + r is large.

The proof of Theorem 1.3 is similar to the proof of Theorem 1.2. We need the following simple
lemma.

Lemma 4.1 Let N be an integer, and let s > e be a real number. Then, the maximum possible
product of all elements of a sequence of at most N positive reals whose sum is at most sN is at most
sN/s.

Proof. Let m ≤ N be the number of elements in the sequence. By the arithmetic-geometric
inequality their product is maximized when they are all equal, and in this case the product is at most
fm = (sN/m)m. The function g(m) = ln fm = m ln(sN) − m lnm is increasing for all admissible
values of m, as its derivative is ln( sNm )− 1 ≥ ln s− 1 > 0, and hence the maximum possible value of
fm for m ≤ N is obtained when m = N , supplying the desired result. �

Proof of Theorem 1.3. We start with the proof of (1). Consider a graph G = (V,E) with n

vertices and any fixed r-edge coloring of G without a monochromatic Kk+1. Fix an η > 0 and
let ε < η satisfy the assertion of Lemma 2.5 with t = 1. By Lemma 2.4 there is a partition
V = V1∪ · · · ∪Vm,m ≤M(η) with respect to which the graph of each of the r colors is ε-regular. Let
H1, · · · ,Hr be the corresponding cluster graphs on the vertex set {1, · · · ,m}. By Lemma 2.5 each
cluster graph Hi is Kk+1-free and thus by Turán’s theorem it has at most tk(m) edges.
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First we bound the number of r-edge colorings of G that give rise to this particular partition and
these cluster graphs. As in the proof of Lemma 2.1 there are at most rηn2 edges that lie within some
class of the partition, or join a pair of classes that is not regular with respect to some color, or join
a pair of classes in which their color has density smaller than η. There are at most

(n2/2
rηn2

)
ways to

choose this set of edges and they can be colored in at most rrηn
2

different ways. For 0 ≤ p ≤ r, let ep
denote the number of pairs (i, j), i < j that are edges in exactly p of the cluster graphs Hi. Clearly

r∑
p=1

ep ≤
(
m

2

)
<
m2

2
.

Therefore, the number of potential r-edge colorings of G that give this vertex partition and these
cluster graphs is at most(

n2/2
rηn2

)
rrηn

2
( r∏
j=1

jej
)n2/m2

≤ 2H(2rη)n2/2 rrηn
2

r∏
j=1

jejn
2/m2

.

As already mentioned, by Turán’s theorem e(Hi) ≤ tk(m) for all i. Thus

r∑
j=1

jej ≤
r(k − 1)

k

m2

2
. (6)

It follows that the product
∏r
j=1 j

ejn
2/m2

is a product of
∑r

j=1 ejn
2/m2 ≤ n2

2 positive integers whose
sum is at most

r(k − 1)
k

m2

2
n2

m2
=
r(k − 1)

k

n2

2
,

where here we used (6). By Lemma 4.1 with N = n2

2 and s = r(k−1)
k ( > e) we conclude that this

product is at most ( r(k−1)
k )n

2/2. Thus, there are at most 2H(2rη)n2/2rrηn
2
(
r(k−1)
k

)n2/2
r-edge colorings

of G with no monochromatic Kk+1 that give this vertex partition and these cluster graphs. Recall
that M is a constant, and there are at most nM+1 partitions of the vertex set of G into at most M
parts. Also, for every such partition there are at most 2r(M

2/2) choices for the cluster graphs Hi.
Therefore,

F (n, r, k + 1) ≤ nM+1 2rM
2/2 2H(2rη)n2/2 rrηn

2
(r(k − 1)

k

)n2/2
≤
(r(k − 1)

k

)n2/2+O(η log(1/η))n2

.

Since we can choose η to be arbitrarily small, it follows that

F (n, r, k + 1) ≤
(r(k − 1)

k

)n2/2+o(n2)

completing the proof of (1). We note that when r(k−1)
k is not an integer, the upper bound can be

slightly improved, as the assertion of Lemma 4.1 can be improved if all the elements of the given
sequence are integers.

We next prove (2). Let G = (V,E) be the Turán graph Tr(n), and let V1, V2, . . . , Vr be its color
classes. Our objective is to show that G has many r-edge colorings with no monochromatic Kk+1. For
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each p, 1 ≤ p ≤ r, let Hp be a copy of the Turán graph Tk(r) on the set of r vertices R = {1, 2, . . . , r},
placed randomly on R. For each fixed pair i, j of distinct members of R, let Sij = {p : ij ∈ E(Hp)}
denote the set of all graphs Hp containing the edge ij. The cardinality of this set is a Binomial
random variable with parameters r and tk(r)/

(
r
2

)
≥ k−1

k . By the standard estimates for Binomial
distributions (c.f., e.g., [1]. Theorem A.1.13) it follows that for each fixed i, j ∈ R, the probability
that |Sij | < K, where K = r(k−1)

k − 2
√
r ln r, is at most 1/r2. Hence, with positive probability all

sets Si,j are of cardinality at least K. The result now follows by considering all colorings of G in
which every edge connecting Vi and Vj is colored by a color from Sij . This establishes (2).

Finally, note that the assertion of (3) for k ≤ r and r large follows from (1) and (2). For k ≥ r

and k large it follows from (1) (or the trivial fact that F (n, r, k + 1) ≤ r(
n
2)), and the simple lower

bound F (n, r, k + 1) ≥ r
k−1
k (n2). �

5 Concluding remarks

• Using some of the arguments in the proof of Theorem 1.3, one can prove the following.

Proposition 5.1 For every fixed r and k, the limit

lim
n7→∞

(
F (n, r, k + 1)

)2/n2

exists, and is a positive real.

Sketch of proof. Define
f = lim sup

n7→∞

(
F (n, r, k + 1)

)2/n2

.

Fix a small ε > 0, and let m be a large integer satisfying
(
F (m, r, k + 1)

)2/m2

≥ f − ε. Let
G = (V,E) be a graph on m vertices satisfying F (G, r, k + 1) = F (m, r, k + 1). By repeating
the arguments in the proof of the last theorem we conclude that if m is sufficiently large, then
at least (f −2ε)m

2/2 distinct r-edge colorings of G with no monochromatic Kk+1 arise from the
same regular partition V1, V2, . . . , VM of V and the same cluster graphs Hp on {1, 2, . . . ,M}
defined as in the last proof. Let G1 be the graph obtained from G by deleting all edges inside
the classes of the partition, all edges in irregular pairs, and all edges between sparse regular
pairs. For each pair of classes i, j of G1, define Sij = {p : ij ∈ E(Hp)}. If m is sufficiently
large, then there is a set C of at least (f − 3ε)m

2/2 distinct r-edge colorings of G1 obtained by
assigning, in all possible ways, a color from Sij to each edge of G1 between Vi and Vj . All these
colorings do not contain a monochromatic Kk+1, since no cluster graph contains a Kk+1.

Suppose, now, that n > m, and let G′ be the graph obtained from G1 by replacing each vertex
of G1 by either bn/mc or dn/me vertices, so that the total number of vertices of G′ is n. In
this way, each class Vi is replaced by a class V ′i of size at least bn/mc|Vi|. Every r-edge coloring
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of G′ in which every edge between V ′i and V ′j gets a color from Sij contains no monochromatic
Kk+1. The number of these colorings is clearly at least

|C|(bn/mc)2 ≥
(
f − 3ε

)m2

2
(bn/mc)2

.

This implies that for every n > m,

(F (n, r, k + 1))2/n2 ≥
(
f − 3ε

)m2

n2 (bn/mc)2

.

Since ε can be arbitrarily small it follows, by the definition of f , that

lim
n7→∞

(
F (n, r, k + 1)

)2/n2

= f,

completing the proof. �

• For every r ≥ 2 and k > 1, define f(r, k+1) = limn7→∞(F (n, r, k+1))2/n2
. This limit exists, by

proposition 5.1, and trivially it is at least r(k−1)/k and at most r. By Theorem 1.1, f(2, k+1) =
2(k−1)/k for all k and f(3, k+1) = 3(k−1)/k for all k. By Theorem 1.2, f(4, 3) = 31/221/4 ( > 41/2)
and f(4, 4) = 38/9 ( > 42/3), and by Theorem 1.3 for large k+ r, f(r, k+ 1) = r(k−1)

k (1 + o(1))
with the o(1) term tending to zero as k + r tends to infinity.

It is not difficult to prove that in fact for every r ≥ 4 and every k > 1, f(r, k+1) is strictly larger
than r(k−1)/k. To do so, one first shows, using some simple constructions following the ones
described in the proof of Theorems 1.2 and 1.3, that for every r ≥ 4, f(r, 3) > r1/2. Knowing
this, we can start with the Turán graph G = Tk(n) as a graph that has many r-colorings with
no monochromatic Kk+1, and get an exponentially better example by replacing the induced
subgraph of G on three of the color classes whose total number of vertices is, say, n′, by the
best example we have for providing a lower bound for F (n′, r, 3). (In fact, for k ≥ 3s we can
perform such a replacement for s pairwise disjoint triples of color classes).

• The problem of determining f(r, k) for all r and k seems interesting. It may also be interesting
to find a proof of Theorem 1.1 without applying the regularity lemma, in order to conclude
that the assertion of the theorem holds already for values of n which are not so huge as a
function of r and k. It is easy to see that the assertion fails for values of n which are smaller
than, say, r(k−1)/2, as in this case, a random r-coloring of Kn contains no monochromatic Kk+1

with probability that exceeds 1/2, showing that for such relatively small (and yet exponential)
values of n, F (n, r, k + 1) > 1

2r
(n2).
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