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Abstract

A key feature of neural network architectures is their ability to support the simultaneous
interaction among large numbers of units in the learning and processing of representations.
However, how the richness of such interactions trades off against the ability of a network to
simultaneously carry out multiple independent processes – a salient limitation in many domains
of human cognition – remains largely unexplored. In this paper we use a graph-theoretic analysis
of network architecture to address this question, where tasks are represented as edges in a bipar-
tite graph G = (A∪B,E). We define a new measure of multitasking capacity of such networks,
based on the assumptions that tasks that need to be multitasked rely on independent resources,
i.e., form a matching, and that tasks can be multitasked without interference if they form an
induced matching. Our main result is an inherent tradeoff between the multitasking capacity
and the average degree of the network that holds regardless of the network architecture. These
results are also extended to networks of depth greater than 2. On the positive side, we demon-
strate that networks that are random-like (e.g., locally sparse) can have desirable multitasking
properties. Our results shed light into the parallel-processing limitations of neural systems and
provide insights that may be useful for the analysis and design of parallel architectures.
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1 Introduction

One of the primary features of neural network architectures is their ability to support parallel
distributed processing. The decentralized nature of biological and artificial nets results in greater
robustness and fault tolerance when compared to serial architectures such as Turing machines.
On the other hand, the lack of a central coordination mechanism in neural networks can result
in interference between units (neurons) and such interference effects have been demonstrated in
several settings such as the analysis of associative memories [AGS85] and multitask learning [MC89].
Understating the source of such interference and how it can be prevented has been a major focus
of recent research (see, e.g., [KPR+17] and the references therein).

Recently, a graph-theoretic model has suggested that interference effects may explain the limita-
tions of the human cognitive system in multitasking: the ability to carry out multiple independent
processes at the same time. This model consists of a simple 2-layer feed-forward network represented
by a bipartite graph G = (A ∪B,E) wherein the vertex set is partitioned into two disjoint sets of
nodes A and B, representing the inputs and the outputs of tasks respectively. An edge (a, b) ∈ E
corresponds to a directed pathway from the input layer to the output layer in the network that is
taken to represent a cognitive process (or task) that maps an input to an output [Nei67]. In more
abstract terms, every vertex in a ∈ A is associated with a set of inputs Ia, every vertex in B is
associated with a set of outputs Ob and the edge (a, b) is associated with a function fa,b : Ia → Ob
1. In this work, we also consider deeper architectures with r > 2 layers, where edges correspond
to mappings between nodes from consecutive layers and a path P from the input (first) layer to
the output (last) layer is simply the composition of the mappings on the edges in P . The model
above is quite general and simple modifications of it may apply to other settings. For example, we
can assume the vertices in A are senders and vertices in B are receivers and that a task associated
with an edge e = (a, b) is transmitting information from a to b along a communication channel e.

Given a 2-layer network, a task set is a set of edges T ⊆ E. A key assumption made in [FSGC14]
that we adopt as well is that all task sets that need to be multitasked in parallel form a matching,
namely, no two edges in T share a vertex as an endpoint. This assumption reflects a limitation on
the parallelism of the network that is similar to the Exclusive Read Exclusive Write (EREW) model
in parallel RAM, where the tasks cannot simultaneously read from the same input or write to the
same output. Similarly, for depth r > 2 networks, task sets correspond to node disjoint paths from
the input layer to the output layer. For simplicity, we shall focus from now on the depth 2 case
with |A| = |B| = n.

In [MDO+16, FSGC14] it is suggested that concurrently executing two tasks associated with
two (disjoint) edges e and f will result in interference if e and f are connected by a third edge h.
The rationale for this interference assumption stems from the distributed operation of the network
that may result in the task associated with h becoming activated automatically once its input and
output are operating, resulting with interference with the tasks associated with e and f . Therefore,
[MDO+16, FSGC14] postulate that all tasks within a task set T can be performed in parallel
without interferences only if the edges in T form an induced matching. Namely, no two edges
in T are connected by a third edge. Interestingly, the induced matching condition also arises in
the communication setting [BLM93, AMS12, CK85], where it is assumed that messages between
senders and receivers can be reliably transmitted if the edge set connecting these nodes forms an
induced matching. Following the aforementioned interference model, [MDO+16, FSGC14] define
the multitasking capability of a bipartite network G as the maximum cardinality of an induced
matching in G.

1The function fa,b is hypothesized to be implemented by a gate used in neural networks such as sigmoid or
threshold gate.
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Figure 1: In the depicted bipartite graph, the node shading represents the bipartition. The blue
edges form an induced matching, which represents a large set of tasks that can be multitasked.
However, the red edges form a matching in which the largest induced matching has size only 1.
This represents a set of tasks that greatly interfere with each other.

The main message of [MDO+16, FSGC14] is that there is a fundamental tradeoff in neural
network architectures like the human brain between the efficiency of shared representations , and
the independence of representations that supports concurrent multitasking (this tradeoff is termed
“multitasking versus multiplexing”). In graph-theoretic terms, it is suggested that as the average
degree d (“efficiency of representations”–larger degree corresponds to more economical and efficient
use of shared respresentations) of G increases, the “multitasking ability” should decay in d. In
other words, the cardinality of the maximal induced matching should be upper bounded by f(d)n
with limd→∞ f(d) = 0. This prediction was tested and supported on certain architectures by
numerical simulations in [MDO+16, FSGC14]. Establishing such as a tradeoff is of interest, as it
can identify limitations of artificial nets that rely on shared representations and aid in designing
systems that attain an optimal tradeoff. Furthermore, such a tradeoff is also of significance for
cognitive neuroscience as it can shed some light on the source of the striking limitation of the
human cognitive system to execute control demanding tasks simultaneously.

Identifying the multitasking capacity of G = (A ∪ B,E) with the size of its maximal induced
matching has two drawbacks. First, the fact that there is some, possibly large, set of tasks that can
be multitasked does not preclude the existence of a (possibly small) set of critical tasks that greatly
interfere with each other (e.g., consider the case in which a complete bipartite graph Kd,d occurs
as a subgraph of G. This is illustrated in Figure 1). Second, it is easy to give examples of graphs
(where |A| = |B| = n) with arbitrarily large average degree that nonetheless contain an induced
matching of size n/2. For example, there are d-regular bipartite graphs with n vertices on each
side that contain an induced matching of size n/2 even when d = Ω(n) (For example, one can take
two copies of a dense bipartite graph F and connect these two copies with a perfect matching-see
Figure 1 for an illustration). Hence, it is impossible to upper bound the multitasking capacity
of every network with average degree d by f(d)n with f vanishing as the average degree d tends
infinity. Therefore, the generality of the suggested tradeoff between efficiency and concurrency is
not clear under this definition.

Our main contribution is a novel measure of the multitasking capacity that is aimed at solving
the first problem, namely networks with “high” capacity that contain a task set whose edges badly
interfere with one another. In particular, for a parameter k we consider every matching of size k,
and ask whether every matching M of size k contains a large induced matching M ′ ⊆ M . This
motivates the following definition (see Figure 2 for an illustration).

Definition 1.1. Let G = (A ∪B,E) be a bipartite graph with |A| = |B| = n, and let k ∈ N, k ≤ n
be a parameter. We say that G is a (k, α(k))-multitasker if for every matching M in G of size
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Figure 2: The hypercube on 8 nodes. The node shading represents the bipartition. On the left, the
blue edges form an induced matching of size 2. On the right, the red edges form a matching of size
4 whose largest induced matching has size 1, and hence the multitasking capacity of the hypercube
is at most 1/4.

|M | = k, there exists an induced matching M ′ ⊆M such that

|M ′| ≥ α(k)|M |.

We will say that a graph G is an α-multitasker if it is (k, α)-multitasker for all k = 1, . . . , n.
The parameter α ∈ (0, 1] measures the multitasking capabilities of G, and the larger α is the

better multitasker G is considered. We call the parameter α(k) ∈ (0, 1] the multitasking capacity
of G for matchings of size k.

Our definition generalizes without much difficulty to networks of depth r > 2, where instead
of matchings, we consider first to last node disjoint paths, and instead of induced matchings we
consider induced paths, i.e., a set of disjoint paths such that no two nodes belonging to different
paths are adjacent.

Observe that our measure is related to the previously mentioned measure of the cardinality of
an induced matching. That is, if G is an (n, α(n)-multitasker for a large α(n), then G contains a
large induced matching.

The main question we shall consider here is what kind of tradeoffs one should expect between
α, d and k. In particular, are there networks with large average degree that achieve a multitasking
capacity bounded away from 0, especially, if k is not too large? Which network architectures give
rise to good multitasking behavior? Should we expect “multitasking vs. multiplexing”: namely,
α(k) tending to zero with d for all graphs of average degree d? While our definition of multitasking
capacity is aimed at resolving the problem of small task sets that can be poorly multitasked, it
turns out to be also related also to the “multitasking vs. multiplexing” phenomena. Furthermore,
our graph-theoretic formalism also gives insights as to how network depth and interferences are
related.

1.1 Our results

We provide some answers to the questions raised above. Our main contribution is in establishing a
tradeoff between multitasking capacity of a graph and the its edge density that hold for arbitrary
networks.

We divide the presentation of the results into two parts. The first part discusses the case of
d-regular graphs, and the second part discusses general graphs.

The d-regular case: Let G = (A ∪ B,E) be a bipartite d-regular graph with n vertices on
each side. Considering the case of k = n, i.e., maximal possible induced matchings that are
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contained in a perfect matching, we show that if a d-regular graphs is an (n, α(n))-multitasker, then
α(n) = O(1/

√
d). Our upper bound on α(n) establishes an inherent limitation on the multitasking

capacity of any network. That is, for any task set of size n it holds that α(n) must tend to 0 as
the degree grows. In fact, we prove that degree of the graph d constrains the multitasking capacity
also for task sets of smaller sizes. Specifically, for k that is sufficiently larger than Ω(n/d) it holds
that α(k) tends to 0 as d increases. We summarize these results in the following theorem.

Theorem 1.2. There is a constant γ ∈ R+ such that the following holds. Let G = (A ∪ B,E), be
a d-regular bipartite graph with |A| = |B| = n.

1. If n/d1/4 ≤ k ≤ n, then α(k) ≤ O( n
k
√
d
). In particular, there exists a perfect matching in G

that does not contain an induced matching of size larger than O(n/
√
d).

2. If n/d1/3 ≤ k ≤ n/d1/4, then α(k) ≤ O(k/n).

3. If γn/d ≤ k ≤ n/d1/3 then α(k) ≤ O(
√

n
kd).

For a certain range of parameters our results are tight. Specifically, when considering task sets of
size n our result is tight up to logarithmic factors, as we provide a construction of a d-regular graph
where every matching of size n contains an induced matching of size Ω( 1√

d log d
). See Theorem 4.7

for details.
For arbitrary values of k ≤ n it is not hard to see that every d-regular graph achieves α(k) ≥ 1

2d .
We show that this naive bound can be asymptotically improved upon, by constructing an α-
multitaskers with α = Ω( log d

d ). The construction is based on bipartite graphs which have good
spectral expansion properties. See Theorem 4.9 for details.

Considering bounded values of k we show that is it possible to achieve multitasking capacity
bounded away above 0, when measured on task sets of bounded size (up to k). The best multitasking
capacity one can hope for is α = 1/2 (see Remark 4.2), and we construct (k, 1/2)-multitaskers for
all k ≤ O(logd(n)). See Theorem 4.5 for details.

We also consider networks of depth r > 2 2. We generalize our ideas for depth 2 networks by
upperbounding the multitasking capacity of arbitrary d-regular networks of depth r by O( r

d1−1/r ).
In particular, we show that such networks must contain a family S of paths of size n such that
every set of induced paths contained in S has size at most O( r

d1−1/r )n. Observe that this shows that
for tasks sets of size n, network of depth 2 < r � d incur interference which is strictly worse than
depth 2 networks. We believe that it is also the case that interference gets worst with r (namely
that interference worsens as r increases to r+ 1 for r > 2), although whether this is indeed the case
is an open problem.

The irregular case: Next we turn to arbitrary, not necessarily regular, graphs. We show that
for an arbitrary bipartite graph with n vertices on each side and average degree d its multitasking

capacity α(n) is upper bounded by O
(

logn
d

)1/3
. That is, when the average degree is concerned,

the multitasking capacity of a graph tends to zero, provided that the average degree of a graph is
larger than log(n).

Theorem 1.3. There is a constant γ ∈ R+ such that the following holds. Let G = (A ∪ B,E),
be a bipartite graph of average degree d with |A| = |B| = n. If G is an α-multitasker then α ≤
O(( logn

d )1/3)).

2We think of r as a constant independent of n and d as tending to infinity with n.
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For dense graphs satisfying d = Ω(n) (which are studied in [FSGC14]), we prove a stronger upper
bound of α(n) = O( 1√

n
) using the well known Szemerédi regularity lemma. See Theorem 3.15 for

details.
We also show that there are multitaskers of average degree Ω(log log n), with α > 1/3 − ε.

Hence, in contrast to the regular case, for the multitasking capacity to decay with average degree
d, we must assume that d grows faster than log log n. See Theorem 4.13 and Theorem 4.14 for
the exact statements. It is an interesting question whether there exists a multitasker with α > 0
independent of n, for average degree Θ(log n), which, if true is the largest average degree possible.
This is left as an open problem.

Finally, for any d ∈ N we show a construction of a graph G with average degree d such that
for every 0 < α < 1/5, G is a (k, α)-multitaskers for all k ≤ Ω(n/d1+4α). Comparing this to the
foregoing results, here we do not required that d = O(log log n). Allowing larger values of d allows
for weaker multitasking: we obtain that the graph is a multitasker only with respect to matchings
whose size is at most n/d1+4α. See Theorem 4.6 for details.

2 Preliminaries

A matching M in a graph G is a set of edges {e1, ..., em} such that no two edges in M share a
common vertex. If G has 2n vertices and |M | = n, we say that M is a perfect matching. By Hall
Theorem, every d-regular graph with bipartition (A,B) has a perfect matching. A matching M is
induced if there are no two distinct edges e1, e2 in M , such that there is an edge connecting e1 to
e2. Given a graph G = (V,E) and two disjoint sets A,B ⊆ V we let e(A,B) be the set of edges
with one endpoint in A and the other in B. For a subset A, e(A) is the set of all edges contained in
A. Given an edge e ∈ E, we define the graph G/e obtained by contracting e = (u, v) as the graph
with a vertex set (V ∪ve)\{u, v}. The vertex ve is connected to all vertices in G neighboring u or v.
For all other vertices x, y ∈ V \ {u, v}, they form an edge in G/e if and only if they were connected
in G. Contracting a set of edges, and in particular contracting a matching, means contracting the
edges one by one in an arbitrary order.

Given a subset of vertices U ⊆ V , the subgraph induced by U , denoted by G[U ] is the graph
whose vertex set is U and two vertices in U are connected if and only if they are connected in G.
For a set of edges E′ ⊆ E, denote by G[E′] the graph induced by all vertices incident to an edge in
E′. We will use the following simple observation throughout the paper.

Lemma 2.1. Let M be a matching in G, and let davg be the average degree of G[M ]. Suppose that

we contract all edges in M in G[M ]. Then the resulting graph G̃[M ] has average degree at most
2davg − 2.

Proof. G[M ] contains 2|M | vertices and davg|M | edges. The result follows as G̃[M ] has |M | vertices
and at most davg|M | − |M | edges.

An independent set in a graph G = (V,E) is a set of vertices that do not span an edge. We will
use the following well known fact attributed to Turan.

Lemma 2.2. Every n-vertex graph with average degree davg contains an independent set of size at
least n

davg+1 .

The girth of a graph G is the length of the shortest cycle in G.
Let G = (V,E) be a bipartite graph, k an integer and α ∈ (0, 1], a parameter. We define

the (α, k)-matching graph H(G,α, k) = (L,R, F ) to be a bipartite graph where L is the set of
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all matchings of size k in G, R is the set of all induced matchings of size αk in G and a vertex
vM ∈ L (corresponding to matching M of size k) is connected to a vertex uM ′ (corresponding to
an induced matching M ′ of size αk) if and only if M ′ ⊆ M . We omit α, k,G from the notation
of H when it will be clear from the context. We will repeatedly use the following simple Lemma
in upper bounding the multitasking capacity in graph families. We refer to this Lemma as the
induced matching Lemma.

Lemma 2.3. Suppose the average degree of a vertex in L in the graph H(G,α, k) is strictly smaller
than 1. If G is a (k, α(k))-multitasker, then α(k) < α.

Proof. By the assumption, L has a vertex of degree 0. Hence there exist a matching of size k in G
not containing an induced matching of size αk. As required.

Throughout the paper we will need the following concentration inequalities known as Chernoff’s
bound.

Lemma 2.4. Let X1 . . . Xn be {0, 1} independent random variables where for every Pr[Xi = 1] = p
for all i = 1, . . . , n, and let X =

∑n
i=1Xi. Then, for all η ∈ (0, 1) it holds that

Pr[X < (1− η)pn] < exp(−η
2pn

2
)

and

Pr[X > (1 + η)pn] < exp(− η
2pn

2 + η
) .

3 Upper bounds on the multitasking capacity

3.1 The regular case

In this section we prove Theorem 1.2 that upper bounds the multitasking capacity of arbitrary
d-regular multitaskers. We start the proof of Theorem 1.2 with the case k = n. The following
theorem shows that d-regular (k = n, α)-multitaskers must have α = O(1/

√
d).

Theorem 3.1. Let G = (A ∪ B,E), be a bipartite d-regular graph where |A| = |B| = n. Then G
contains a perfect matching M such that every induced matching M ′ ⊆M has size at most 9n√

d
.

For the proof, we need the following bounds on the number of perfect matchings in d-regular
bipartite graphs.

Lemma 3.2. Let G = (A,B,E), be a bipartite d-regular graph where |A| = |B| = n. Denote by
M(G) the number of perfect matchings in G. Then(

d

e

)n
≤
(

(d− 1)d−1

dd−2

)n
≤M(G) ≤ (d!)n/d.

The lower bound on M(G) is due to Schrijver [Sch98]. The upper bound on M(G) is known as
Minc’s conjecture, which has been proven by Bregman [Bre73].

Proof of Theorem 3.1. Consider H(G,α, n), where α will be determined later. Clearly |R| ≤(
n
αn

)2 ≤ ( eα)2αn. By the upper bound in Lemma 3.2, every induced matching of size αn can be
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contained in at most (d!)(1−α)n/d perfect matchings. By the lower bound in Lemma 3.2, |L| ≥
(
d
e

)n
.

Therefore, the average degree of the the vertices in L is at most

( eα)2αn · (d!)(1−α)n/d(
d
e

)n ≤
( eα)2αn · (

√
2πd(de )d)(1−α)n/d(
d
e

)n =

(
e3

α2d
· (2πd)

1−α
2αd

)αn
.

Setting α > 2
√

e3

d yields e3

α2d
< 1

2 , and it can be verified that (2πd)
1−α
2αd < 2 for all such α. Therefore

in this setting, the average degree of the vertices in L is smaller than 1, which concludes the proof
by Lemma 2.3. This completes the proof of the theorem.

We record the following simple observation, which is immediate from the definition.

Proposition 3.3. If G is a (k, α)-multitasker, then for all 1 < β ≤ n/k, the graph G is a (βk, αβ )-
multitasker.

By combining Theorem 3.1 with (the contrapositive of) Proposition 3.3 we obtain the following
immediate corollary.

Corollary 3.4. If G is a d-regular (k, α)-multitaskers with n vertices on each side and k > n/
√
d,

then α ≤ O( n
k
√
d
).

Next, we prove that for smaller values of k the multitasking capacity α(k) is upper bounded by

O

(
max(nk ,

√
kd
n )

)
.

Theorem 3.5. Let G = (A ∪B,E) be a d-regular (bipartite) subgraph with |A| = |B| = n, and let
k < n/2. Then,G contains a matching M of size k, such that every induced matching M ′ ⊂M has
size |M ′| ≤ αk for α = max{4k

n , 9
√

n
kd}.

In particular, this rules out the existence d-regular (ω(n/d), α)-multitaskers for any constant
multitasking capacity α > 0. To see this, take any ε > 0, and put d ≥ 4·81

ε3
and k = 81

ε2
· nd in the

above theorem. It implies that α ≤ ε.
In the proof of Theorem 3.5 we use the following result on the number of matchings of size

k in d-regular bipartite graphs, known as the Lower Matching Conjecture and recently proven by
Csikvàri [Csi14].

Lemma 3.6. Let G = (A ∪ B,E), be a bipartite d-regular graph where |A| = |B| = n. Denote by
Mk(G) the number of matchings of size k in G. Then

Mk(G) ≥
(
n

k

)2(
1− k

nd

)nd−k (kd
n

)k
.

In Appendix A we derive from Lemma 3.6 the following bound.

Corollary 3.7. In the setting of Lemma 3.6, if k < n/2, then

Mk(G) ≥
(
end

k

)k
·
(

1

2e

)4k2/n

· 1

2πk
.
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Proof of Theorem 3.5. For brevity, we refer to a matching of size k as a k-matching. Fix α ∈ (0, 1].

Consider the graph H = (G,α, k). Clearly |R| ≤
(
n
αk

)2 ≤ ( enαk )2αk. For a given induced αk-
matching, we can obviously upper-bound the number of k-matchings that contain it by the total

number of edge subsets of size k that contain it, which is at most
(
nd

k−αk
)
≤
(

end
(1−α)k

)(1−α)k
. By

Corollary 3.7, |L| ≥ 1
2πk

(
end
k

)k ( 1
2e

)4k2/n
. Therefore, the average degree of the vertices in L is at

most

( enαk )2αk ·
(

end
(1−α)k

)(1−α)k

1
2πk

(
end
k

)k ( 1
2e

)4k2/n =
( en

α2kd

)αk
·
(

1

1− α

)(1−α)k

· (2e)4k2/n · 2πk.

If we choose α such that this bound is smaller than 1, then there must be a vertex in L with no
neighbors in R, and we are done by Lemma 2.3. Hence we need α to satisfy

en

α2kd
·
(

1

1− α

)(1−α)/α

· (2e)4k/(αn) · (2πk)1/(αk) < 1.

We now bound the terms on the left-hand side for an appropriate choice of α. For α > 4/
√
k the

term (2πk)1/(αk) is upper bounded by 2. For α > 4k/n the term (2e)4k/(αn) is upper bounded by 2e.

The term (1− α)−(1−α)/α is upper-bounded by e for any α. Therefore, if we chose α that satisfies

both of the above inequalities, the average degree of the vertices in L is at most 4e3n
α2kd

< 81 n
α2kd

,

which is smaller than 1 for α > 9
√

n
kd . Overall, choosing α > max{4/

√
k, 4k

n , 9
√

n
kd} suffices. By

noting that 9
√

n
kd > 4/

√
k, we get α > max{4k

n , 9
√

n
kd} as stated.

Putting all the bounds together Note that the bound max{4k
n , 9

√
n
kd} from Theorem 3.5 is

equal to 4k
n if k > n

(16d/81)1/3
, and 9

√
n
kd otherwise. Combining this with the bound in Corollary 3.4

we obtain Theorem 1.2.

3.2 Upper bounds for networks of depth larger than 2

A graph G(V,E) is a network with r layers of width n and degree d, if V is partitioned into r
independent sets V1, . . . , Vr of size n each, such that each (Vi, Vi+1) induced a d-regular bipartite
graph for all i < r, and there are no additional edges in G.

A top-bottom path in G is a path v1, . . . , vr such that vi ∈ Vi for all i ≤ r, and vi, vi+1 are
neighbors for all i < r.

A set of node-disjoint top-bottom paths p1, . . . , pk is called induced if for every two edges e ∈ pi
and e′ ∈ pj such that i 6= j, there is no edge in G connecting e and e′.

Fact 3.8. A set of node-disjoint top-bottom paths p1, . . . , pk is induced if and only if for every i < r
it holds that (p1 ∪ . . . ∪ pk) ∩ E(Vi, Vi+1) is an induced matching in G.

We say that a network G as above is a (k, α)-multitasker if every set of k node-disjoint top-
bottom paths contains an induced subset of size at least αk.

Theorem 3.9. If G is an (n, α)-multitasker then α < e(er/d)1− 1
r = O(r/d)1−1/r.

Proof. Let H(L,R;EH) be the bipartite graph in which side L has a node for each set of n node-
disjoint top-bottom paths in G, side R has a node for each induced set of αn node-disjoint top-
bottom paths in G, and P ∈ L, P ′ ∈ R are adjacent iff P ′ ⊂ P . Let D be the maximum degree of
side R. We wish to upper-bound the average degree of side L, which is upper-bounded by D|R|/|L|.
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|R| is clearly upper bounded by
(
n
αn

)r
. It is a simple observation that |L| equals

∏
i<rmi,

where mi denotes the number of perfect matchings in the bipartite graph G[Vi ∪ Vi+1]. Since this
graph is d-regular, by the Falikman-Egorichev proof of the Van der Waerden conjecture ([Fal81],
[Ego81]), or by Schrijver’s lower bound, we have mi ≥ (d/e)n and hence |L| ≥ (d/e)n(r−1). To
upper bound D, fix P ′ ∈ R, and let G′ be the network resulting by removing all nodes and edges in
P ′ from G. This removes exactly αn nodes from each layer Vi; denote by V ′i the remaining nodes
in this layer in G′. It is a straightforward observation that D equals the number of sets of (1−α)n
node-disjoint top-bottom paths in G′. Each such set decomposes into M1, . . . ,Mr−1 such that Mi

is a perfect matching on G′[V ′i , V
′
i+1] for each i < r. Therefore D ≤

∏
i−1m

′
i where m′i denotes the

number of perfect matchings in G′[V ′i , V
′
i+1]. The latter is a bipartite graph with (1−α)n nodes on

each side and maximum degree d, and hence by the Bregman-Minc inequality, m′i ≤ (d!)(1−α)n/d.
Consequently, D ≤ (d!)(1−α)n(r−1)/d.

Putting everything together, we find that the average degree of side L is upper bounded by

D|R|
|L|

≤
(d!)(1−α)n(r−1)/d ·

(
n
αn

)r
(d/e)n(r−1)

≤
(
√

2πd(d/e)d)(1−α)n(r−1)/d · ( eα)αnr

(d/e)n(r−1)

=

(
(2πd)

1−α
2αd · e

d

( e
α

) r
r−1

)αn(r−1)

. (1)

We will show that if α ≥ e(er/d)1− 1
r then above bound is less than 1, which implies side L has a

node of degree 0, a contradiction. To this end, note that for this setting of α we have

e

d

( e
α

) r
r−1 ≤ 1

r
, (2)

and
(2πd)(1−α)/(2αd) ≤ (2πd)1/(2αd) ≤ (2πd)1/(2e(er)1−1/rd1/r).

One can verify that,

Fact 3.10. For every constants α, β > 0, the function f(d) = (αd)1/(βd1/r) is maximized at d =
er/α.

Plugging this above (and using r ≥ 2), we obtain

(2πd)(1−α)/(2αd) ≤ e(2πr)1/r/(2e2) ≤ e
√

2π·e1/e/(2e2) < 1.28 < r,

and plugging this with eq. (2) into eq. (1) yields D|R|
|L| < 1, as needed.

3.3 The irregular case

Below we consider general graphs with average degree d. This is in contrast to the previous section,
where we considered only d-regular graphs.

Theorem 3.11. Let G be a bipartite graph with n nodes on each side, average degree d, and
maximum degree ∆. If G is an α-multitasker, then α < O(∆

1
3 /d

2
3 ).

Note that in case d = Ω(∆) we get α = O(1/d1/3).

Proof of Theorem 3.11. Denote q := dαnd/(2∆)e. We use the following lemma to lower-bound the
number of matchings of size q in G.
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Lemma 3.12. The number of matchings of size q in G is at least ((1− α)nd)q/q!.

Proof. Consider the following greedy procedure: Initialize G1 ← G and M ← ∅. For i = 1, . . . , q,
Choose an arbitrary edge ei in Gi, and let Di denote the set of all edges in Gi sharing an endpoint
with ei. Set M ←M ∪ {ei} and let Gi+1 be the graph resulting from removing the edges {ei} ∪Di

from Gi.
Initially G has nd edges, and since the maximum degree is ∆ each iteration removes at most

2∆−1 edges. Hence for every i = 0, 1, . . . , q, the number of edges in Gi is at least nd− i(2∆−1) ≥
nd− 2q∆ ≥ (1−α)nd, where the last inequality is by recalling the setting of q. Hence the number
of different matchings that can be realized by the algorithm above is at least ((1− α)nd)q/q!.

We proceed to proving Theorem 3.11. Consider H(G,α, q). Let r ∈ R be an induced matching
of size αq in G. Let G−r be the graph resulting from removing all nodes participating in r, together
with their incident edges, from G. Note that we remove every edge that has at least one endpoint
matched in r, even if its other endpoint does not participate in r. The degree of r in H equals
the number of (1−α)q-matchings in G−r, which is clearly upper bounded by

(
nd

(1−α)q

)
, since G has

nd edges and G−r is a subgraph of G. Furthermore we clearly have |R| ≤
(
n
αq

)2
, which implies

that H has in total at most
(
n
αq

)2( nd
(1−α)q

)
edges. Combining this with the lower bound on |L| given

by Lemma 3.12, we get the following upper bound on the average degree of side L in H:(
n
αq

)2( nd
(1−α)q

)
((1−α)nd)q

q!

≤
( enαq )2αq( end

(1−α)q )(1−α)q

1√
2πq
·
(

(1−α)end
q

)q =
√

2πq

(
1

1− α

)(2−α)q ( en

α2dq

)αq
≤
√

2πq

(
4e4∆

α3d2

)αq
,

Where the final inequality is since 1+x ≤ ex for every x, and in particular
(

1
1−α

)2−α
=
(

1 + α
1−α

)2−α
≤

(e
α

1−α )2−α ≤ e3α (for α < 1/2), and q > αnd/(4∆).
If the average degree on side L is less than 1 then there is an isolated node in L, which represents

a q-matching in G that contains no induced matching of size αq, which contradicts G being an α-
multitasker. Suppose α > C ·∆1/3/d2/3 for a sufficiently large constant C. Then the term 4e2∆

α3d2
is

less than 1
2 . Furthermore the term (2πq)1/(2αq) is less than 2 as long as α �

√
∆
nd log(nd∆ ), which

holds for our setting since α ≥ ∆1/3

d2/3
≥
(

∆
nd

)1/3 �√
∆
nd log

(
nd
∆

)
. Hence L has average degree smaller

than 1 and the proof is finished.

Note that Theorem 3.11 does not provide any nontrivial bound for α when ∆ exceeds d2. It
is, however, possible to establish nearly the same upper bound provided by this theorem with no
assumption on ∆. To do so we need the following lemma, which is proved following the approach
of Pyber [Pyb85].

Lemma 3.13. Every (bipartite) graph with 2n vertices and average degree at least d > 4 log n
contains a subgraph in which the average degree is at least b = d

4 logn and the maximum degree is at
most 2b.

The word bipartite appears in brackets here since any graph G contains a spanning bipartite
subgraph in which the average degree is at least half of that of G, hence the assertion of the lemma
holds for general graphs as well, up to a factor of 2 in the bound for b.

Proof. Let G be a bipartite graph with average degree d. As long as it contains a vertex of degree
smaller than d/2 omit it. This process must terminate with a nonempty graph, as the total number
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of edges deleted during the process is smaller than 2nd/2, that is, smaller than the number of edges
of G. Thus G contains a bipartite subgraph G′ with minimum degree at least d/2. Let A and
B be its vertex classes, where |A| ≥ |B|. Let A1 ⊂ A be a minimal nonempty subset of A (with
respect to containment) so that |N(A1)| ≤ |A1|. There is such a set, since |N(A)| = |B| ≤ |A|
and it contains at least d/2 vertices as the number of neighbors of any nonempty set is at least
d/2. By the minimality |N(A1)| = |A1| since otherwise we can delete a vertex form A1 and get a
smaller set satisfying the condition. It is also clear, by minimality, that A1 satisfies Hall’s condition
and thus there is a matching M1 saturating A1 and N(A1) = B1. Let G1 be the graph obtained
from G′ by removing all vertices besides those in A1 ∪ B1 and by removing the perfect matching
M1 from it. Then the degree of every vertex of A1 in G1 is at least d/2 − 1. Let A2 ⊂ A1

be a minimal nonempty subset of A1 satisfying |NG1(A2)| ≤ |A2|. As before, it clear that A2

exists (and contains at least d/2 − 1 elements). It is also clear as before that A2 satisfies Hall’s
condition and hence there is a matching M2 saturating A2 and N(A2) = B2. Proceeding in this
way we get a sequence of d/2 matchings M1,M2,M3, . . . ,Md/2 in G′ (and hence in G), where Mi

matches the vertices of Ai ⊂ A with those of Bi ⊂ B, and where Ad/2 ⊂ Ad/2−1 ⊂ · · · ⊂ A1 and
Bd/2 ⊂ Bd/2−1 ⊂ · · · ⊂ B1. Clearly |A1| = |B1| ≤ n and hence n ≥ |M1| ≥ |M2| ≥ · · · ≥ |Md/2| ≥ 1.
Thus there is some i so that |Mi+(d/2 logn)−1| ≥ |Mi|/2. Fix such i and let H be the union of the

matchings Mi,Mi+1, . . . ,Mi+(d/2 logn)−1. Define |Mi| = m, 2b = d
2 logn . Then the maximum degree

of H is clearly at most 2b, as it is the union of 2b matchings. The number of vertices of H is 2m
and its number of edges is at least (2b)|Mi+(d/2 logn)−1| ≥ 2b(m/2) = bm. Thus the average degree
of H is at least b, completing the proof.

Theorem 3.14. Let G be a bipartite graph with n vertices on each side, and average degree d. If
G is an α-multitasker, then α < O(( logn

d )1/3).

Proof. By Lemma 3.13 G contains a subgraph with average degree b ≥ d/(4 log n) and maximum
degree at most 2b. The result thus follows from Theorem 3.11.

A similar reasoning gives the following.

Theorem 3.15. Let G be a bipartite graph with n vertices on each side, and average degree d =
Ω(n). If G is an α-multitasker, then α < O(( 1

n)1/2).

Proof. As proved in [PRS95] using the regularity lemma of Szemerédi, G contains a d-regular
bipartite graph with d = Ω(n). The result thus follows from our upper bound for regular graphs
as stated in Theorem 1.2.

4 Constructions of Good Multitaskers

It is easy to design arbitrarily large 1-regular 1-multitaskers by simply taking disjoint edges, and
2-regular 0.5-multitaskers by taking a cycle of length n ≡ 0 (mod 4)). More generally, one can
obtain a d -regular 1/d-multitaskers by taking n/d disjoint copies of the bipartite clique Kd,d. In
fact, it is easy to see that any d-regular graph is a 1/2d-multitasker using the greedy algorithm
that given a matching takes in each step an edge in the matching and removes at most 2d−1 edges
that are in conflict with it, and repeats as long as possible. The challenge is to design multitaskers
achieving α > 0 that is an absolute constant (independent of d, k, and n), where both k and d are
as large as possible.
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4.1 Several simple constructions

How can we lower bound the multitasking capability of a network? It turns out that a simple
idea is to contract edges in a given matching and look for large independent sets in the resulting
contracted graph. We first exemplify this idea when G is a forest.

Lemma 4.1. Let G be a forest. Then G is a 1/2-multitasker. In other words, if M is a matching
in G, then M contains an induced matching M ′ of size at least |M |/2.

Proof. Consider an arbitrary matching e1, ..., e|M | in F . Contract every edge ei ∈ M to a single
vertex vi. Since G is a forest, the resulting graph induced on the contracted edges G[v1, ..., v|M |]
is a forest, hence it contains an independent set I of size |M |/2. The edges corresponding to the
vertices in I form an induced matching contained in M of size at least |M |/2.

Remark 4.2. Note that α ≤ 1/2 holds for any graph which contains a path of length 3, as it
contains a matching of size 2 whose largest induced matching has size 1.

Remark 4.3. A similar argument also extends to the case where one is concerned with collections
of disjoint induced r-paths instead of matchings. One simply contracts paths instead of edges of the
matcing in the proof of Lemma 4.1. It is also not hard to generalize the result above to the weighted
case, where the edges in the matching have nonnegative weights. We omit the details.

The argument above can be generalized to minor-closed graph families. For example, we have
the following result:

Lemma 4.4. Every planar bipartite graph is a 1/4-multitasker.

Proof. The proof is similar to Lemma 4.1. For a matching e1, ..., e|M |, the graph obtained by
contracting every matching in M is planar. By the four-color Theorem, it has an independent set
of size at least 1/4, concluding the proof.

We note that the bound α ≥ 1/4 is tight for bipartite planar graphs. To see this consider the
hypercube H over 8 vertices. It can be seen that H contains a matching of size 4 that does not
contain any induced matching of size greater than 1, as is demonstrated in Figure 2.

Lemmas 4.1 and 4.4 deal with the setting k = n, i.e. they work for matchings of any size, while
posing a strict constant bound on the average degree (d < 2 in the case of forest, and d < 6 in
the planar case). Next we see how to obtain different trade-offs between k and d, while keeping
α constant. We start with the optimal α = 1/2, and prove that for k < Ω(logd n) there exists a
(k, 1/2)-multitasker.

Theorem 4.5. Fix d ∈ N, and let n ∈ N be sufficiently large. There exists a graph that is (k, 1/2)-
multitasker for all k ≤ s, with s = Ω(logd(n)).

Proof. It is well known there are (explicit) n-vertex d-regular bipartite graphs of girth g = Ω(logd n).
Since any edge set of size g − 1 is a forest, the statement follows from Lemma 4.1.

Next, we show that for small constants α, we may achieve a significant increase in k by showing
existence of a (O(n/d1+4α), α)-multitaskers for any 0 < α < 1/5.

Theorem 4.6. Fix d ∈ N, let n ∈ N be sufficiently large, and suppose α < 1/5. There exists a
(k, α)-multitasker with n vertices on each size, average degree d, for all k ≤ Ω(n/d1+4α).
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Proof. It is known (see, e.g., [FW16]) that for sufficiently large n, there exist an n-vertex graph
G(V,E) with average degree d such that every subgraph of G of size s ≤ O(n/d1+4α) has average
degree at most 1

2( 1
α − 1). Define a bipartite graph H = (A ∪ B,EH) such that A and B are two

copies of V , and for a ∈ A and b ∈ B we have (a, b) ∈ EH if and only if (a, b) ∈ E. We get that
the average degree of H is d, and for any two A′ ⊆ A and B′ ⊆ B such that |A′| = |B′| ≤ s/2,
the average degree of H[A′ ∪ B′] is at most 1

α − 1. Consider a matching M of size s/2 in H. By
Lemma 2.1, if we contract all edges of the matching, we get a graph of average degree at most 2

α−1.
By Lemma 2.2, such a graph contains an independent set of size at least 1

2α|M |, which corresponds
to a large induced matching contain in M . This concludes the proof of the theorem.

4.2 Regular multitaskers with large α(n)

The following theorem shows that if we consider only task sets, i.e. matchings, of size exactly n,
then there are d-regular graphs with α(n) = Ω(1/

√
d log d). This nearly matches our upper bound

O(1/
√
d) stated in Theorem 1.2.

Theorem 4.7. There is an absolute constant c such that, for every large enough d, there exists
a d-regular G such that every perfect matching in G contains an induced matching of size at least
cn/
√
d log d.

Proof. We prove for the setting d = 1
2n +

√
n log n; n can then be made larger (while keeping d

fixed) by taking disjoint copies. The construction of G is as follows: Let A,B be the bipartition,
and partition A into A1 ∪ A2 and B into B1 ∪ B2, such that |A1| = |B1| = 1

2n +
√
n log n and

|A2| = |B2| = 1
2n −

√
n log n. The bipartite graphs between A1 and B2 and between A2 and B1

are complete, and there are no edges between A2 and B2. Let G′1 be a random bipartite graph

on A1, B1 in which each edge is present independently with probability 32
√

logn
n . By Lemma 4.8

G′1 contains a (2
√
n log n)-regular spanning subgrpah G1, which we add to G. This completes the

random construction of G, which is clearly (1
2n+

√
n log n)-regular.

Next, we argue that with high probability, each subgraph of G1 with 2
√
n log n nodes on each

side has average degree at most 32 log n. Clearly it suffices to prove this for G′1. Indeed, for
such a given subgraph of G′1, the expected number of edges is 32

√
n log1.5 n and hence by the

Chernoff bound (Lemma 2.4), the probability to exceed 64
√
n log1.5 n edges (or equivalently average

degree 32 log n) is at most exp(−32
√
n log1.5(n)

3 )) < n−10
√
n logn. There are at most

( 1
2
n+
√
n logn

2
√
n logn

)2
≤

( en
2
√
n logn

)4
√
n logn < n2

√
n logn, so by a union bound, the desired property holds with probability

1− o(1).
Assume henceforth this event occurs, that is, each subgraph of G1 with 2

√
n log n nodes on each

side has average degree at most 32 log n. Consider a perfect matching M in G. It must intersect G1

on at least 2
√
n log n edges. Let H be the auxiliary graph whose nodes are these edges of M ∩G1,

and two nodes are neighbors if the corresponding edges of M are connected in G1. By the above
property of G1, H has average degree at most 400 log n and hence by Lemma 2.2 it contains an
independent set of size at least 1

200

√
n/ log n, which correspond to an induced matching of this size,

contained in M .

Lemma 4.8. Let G(V1, V2;E) be a random bipartite graph with |V1| = |V2| = n, in which each edge

is present with independently probability p = 32
√

logn
n . Then, with high probability, G contains a

(2
√
n log n)-regular spanning subgraph.
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Proof. By the well known criterion for containing a factor (see, e.g., [LP09], Theorem 2.4.2), G
contains a subgraph as required iff for every X ⊂ V1 and Y ⊂ V1,

|X|+ |Y |+ e(X̄, Ȳ )

2
√
n log n

≥ n, (3)

where e(X̄, Ȳ ) denotes the number of edges between X̄ = V1 \X and Ȳ = V2 \ Y . We can restrict
attention to X,Y such that |X|+ |Y | ≤ n, as otherwise eq. (3) holds trivially. Observe that

E[e(X̄, Ȳ )] = 32

√
log n

n
(n− |X|)(n− |Y |) (4)

and that if we plug

e(X̄, Ȳ ) ≥ 1

2
E[e(X̄, Ȳ )] (5)

in the LHS of eq. (3) then the desired inequality holds, since by eq. (4),

|X|+ |Y |+ e(X̄, Ȳ )

2
√
n log n

≥ |X|+ |Y |+ 8(n− |X|)(n− |Y |)
n

= 8n− 7(|X|+ |Y |) +
|X||Y |
n

≥ n,

having used |X| + |Y | ≤ n. Hence it suffices to show that eq. (5) occurs for all X,Y with high
probability. Assume w.l.o.g. |X| ≤ |Y |, which implies |X| ≤ 1

2n. We consider two cases:

• |Y | ≤ n−
√

n
logn . Then we have (n−|X|)(n−|Y |) ≥ 1

2n
√

n
logn , hence by eq. (4) E[e(X̄, Ȳ )] ≥

16n, and by the Chernoff bound (Lemma 2.4),

Pr

[
e(X̄, Ȳ ) ≥ 1

2
E[e(X̄, Ȳ )]

]
≥ 1− exp

(
−1

8
E[e(X̄, Ȳ )]

)
≥ 1− exp (−2n) .

Taking a union bound over at most 4n choices of X,Y , eq. (5) holds for all such X,Y with
probability 1− o(1).

• |Y | > n −
√

n
logn . Our assumption |X| + |Y | < n implies in particular that |Y | ≤ n − 1,

and together with |X| ≤ 1
2n we get (n− |X|)(n− |Y |) ≥ 1

2n. Hence by eq. (4) E[e(X̄, Ȳ )] ≥
16
√
n log n, and by the Chernoff bound (Lemma 2.4),

Pr

[
e(X̄, Ȳ ) ≥ 1

2
E[e(X̄, Ȳ )]

]
≥ 1− exp

(
−1

8
E[e(X̄, Ȳ )]

)
≥ 1− exp

(
−2
√
n log n

)
.

Noting that the current case assumption together with |X| + |Y | < n implies |X| <
√

n
logn ,

we have at most
( n√

n/ logn

)2 ≤ n2
√
n/ logn = 4

√
n logn choices for X,Y . Taking a union bound

over these, eq. (5) holds for all such X,Y with probability 1− o(1).

A final union bound over the two cases implies that eq. (3) holds for all X,Y simultaneously with
probability 1− o(1).
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4.3 Construction of d-regular multitaskers based on expanders

In this section we show how to construct multitaskers with multitasking capacity Θd(log d/d). This
is done based on construction of bipartite spectral expanders. Namely, we have the following result:

Theorem 4.9. Fix d ∈ N, and let n ∈ N be sufficiently large. There exists a d-regular bipartite
graph with n vertices on each side, with α > Ω( log d

d ).

We will prove the theorem by showing that if d is large enough constant, and G is a (n, d, λ)-
expander with λ ≤ O(d0.9), then every matching M in G contains an induced matching of size

at least |M | log d
16d . The proof is similar to a result due to Alon, Krivelevich and Sudakov regarding

large independent sets in subgraphs of psuedo-random graphs [AKS99]. Given a bipartite d-regular
graph G = (A ∪ B,E) with |A| = |B| = n/2, let λ1 ≥ λ2 ≥ ... ≥ λn be the n eigenvalues of the
adjacency matrix of G. It is known that |λ1| = |λn| = d. We let λ denote the largest eigenvalue
(in absolute value) excluding λ1, λn. Such G is called a (n, d, λ)-expander. We use the following
variation of the expander mixing lemma for bipartite d-regular graphs:

Lemma 4.10. Given a bipartite d-regular graph G = (A,B,E) with |A| = |B| = n/2 we have for
every S ⊆ A and T ⊆ B,

|e(S, T )− |S||T |d
n/2

| ≤ λ
√
|S||T |.

Using Lemma 4.10 we have the following result:

Lemma 4.11. Let A′ ⊆ A,B′ ⊆ B with |A′| = |B′| = an. Then

|e(A′, B′)|
2an

≤ ad+ λ/2.

In particular, the average degree of G(A′, B′) is at most 2ad+ λ.

We first need the following Lemma.

Lemma 4.12. Let A′ ⊆ A,B′ ⊆ B with |A′| = |B′| = an. Suppose G(A′, B′) contains a perfect
matching. If λ = o(d), the G(A′, B′) contains an induced matching of size at least

n

4d
ln

(
1 +

md

n(λ/2 + 1/4)

)
.

Proof. Set m = an and let M = {e1, ..., em} be perfect matching. Contract all edges in M and
call the resulting graph G1, The average degree of G1 is at most 4ad + 2λ. Pick a vertex v of
minimal degree in G1, add it to a set I (initialized to be the empty set) and repeat the process
for G2 = G1 \ {v ∪ N(v)}, where N(v) is the set of neighbors of v. Continue iteratively with the
above algorithm, until no vertices are left. The crucial observation is that for any i for which Gi
is nonempty, if Gi contains bn vertices, then it has average degree at most 4bd+ 2λ. Consider the
sequence defined by the recurrence relation

a0 = m, ai+1 = ai −
(

4d
ai
n

+ 2λ+ 1
)

=

(
1− 4d

n

)
ai − (2λ+ 1), ∀i ≥ 0.

By the definition of our iterative procedure, the cardinality of the graph remaining after i iterations
is at least ai. Solving the recurrence above we get that,

ai =

(
1− 4d

n

)i(
m+

n(λ/2 + 1/4)

d

)
− n(λ/2 + 1/4)

d
.
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It follows that

ai ≥ e−(4d/n)i

(
m+

n(λ/2 + 1/4)

d

)
− n(λ/2 + 1/4)

d
.

The size of |I| is larger than the smallest index i for which ai ≤ 0. Therefore

|I| ≥ n

4d
ln

(
1 +

md

n(λ/2 + 1/4)

)
.

The set of edges that corresponds to vertices in I is an induced matching. This concludes the
proof.

Observe that Lemma 4.12 implies that every d-regular bipartite graph with λ � d and two
equal sides contains an induced matching of size O(n log d

d ). We are not aware of a previous proof
of this fact. We can now prove Theorem 4.9:

Proof of Theorem 4.9. Suppose first that |M | ≥ n/ ln(d). By Lemma 4.12 M contains an induced
matching of size at least

n

4d
ln

(
1 +

|M |d
n(λ/2 + 1/4)

)
,

which is at least
n

4d
ln

(
1 +

d

((ln d)λ/2 + 1/4)

)
.

By our assumptions on d, λ, we get that |M | contains an induced matching of size at least

n

8d
ln

(
1 +

d

λ/2 + 1/4

)
.

On the other hand, if |M | ≤ n/ ln(d), then the graph induced on M , G[M ] has average degree at
most 2d/ log d + λ. Therefore, by Lemma 2.1, if we contract all edges in M the resulting graph
which we denote by G′[M ] has average degree at most 4d/ log d + 2λ. Therefore, G′[M ] contains

an independent set of size at least ` := |M |
4d/ log d+2λ+1 . As we assume λ = o(d0.9), we have that in

this case M contains an induced matching of size at least `. It is easy to verify that in both cases,
we get that M contains an induced matching of size at least |M | log d

16d , concluding the proof.

Remark: an alternative way to establish the existence of d-regular multitaskers with α(n) =
Ω(log d/d) is take any bipartite d-regular graph G of girth at least 7 (e.g., graphs avoiding cycles
of length smaller than 7). Given an arbitrary matching M in G, contracting the edges of M
results with triangle free graph. As such graphs are known to have an independent set of size
Ω( log d

d n) it immediately follows that α = Ω( log d
d ). The drawback of this construction compared to

our construction is that d must be sublinear in n in graphs of girth 7, whereas in the expander
based construction, d can be of order n. The advantage of the girth construction is that it readily
generalizes to depth r networks by simply taking an r-partite graph of girth at least 3r + 1. This
implies that we can have α = Ω( log d

d n) also in networks of depth r so long as we are willing to have
d that is sublinear in n.
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4.4 The irregular case

We complement the results above by providing graphs with average degree log log n that are α-
multitasker for α > 0 being a constant independent of n. We start with the following somewhat
surprising lower bound.

Theorem 4.13. There exists a bipartite graph G with n vertices in each vertex class and average
degree at least 1

8 log log n which is a 1
20 -multitasker. That is, for any integer k = 1, . . . , n, any

matching of size k in G contains an induced matching of size at least k/20.

The constant 1/20 above can be improved, as we show in Theorem 4.14. We first present a
short proof without trying to optimize the constants. Note that in view of Theorem 3.14 if the
average degree is significantly bigger than log n then the graph cannot be an Ω(1) multitasker. It
will be interesting to decide whether or not the Ω(log log n) lower bound for the average degree
above can be improved to Θ(log n).

Proof. We use the following result, proved in [Alo13], Theorem 2.1, using the method of [PRS95]:

For every positive integer M and all sufficiently large n > n0(M) there exists a bipartite graph G
with vertex classes A and B, satisfying the following properties.

(i) |B| ≤ |A| = n.

(ii) Every vertex of A has degree M and every vertex of B has degree larger than 1000M .

(iii) Every subgraph of G with average degree at least 10 contains a vertex of degree at least 1000M .

By examining the proof in [Alo13] it is not difficult to check that it works for M = 1
8 log2 log2 n.

Let G be the above graph, with M = 1
8 log2 log2 n, after adding to B isolated vertices to make its

cardinality equals that of A. Consider now an arbitrary matching in G, and let a1b1, a2b2, . . . , akbk
be its edges, where ai ∈ A and bi ∈ B. Let H be the induced subgraph of G on the 2k vertices
ai, bj . Note that every vertex ai has degree at most M in H, as this is its degree in G, by property
(ii) of G. Thus H has at most Mk edges. As long as the average degree in H is at least 10, it
contains a vertex bi of degree at least 1000M , by property (iii). In this case we omit bi and the
vertex matched to it ai. Note that this process cannot omit more than k/1000 pairs of vertices, as
the total number of edges in H is at most Mk. Thus this process terminates with a matching of size
at least 0.999k so that the average degree of its vertices is at most 10. Consider the graph F whose
vertices are the edges of this matching, where two are adjacent iff there is an edge connecting them.
Then the average degree in this graph is at most 18, and hence it contains an independent set of
size at least 0.999k/19 > k/20. This gives an induced matching of the required size, completing
the proof.

Next we show that the constant 1/20 above can be improved to nearly 1/3.

Theorem 4.14. For any fixed small ε > 0 and large n there exists a bipartite graph G′ with n
vertices in each vertex class and average degree (1− o(1)) log logn

4 log(10/ε) which is a (1
3 − ε)-multitasker.

That is, for any integer s = 1, . . . , n, any matching of size s in G contains an induced matching of
size at least (1

3 − ε)s.

Proof. Define T = 10
ε , t = 1

4 logT log2 n. Let A be a set of n vertices, and for each 1 ≤ i ≤ t, let Bi
be a set of

n

2
√

lognT i
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vertices, where all sets A,Bi are pairwise disjoint. Let B be the union of all sets Bi together with
n−

∑t
i=1 |Bi| additional isolated vertices. A and B are the two vertex classes of a bipartite graph

G. Each vertex a ∈ A has one random neighbor in each set Bi (1 ≤ i ≤ t), where all choices are
uniform and independent. Thus the degree of every vertex a ∈ A is exactly t and hence this is also
the average degree of G. Our graph G′ will be a spanning subgraph of G obtained by deleting an
edge from each short cycle. We first observe that with high probability G does not contain too
many short cycles.

Claim 1: With high probability, the number of cycles of length at most 10/ε in G is o(n).

Proof: Note, first, that by construction, for every m and every collection of m potential edges
between the vertices of G, the probability that all these are indeed edges of G is at most

(
1

|Bt|
)m = (

1

n1−o(1)
)m.

(For some such collections of edges, for example ones that contain at least two neighbors of some
a ∈ A in the same set Bi, the probability is zero, but for any collection the above upper bound
applies). Thus, the probability that there exists a cycle of length at most 10

ε in G is smaller than

5/ε∑
s=2

n2s(
1

n1−o(1)
)2s < 2n10·o(1)/ε = no(1).

The assertion of the claim follows from Markov’s Inequality.

Claim 2: The following holds with high probability. For every 1 < i ≤ t and every s satisfying
s ≤ 10

ε |Bi|, the number of edges in any induced subgraph of G with s vertices in A and s vertices

in ∪i−1
j=1Bj is smaller than (2 + ε/4)s.

Proof: By the choice of parameters,

|Bi−1|
|Bi|

= 2
√

lognT i(1−1/T ) = (
n

|Bi|
)1−ε/10.

Therefore,
1

|Bi−1|
=

1

|Bi|
(
|Bi|
n

)1−ε/10

= (
1

|Bi|
)ε/10(

1

n
)1−ε/10 ≤ (

10

sε
)ε/10(

1

n
)1−ε/10.

Therefore, the probability that there is a subgraph of G with s vertices in A, s vertices in ∪i−1
j=1Bj

and at least (2 + ε/4)s edges is at most the following:(
n

s

)2( s2

(2 + ε/4)s

)
(

1

|Bi−1|
)(2+ε/4)s ≤ (

en

s
)2s(

es

2
)(2+ε/4)s(

1

|Bi−1|
)(2+ε/4)s

≤ (
en

s
)2s(

es

2
)(2+ε/4)s[(

10

sε
)ε/10(

1

n
)1−ε/10](2+ε/4)s

≤ [e2(
e

2
)3(

10

ε
)ε/10(2+ε/4)n2−(1−ε/10)(2+ε/4)sε/4−ε/10(2+ε/4)]s

≤ [32(
s

n
)ε/20−ε2/40]s < (

32

2
√

logn
)s,
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where here we used the fact that s ≤
∑t

i=1 |Bi| <
n

2
√
logn

.

Summing over all possible values of s and i we get t ·O(2−
√

logn) = o(1), completing the proof
of the claim.

Fix a graph G satisfying the assertions of Claims 1 and 2. Let G′ be a graph obtained from G
by removing an arbitrary edge from each cycle of length at most 10/ε in G. Then G′ has n vertices
in each vertex class, and has average degree (1− o(1)) log logn

4 log T . To complete the proof we show that

for every s, every matching M of size s in G′ contains an induced matching (induced in G′) of size
at least (1

3 − ε)s. We consider two possible cases.

Case 1: s ≤ 10
ε |Bt|. If M contains at least s/3 edges with endpoints in Bt, then these edges form

an induced matching, since every vertex of A has at most one neighbor in Bt (exactly one neighbor
in G and hence at most one in G′). Thus in this case there is an induced matching of size at least
s/3. If not, then omit all the edges containing a vertex in Bt. Let F be the following auxiliary
graph. Its vertices are the g ≥ 2s/3 remaining edges of the matching and two are connected if
there is an edge of G′ connecting the corresponding edges. We have to show that F contains an
independent set on nearly half its vertices. As Claims 1 and 2 hold, the girth of F is at least 5/ε
and for any p, any set of p of its vertices spans at most (1 + ε/4)p edges. Construct an independent
set in F as follows. As long as it contains a vertex of degree at most 1 put it in the independent set
and omit it and its unique neighbor (if the degree was 1) from F . Suppose that this process stops
with q vertices (hence the independent set so far has at least (g − q)/2 vertices). If q = 0 we are
done, as the independent set has at least s/3 vertices. Otherwise, in the induced subgraph of F on
the remaining q vertices the minimum degree is at least 2 and the average degree is at most 2+ ε/2.
Hence it contains at most εq/2 vertices of degree at least 3. Omit these vertices. The remaining
graph is a union of paths and cycles, which may contain odd cycles, but all cycles in it are of length
at least 5/ε. Therefore this part contains an independent set of size at least 1

2(1 − ε/5)(1 − ε/2)q
which together with the (g − q)/2 vertices obtained in the initial process supply an independent
set of size at least

2s

3

1

2
(1− ε/2)(1− ε/5) > (1/3− ε)s,

as needed.

Case 2: s > 10
ε |Bt|. Note that s ≤

∑t
i=1 |Bi| = (1 + o(1))|B1| < 10

ε |B1|. Choose i so that

10

ε
|Bi+1| < s ≤ 10

ε
|Bi|.

Thus 1 ≤ i < i+ 1 ≤ t. Note, first, that the number of edges of M containing a vertex from ∪j>iBj
is at most ∪j>i|Bj | = (1 + o(1))|Bi+1| ≤ (1 + o(1)) ε

10s. Omit the edges of the matching containing
these vertices and proceed as before. If there are at least, say, (1/3 − ε)s edges of the matching
containing a vertex from Bi (a condition that holds automatically if i = 1), these edges form an
induced matching and the desired result follows. Else omit these edges and construct the graph F
whose vertices are the remaining edges of the matching (there are at least 2s/3 of them), where two
are adjacent iff there is an edge of G′ connecting them. This graph has girth at least 5/ε and for
every p, any set of p of its vertices spans at most (1 + ε/4)p edges. Thus it contains an independent
set on at least a fraction of 1

2(1 − ε/2)(1 − ε/5) of its vertices, completing the proof for this case
and hence also the proof of the theorem.

Remark: The graph G′ constructed in the proof of Theorem 4.14 does not have a perfect matching,
and in fact has many isolated vertices in the set B. It is easy to modify it and construct a
bipartite graph G′′ which is a (1

4 − ε)-multitasker with average degree Ω(log log n) and contains a
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perfect matching. Indeed, the construction of G implies that with high probability each vertex in
B′ = ∪ti=1Bi has degree (much) bigger than t, which is the degree of each vertex of A. Therefore,
by Hall’s Theorem, G contains a matching saturating all vertices of B′. When constructing G′ from
G by omitting an edge from each short cycle, keep all edges of this matching (by simply omitting
an edge not in this matching from each short cycle). Now add a perfect matching from the vertices
in B−B′ (that is, the isolated vertices in B) to the unsaturated vertices in A. The resulting graph,
call it G′′, contains a perfect matching. In addition, it is a (1

4−ε)-multitasker. To see this note that
all newly added edges form an induced matching in G′′, as their B-vertices are of degree 1. Thus
if at least 1/4 of the edges of a given matching M are among the new edges, we get an induced
matching of size at least |M |/4. Otherwise, at least 3|M |/4 of the edges of M belong to the graph

G′, and hence contain an induced matching of size at least (1
3 − ε)

3|M |
4 > (1

4 − ε)|M |.

Finally we mention the following result for graphs with average degree Θ(log n).

Proposition 4.15. There exists an absolute positive constant c and a bipartite graph G with n
vertices in each vertex class and average degree at least 2 log(2n) which is a c/

√
log k multitasker,

that is, for any integer k, any matching of size k in G contains an induced matching of size at least
ck/
√

log k.

The proof is similar to the previous one, using the assertion and proof of Proposition 2.1 in [?].
We omit the details.

5 Conclusions

The limited ability to perform multiple tasks at the same time is one of the most salient and
defining characteristics of human cognition. Despite this fact, parallel processing capabilities of
neural systems remain largely unexplored. We have considered a new multitasking measure for
parallel architectures that is aimed at providing quantitative measures for such capabilities. We
established an inherent tradeoff between the density of the network and its multitasking capacity
that holds for every graph that is sufficiently dense. This tradeoff is rather general and it applies to
regular graphs, to irregular graphs and to layered networks of depth greater than 2. We have also
obtained quantitative insights. For example, we have shown that our upper bound on multitasking
capacity is tight for regular graphs and tasks sets of size n, provided evidence that interference
increases as depth increases from 2 to r > 2 and demonstrated that irregular graphs allow for
better multitasking than regular graphs for certain edge densities. Our findings are also of interest
to recent effort in cognitive neuroscience to pinpoint the reason for the stark limitations people
experience in multiasking control demanding tasks. While our graph-theoretical model is very far
from modeling real biological networks, it appears that establishing multitasking limitations for
such simple models is necessary before we can address more complicated settings.

We have also considered network architectures that reduce interference and found that net-
works with pseudorandom properties (locally sparse, spectral expanders, graphs with high girth)
have good multitasking capabilities. Interestingly, previous works have documented the benefits
of random and pseudorandom architectures in deep learning, Hopfield networks and other set-
tings [ABGM14, Val00, KP88]. Whether there is an underlying cause for these results remains an
interesting direction for future research.

Our work is still limited in several aspects. First, our model is graph-theoretic in nature, focusing
exclusively on the adjacency structure of tasks and does not consider many parameters that emerge
in biological and artificial parallel architectures. Second, we do not address tasks of different weights
(assuming all tasks have the same weights), stochastic and probabilistic interference (we assume
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interference occurs with probability 1) and the exact implementation of the functions that compute
the tasks represented by edges.In sum, while we hope that we have convinced the reader that our
graph theoretic approach already captures interesting issues of multitasking, and entails nontrivial
observations, to achieve a greater realism and predictive value, one will need to go beyond the
graph theoretic structure and consider other parameters that arise in neural networks.

To summarize, the work we have presented here takes an important step towards laying the
foundations for a deeper understanding of the factors that affect the tension between efficiency of
representation, and flexibility of processing in neural network architectures. We hope that this will
help inspire a parallel proliferation of efforts to further explore this area.
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A Appendix: Bounds on the number of k-matchings

In this section we derive Corollary 3.7 from Lemma 3.6, which states thatMk(G) ≥
(
n
k

)2 (
1− k

nd

)nd−k (kd
n

)k
.

We now bound the first two terms from below. For the first term (the binomial coefficient), we
have (

n

k

)
=
n(n− 1) . . . (n− k + 1)

k!
≥ (n− k)k

kke−k
√

2πk
=

(
1− k

n

)k
·
(en
k

)k
· 1√

2πk
≥
(

1

2e

)k2/n
·
(en
k

)k
· 1√

2πk
,

where we use fact that
(
1− k

n

)k ≥ ( 1
2e

)k2/n
for all k < n/2. For the second term, we first use the

following:

Lemma A.1. For every x ≥ 2, (1− 1
x)x ≥ 1

e −
7

6ex .
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Proof.
∑∞

k=3
1
kxk
≤ 1

3x2
∑∞

k=1
1
xk
≤ 2

3x2
since x ≥ 2, and hence

(
1− 1

x

)x
= ex ln(1− 1

x
) = ex(− 1

x
− 1

2x2
− 1

3x3
...) ≥

ex(− 1
x
− 7

6x2
) = 1

e · e
− 7

6x ≥ 1
e

(
1− 7

6x

)
.

Now we may bound,(
1− k

nd

)nd−k
≥
(

1− k

nd

)nd
≥
(

1

e
− 7k

6end

)k
by Lemma A.1

=
1

ek

(
1− 7k

6nd

)k
≥ 1

ek

(
1

e
− 49k

36end

) 7k2

6nd

by Lemma A.1

≥ 1

ek

(
1

2e

) 7k2

6nd

,

where for the last inequality we use 49k
36end <

1
2e , which follows from the assumption that k < n/2 ≤

nd/4 (for d ≥ 2). Plugging both bounds into Lemma 3.6, we get

Mk(G) ≥
(
n

k

)2(
1− k

nd

)nd−k (kd
n

)k
≥

(
1

2e

) 2k2

n

·
(en
k

)2k
· 1

2πk
× 1

ek

(
1

2e

) 7k2

6nd

·
(
kd

n

)k
=

(
end

k

)k
·
(

1

2e

) k2

n (2+ 7
6d)
· 1

2πk
≥
(
end

k

)k
·
(

1

2e

)4k2/n

· 1

2πk
.
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