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ABSTRACT
Protein protein interaction (PPI) networks of many organisms

share global topological features such as degree distribution, k − hop

reachability, betweenness and closeness. Yet some of these networks
can differ significantly from the others in terms of local structures: e.g.
the number of specific network motifs can vary significantly among
PPI networks.

Counting the number of network motifs provides a major challenge
to the comparing biomolecular networks. Recently developed
algorithms have been able to count the number of induced

occurrences of subgraphs with k ≤ 7 vertices. Yet no practical
algorithm exists for counting non-induced occurrences, or counting
subgraphs with k ≥ 8 vertices. Counting non-induced occurrences
of network motifs is not only challenging but also quite desirable as
available PPI networks include several false interactions and miss
many others.

In this paper we show how to apply the “color coding” technique
to counting non-induced occurrences of subgraph topologies in the
form of trees and bounded treewidth subgraphs. Our algorithm can
count all occurrences of motif G′ with k vertices in a network G

with n vertices in time polynomial with n, provided k = O(log n).
We use our algorithm to obtain “treelet” distributions for k ≤ 10 of
available PPI networks of unicellular organisms (S. cerevisiae, E. coli

and H. pylori), which are all quite similar, and a multicellular organism
(C. elegans) which is significantly different. Furthermore the treelet
distribution of the unicellular organisms are similar to that obtained
by the “duplication model” but are quite different from that of the
“preferential attachment model”. The treelet distribution is robust w.r.t.
sparsification with bait/edge coverage of 70% but differences can be
observed when bait/edge coverage drops to 50%.
Contact: cenk@cs.sfu.ca

1 INTRODUCTION
Recent research has revealed that many biomolecular networks
share global topological features. Similarities between protein-
protein interaction (PPI) networks of several organisms have
been observed with respect to their degree distribution,k −
hop reachability, betweenness and closeness (Bebek et al 2006;
Bollobas et al 2001; Hormozdiari et al 2007; Przulj et al 2005).
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Topological similarities have also been observed between PPI
networks and networks generated by random processes. For
example, the degree distribution of the “preferential attachment
model” is similar to that of the Yeast (S. cerevisiae) PPI network
(Eisenberg and Levanon 2003). More interestingly, the “duplication
model” generates networks that are very similar to the PPI networks
of a number of organisms (including that of the Yeast) not only in
terms of degree distribution but alsok − hop reachability (fork ≤
6), betweenness, and closeness (Hormozdiari et al 2007). Because
direct measures for comparing two networks, such as the minimum
number of edges and vertices to be deleted to make two networks
isomorphic are NP-hard to compute, such topological features have
been used to “measure” how similar any given pair of networks
could be.

Two networks which have similar global features can have
significant differences in terms of local structures they include: e.g.,
one of them may include a specific subgraph many more times than
the other. Thus it is important to be able to count the “number
of occurrences” of specific subgraphs in networks as means of
detecting whether two networks are similar or not.

A subgraph that occurs much more frequently in a biomolecular
networkG than one in a “random” network or a “typical” networkR
whose global properties are similar to those ofG is called a network
motif of G (Milo et al 2002). Similarly, a subgraph that occurs much
less frequently inG in comparison toR is called an anti-motif ofG.

The use of subgraph distribution with up tok vertices to compare
PPI networks with random networks has been the source of a
recent debate. It was argued that the distribution of subgraphs of
up to k = 5 vertices in the Yeast PPI network is quite different
from that of the preferential attachment model (Przulj et al 2005).
Based on this observation, it was argued that the Yeast PPI network
is not a “scale-free” network and the presumed similarity of the
Yeast PPI network and the “scale-free” networks in terms of degree
distribution is a consequence of sampling errors (Han et al 2005).
Finally, in (Hormozdiari et al 2007) it was demonstrated that the
subgraph distribution of the preferential attachment model and that
of the duplication model fork ≤ 6 can be substantially different
and the seed network of the duplication method could be chosen in
a way that its subgraph distribution can be made “very similar” to
that of the available PPI networks including that of the Yeast.

Although it is possible to make the general distribution of
subgraphs in a random model (more specifically the duplication
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model) very similar to that of a specific PPI network, there are
a number of subgraphs, for example in the Yeast PPI network,
which occur much more frequently than that in the associated
random model. These motifs were suggested to be recurring
circuit elements that carry out key information processing tasks
(Milo et al 2002) and thus are of considerable interest. As a
result novel computational tools have been developed for counting
subgraphs in a network (Przulj et al 2005; Hormozdiari et al 2007)
and discovering network motifs (Grochow and Kellis 2007).

Counting the number of all possible “induced” subgraphs in a PPI
network has been proved to be a challenging task. (Przulj et al 2005)
describes how to count all induced subgraphs with up tok = 5
vertices in a PPI network. Faster techniques that count induced
subgraphs of size up tok = 6 (Hormozdiari et al 2007) andk =
7 (Grochow and Kellis 2007) were developed very recently. The
running time of these techniques all increase exponentially withk
thus novel algorithmic tools are now needed for counting subgraphs
of sizek ≥ 8.

Note that an induced subgraph (more accurately a vertex induced
subgraph) of a networkG is a subset of the vertices ofG together
with any edges whose endpoints are both in this subset; i.e.G′ is
an induced subgraph ofG if and only if for each pair of verticesv′

andw′ in G′ and their corresponding verticesv andw in G, either
there are edges between bothv′, w′ pair andv, w pair or there are
no edges between any of the pairs. For example letG be a fully
connected graph of sizen. Then a cycle that goes through every
vertex inG is not an induced subgraph ofG; it is called a “non-
induced” subgraph ofG.

All the above techniques consider only induced subgraphs of
a given network; there are many more non-induced subgraphs
isomorphic to a given topology and thus it is more difficult to count
non-induced subgraphs of a network. As a result, there are only
a limited number of earlier studies on biomolecular networks that
consider non-induced subgraphs (Dost et al 2007; Scott et al 2005).
The motivation for considering non-induced subgraphs are clear:
available PPI networks are far from complete and error free; the
interactions between proteins reported by these networks include
both false positives and false negatives. Thus an occurrence of a
specific network motif in one network may include additional edges
in its occurrence in another network and vice versa.

The specific problem addressed by earlier studies on non-
induced subgraphs (e.g. (Dost et al 2007; Scott et al 2005)) is not
the subgraph counting problem. Rather these papers focus on the
“subgraph detection” problem, which aims to respond to queries of
the form does an input networkG have a non-induced subgraph
G′ - where G′ is a user specified query subgraph. Subgraph
detection problem is somewhat easier than the subgraph counting
problem. (Dost et al 2007), for example, show how to solve the
subgraph detection problem for subgraphs of sizek = O(log n)
- much larger than what can be tackled by (Przulj et al 2005;
Hormozdiari et al 2007; Grochow and Kellis 2007) for subgraph
counting - provided that the query subgraphG′ is either a simple
path, a tree, or a bounded treewidth subgraph. The main tool they
employ to makes subgraph detection problem tractable for such
subgraphs is the “color coding” technique (Alon et al 1995).

Color coding is an innovative combinatorial approach that was
introduced to detect simple paths, trees and bounded treewidth
subgraphs in unlabeled graphs (Alon et al 1995). It was later
applied to subgraph detection in biomolecular networks by

(Shlomi et al 2006; Dost et al 2007). Color coding is based on
assigning random colors to the vertices of an input graph. For
subgraph detection purposes, it considers only those subgraphs
where each vertex has a unique color as a potential answer to a
query subgraph. Such “colorful” subgraphs which are isomorphic
to the query subgraph can then be detected through efficient use
of dynamic programming, in time polynomial withn, the size
of the input graph. If the above procedure is repeated sufficiently
many times (polynomial withn, provided that the subgraph we
are looking for is of sizek = O(log n)), it is guaranteed that a
specific occurrence of the query subgraph will be detected with high
probability.

(Arvind and Raman 2002) use the color coding approach to count
the number of subgraphs in a given graphG which are isomorphic to
a bounded treewidth graphH. They give a randomized approximate
counting algorithm with running timekO(k) · nb+O(1) where n
and k are the number of vertices inG and H, respectively, and
b is the treewidth ofH. The framework which they use is based
on (Karp and Luby 1983) on approximate counting via sampling.
Provided thatk = O(log n), the running time of this algorithm is
super-polynomial with n, and thus is not practical.

Alon and Gutner (Alon and Gutner 2007) combine the color
coding technique with a construction of what they call Balanced
Families of Perfect Hash Functions to obtain adeterministic
algorithm to count the number of simple paths or cycles of size
k in an input graphG with running time2O(k log log k)nO(1), still
super-polynomial in n whenk = O(log n).

1.1 Our contributions
Given a network withn vertices, we show how to apply the color
coding technique tocount non-induced trees and bounded treewidth
subgraphs withk vertices. We present a randomized approximation
algorithm with running time2O(k) · nO(1), which is polynomial in
n for k = O(log n) and thus is faster than available alternatives
(Arvind and Raman 2002; Alon and Gutner 2007). Our algorithm
is quite efficient in practice; we were able to go beyond what the
algorithms presented in (Przulj et al 2005; Hormozdiari et al 2007;
Grochow and Kellis 2007) achieve, and count, for the first time,all
possible tree topologies of8, 9 and 10 vertices in PPI networks
of various organisms such asS.Cerevisiae (Yeast), E. coli, H.
pylori and C. elegans (Worm) PPI networks available via the
DIP database (Xenarios et al 2002). We also compare them with
random networks generated by the Preferential Attachment Model
(Barabasi and Albert 1999; Aiello et al 2000; Bollobas et al 2001)
and the Duplication Model (Vazquez et al 2003; Chung et al 2003;
Bebek et al 2006).

The distribution of bounded treewidth subgraphs, and in
particular trees of up to10 vertices provides us powerful means to
compare biomolecular networks. One of the important features of
what we call the “normalized treelet distribution”, the distribution of
the number of occurrences of non-induced trees in a PPI network,
normalized by the total number of such treelets, is that it is quite
robust. On the well known Yeast PPI network (Xenarios et al 2002),
even after random sparsification with bait coverage of70% and edge
coverage of70% (as suggested by (Han et al 2005)), the normalized
tree distribution does not change much. However, no means of graph
comparison should be too robust w.r.t. sparsification - otherwise it
can not illustrate the differences between a pair of networks that
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are very similar, and those which are not. The normalized treelet
distribution is indeed not robust to an extreme; after sparsifying
the Yeast PPI network with50% bait and50% edge coverage,
differences become noticeable.

It is interesting to note that the normalized treelet distributions
of the three unicellular organisms we compared, Yeast,E. coli
and H. pylori were all fairly similar; however the distribution of
the more complexC. elegans was quite different. Furthermore, the
normalized treelet distribution of the random graphs generated by
the Duplication Model is quite close to that of the three unicellular
organisms we tested but the distribution of the preferential
attachment model has some noticeable differences.

2 THE SUBGRAPH COUNTING ALGORITHM
In this section we describe how to apply the color coding technique
to approximately count the number of non-induced occurrences of
each possible tree topologyT with O(log n) vertices in a network
G with n vertices. Note that this method can be generalized without
difficulty to count all non-induced occurrences of each bounded
treewidth graphG′ in G as well, provided that the treewidth is
constant.

Given a graphG with n vertices and a treeT with k vertices,
we consider the problem of counting the number of non-induced
subtrees ofG which are isomorphic toT . Note that we use the
standard definition of a tree, i.e. for us, a tree is an unlabeled,
connected graph with no cycles. It is unrooted and its vertices are
unordered.1 A treeT is said to be isomorphic to a subtreeT ′ in a
graphG if there is a bijection between the vertices ofT and the
vertices ofT ′ such that for every edge between two verticesa and
b of T there is an edge between the verticesa′ and b′ in T ′ that
correspond toa andb respectively. Such a treeT ′ is considered to
be a non-induced occurrence ofT in G.

Note that we allow overlaps between the trees we count, i.e. two
occurrences ofT , namelyT ′ andT ′′ may share vertices; in fact the
vertex sets ofT ′ andT ′′ may be identical. We considerT ′ andT ′′

distinct occurrences ofT provided that the edge sets ofT andT ′′

are not identical.
Our algorithm counts the number of non-induced occurrences of

a treeT with k = O(log n) vertices in a graphG with n vertices as
follows.

1. Color coding. Color each vertex of input graphG
independently and uniformly at random with one of thek
colors.

2. Counting. Apply a dynamic programming routine (explained
later) to count the number of non-induced occurrences ofT in
which each vertex has a unique color.

3. Repeat the above two stepsO(ek) times and add up the number
of occurrences ofT to get an estimate on the number of its
occurrences inG.

1 Thus, for example, consider a treeT with a root vertexa with two children
b andc, with b having a single childd. For our purposesT is isomorphic to
another tree whereb is the root with two childrend anda, anda with a single
child c. In fact both of these trees are isomorphic to a simple path involving
four vertices.

In what follows, we give the details of the above steps and explain
how and why they work.

2.1 Color coding step
We note that the color coding step not only works for trees but also
bounded treewidth graphs with constant treewidth. Letr be the total
number of copies ofT in G. We assign a color to each vertex ofG
from the color set[k] = {1, · · · , k}. The colors are assigned to each
vertex independently and uniformly at random. It is easy to see that
for a particular non-induced occurrence ofT in G the probability
that all its vertices are assigned unique colors isp = k!/kk, thus the
expected number of colorful copies inG is rp.

Let F denote the family of all copies ofT in G. For each such
copy F ∈ F , let xF denote the indicator random variable whose
value is 1 if and only if the copy is colorful in our randomk-
coloring of V (G), the vertices ofG. Let X =

∑

F∈F xF be the
random variable counting the total number of colorful copies ofT .
By linearity of expectation, the expected value ofX is E(X) = rp.

It is possible to estimate the variance ofX as follows. Note,first,
that for every two distinct copiesF, F ′ ∈ F , the probability that
bothF andF ′ are colorful is at mostp (and in fact strictly smaller
unless both copies have exactly the same set of vertices), implying
that the covarianceCov(xF , xF ′) satisfies

Cov(xF , xF ′) = E(xF xF ′) − E(xF )E(xF ′) ≤ p.

Therefore, the variance ofX satisfies

V ar(X) =
∑

F∈F

V ar(xF ) +
∑

F 6=F ′∈F

Cov(xF , xF ′)

≤ rp + r(r − 1)p = r2p.

It follows that if Y is the average ofs independent copies ofX
(obtained bys independent random colorings), then

E(Y ) = E(X) = rp

and
V ar(Y ) = V ar(X)/s ≤ r2p/s.

Therefore, by Chebyshev’s Inequality, the probability thatY is
smaller than (or bigger than) its expectation by at leastεrp is at
most

r2p

ε2r2p2s
=

1

ε2ps
.

In particular, ifs = 4
ε2p

this probability is at most1/4.
In case we wish to decrease the error probability, we can compute

Y t times independently and letZ be the median. The probability
that the median is less than(1 − ε)rp is the probability that at least
half of the copies ofY computed will be less than this quantity,
which is at most

(

t

t/2

)

4−t ≤ 2−t.

A similar estimate holds for the probability thatZ is bigger than
(1 + ε)rp. Therefore, ift = log(1/δ) then with probability1 − 2δ
the value ofZ will lie in [(1 − ε)rp, (1 + ε)rp]. Note that the total
number of colorings in the process is

O(
log(1/δ)

ε2p
) = O(

ek log(1/δ)

ε2
).

Our estimate forr is, of course,Z/p = Zkk/k!.
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2.2 Counting step
Given a random coloring of the input graphG with k colors, we
present a dynamic programming algorithm to compute the number
of colorful subgraphs ofG which are isomorphic to the query tree
T .

To give a flavor of our algorithm, we first present for the case in
which the query graph is a single path of lengthk. For each vertex
v and each subsetS of the color set{1, · · · , k}, we aim to record
the number of colorful paths for which one of their endpoints isv.
Let C(v, S) be the number of such paths, andcol(v) be the color of
vertexv. Given a color̀ , for all v ∈ V (G):

C(v, {`}) =

{

1 if col(v) = `
0 otherwise.

For each vertexv and color setS where|S| > 1, we have

∑

u;(u,v)∈E(G)

C
(

u, S − col(v)
)

.

Note that the number of single colorful paths of lengthk would be

1

2

∑

v

C
(

v, {1, · · · , k}
)

.

As mentioned earlier, we will only describe the counting step
for the caseT is a tree, however the algorithm we present can be
generalized to bounded treewidth graphs with constant treewidth
without much difficulty.

As a first step we pick an arbitrary vertexρ of T and set it as
the root. We will denote this rooted tree byτ(ρ). Then we count
the number of colorful occurrences ofτ(ρ) in the given graphG as
follows.

For each vertexv of the graphG, we computec(v, τ(ρ), [k]),
the number of[k]-colorful rooted subtrees with rootv, which are
isomorphic toτ(ρ).

The actual number of[k]-colorful occurrences ofT in G is

1

q

∑

v

c(v, τ(ρ), [k])

whereq is equal to the number of verticesu in T , for which the
rooted treeτ(u) is isomorphic toτ(ρ).

In order to computec(v, τ(ρ), [k]) for every vertexv in the graph
G, we use the following dynamic programming routine.

Let τ ′(ρ′) be a subtree of the treeτ(ρ) with root ρ′, we denote
the size ofτ ′(ρ′) by ν(τ ′(ρ′)). For any vertexx in G, and a subset
S of the color set[k] with |S| = ν(τ ′(ρ′)), letc(x, τ ′(ρ′), S) be the
number ofS-colorful subgraphs with rootx and color setS, which
are isomorphic toτ ′(ρ′). We computec(x, τ ′(ρ′), S) inductively as
follows.

The base case whereν(τ ′(ρ′)) = 1 is obvious: For any single
color setS = {a}, c(x, τ ′(ρ′), S) is equal to1 if x has colora, and
otherwise is equal to0.

For the case whereν(τ ′(ρ′)) ≥ 2, letρ′′ be a vertex connected to
ρ′ in τ ′(ρ′). Removing the edge(ρ′, ρ′′) partitionsτ ′(ρ′) into two
smaller subtrees, sayτ ′

1(ρ
′) with rootρ′, andτ ′

2(ρ
′′) with rootρ′′.

Now for every vertexu connected tox in G, and all set
of colors S1 and S2 ⊂ [k] with |S1| = ν(τ ′

1(ρ
′)), |S2| =

ν(τ ′
2(ρ

′′)), andS1∩S2 = ∅ we recursively findc(x, τ1(ρ
′), S1) and

# of vertices(k) # of unlabeled trees Running time (mins)

7 11 2
8 23 14
9 47 100
10 106 700

Table 1. Number of unlabeled tree topologies, and the running time of our
algorithm to count them in the Yeast PPI network.

Network # Vertices # Edges Average degree

S. cerevisiae 2345 5609 4.78
E. coli 1441 5871 8.14
H. pylori 687 1351 3.93
C. elegans 2387 3825 3.20

Table 2. Number of vertices, edges, and average degree in the PPI networks
we studied.

c(u, τ2(ρ
′′), S2). The next step is to computec(x, τ ′(ρ′), S), by

using the values ofc(x, τ1(ρ
′), S1) andc(u, τ2(ρ

′′), S2) for every
u connected tox, and all feasible set of colorsS1 andS2. This is
easily achieved by the fact that

c(x, τ ′(ρ′), S) =

1

d

∑

∀S1,S2:|S1∩S2|=∅

c(x, τ1(ρ
′), S1) · c(u, τ2(ρ

′′), S2).

Here, d is the over counting factor and is equal to one plus the
number of siblings ofρ′′, i.e. vertices connected toρ′, in τ ′(ρ′).

3 EXPERIMENTAL RESULTS
We tested our algorithm to count non-induced occurrences of
subgraphs withk = 8, 9, 10 vertices. Due to limits of computational
resources, we have not been able to go beyondk = 10. The
table 1 shows the number of unlabeled tree topologies for different
values ofk together with the total running time of our algorithm for
counting the non-induced occurrences of these trees in on largest
connected component of Yeast PPI network. Note that fork = 10,
our algorithm takes 12 hours to count all tree topologies on a Sun
Fire X4600 Server with 64GB RAM, when executed in parallel on
8 dual AMD Opteron CPUs 2.6 Ghz.

The list of different tree topologies of varyingk can be
obtained from the Combinatorial Object Server Generation website(
http://theory.cs.uvic.ca/cos.html). Figures 6, 7, 8 depict all tree
topologies fork = 8, 9, 10 respectively.

We tested our algorithm on the protein-protein interaction
networks of four species;S. cerevisiae (Yeast),E. coli, H. pylori,
andC. elegans (Worm). Since the PPI networks of these species are
far from complete, we focus on the largest connected component of
each network. For each PPI network and for all trees ofk = 8, 9, 10
vertices, we counted the number of non-induced occurrences of
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each tree topology. The distribution of the number of such subtree
topologies (which will be called “treelets”) for varying values ofk
provide means of comparing PPI networks.

Note that the number of vertices, their average degree, etc. vary
significantly from one PPI network to the other. Table 2 shows
the number of vertices and edges of the PPI networks we used
in our study. Thus it should be expected that the number of non-
induced occurrences of treelets should differ considerably among
the networks.

As a result, wenormalize the treelet distributions of each
individual network, for each value ofk as follows. For each treelet
T of k vertices, consider thefraction of the number of occurrences
of T in a networkG among total number of occurrences of all
possible treelets of sizek in G. The normalized treelet distribution
refers to this fractional count of treelets in a given PPI network.
We note that as specific fractions of treelets vary by several orders
of magnitude, our normalized treelet distributions are all given in
logarithmic scale.

3.1 Robustness of the treelet distribution
In order to use the normalized treelet distribution as a reliable means
of comparing PPI network topologies, one needs to ensure that
it is robust; i.e. it does not change much with respect to small
alterations to the network. This is of key importance as the available
PPI networks are neither complete nor error free. In fact the PPI
networks we use in this study are known to include only a subset
of proteins in the respective organism and the interactions between
them (Han et al 2005). Thus we explore the robustness of the
normalized treelet distribution with respect to random sparsification
as proposed in (Han et al 2005).

The sparsification process involves two parametersαb and αe

which are defined as follows.αb, the bait sampling probability,
is the probability that a vertex is kept in the network during the
sparsification process;αe, the edge sampling probability, is the
probability that an edge is kept in the network during sparsification.

We performed two independent experiments for evaluating the
robustness of the normalized treelet distribution on the Yeast PPI
network, which is the best developed among the networks we
considered. In the first experiment we set bothαb and αe to
0.7, and in the second one we set both to0.5. We performed5
independent sparsifications of the Yeast network; their normalized
treelet distributions are provided in Figures 1 and 2.

In (Hormozdiari et al 2007) it was observed that sparsification as
suggested by (Han et al 2005) has limited effect on the distribution
of all subgraph topologies of up to6 vertices, provided one focuses
on induced occurrences of these subgraphs. Here, we obtain similar
results on the robustness of the non-induced occurrences of trees of
up to10 vertices, forαb = αe = 0.7. However, forαb = αe = 0.5
significant variations can be observed.

Note that among the tree topologies we considered there is no
“natural” ordering that can be used in our normalized distribution
plots. As a result, we chose to use the ordering implied by the
robustness of independent treelets with respect to the bait and edge
sampling probability of0.5. In all our plots, the “robustness” of
the treelets, i.e. the ratio between the minimum normalized count
and the maximum normalized count of the treelets among the5
sparsifications we obtained, decrease from left to right. In other
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Fig. 1. A comparison of treelet distributions of five networks generated from
the Yeast PPI network with both the bait and edge sampling probability equal
to 0.7.

words, a treelet with i.d.̀ is at least as robust as (or more robust
than) a treelet with i.d.̀ + 1 for all values of̀ .
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Fig. 2. A comparison of the normalized treelet distributions of five networks
generated from the Yeast PPI network with both the bait and edge sampling
probability equal to 0.5

3.2 Comparing PPI networks w.r.t. normalized treelet
distribution

We first discuss how the normalized treelet distributions vary among
the most complete PPI networks available via theDatabase of
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Fig. 3. Normalized treelet distribution of the Yeast PPI network (Red), E.
coli (Green) andH. pylori (Blue)

Interacting Proteins (Xenarios et al 2002). Figure 3 compares the
normalized treelet distributions of the Yeast,H. pylori, andE. coli
PPI networks (in fact their largest connected components). Although
all three PPI networks of unicellular organisms are quite similar
with respect to normalized treelet distributions, it is interesting to
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Fig. 4. Normalized treelet distribution of the Yeast PPI network (Red), E.
coli (Green) ,H. pylori (Blue) andC. elegans (Pink)

note that the PPI network of the Yeast appears to be more similar
to that of theH. pylori in comparison to theE. coli PPI network.
We also compare the normalized treelet distributions of these three
unicellular organisms’ PPI network with that of the most complete
PPI network of a multicellular organism,C. elegans in Figure 4. As
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Fig. 5. Normalized treelet distribution of the Yeast (Red),H. pylori (Blue),
E. coli (Green) PPI networks and Preferential Attachment model (Pink),
Duplication model (Cyan)

can be seen, the normalized treelet distribution ofC. elegans is very
different from that of the Yeast,E. coli or H. pylori.
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3.3 Comparing PPI networks with random networks
w.r.t. normalized treelet distribution

We also compare the normalized treelet distribution of the PPI
networks of the Yeast,E. coli, H. pylori with two random network
models that have been proposed to emulate the evolution of PPI
networks. Such a comparison can not only give some insight into the
evolution of PPI networks but also may help detect network motifs.

The preferential attachment model starts with a small seed
network and grows by adding to the network one vertex in each
iteration. The new vertex is connected to every other vertex
independently with a fixed probability that determines the average
degree of the vertices. As per the available PPI networks, the
preferential attachment model is known to generate networks with
power-law degree distribution.

The duplication model again starts with a small seed network
and grows by “duplicating” a randomly picked vertex with all its
links (Chung et al 2003; Bebek et al 2006; Hormozdiari et al 2007).
Then each link is deleted with some fixed probability. This is
followed by establishing links with every other vertex, again with
constant probability. As per the above networks, duplication model
generates power-law degree distributions.

In (Hormozdiari et al 2007) it was observed that the duplication
model better emulates the available PPI networks with respect
to k − hop reachability, closeness, betweenness and graphlet
distribution with up to6 vertices, in comparison to the preferential
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Fig. 8. List of treelets withk = 10

attachment model. Here, again we consider the specific duplication
and preferential attachment models, whose parameters are chosen
so as to approximate the degree distribution of the Yeast network
as much as possible. We then apply our algorithm to count the
number of non-induced occurrences of all possible treelets in the
Yeast,E. coli andH. pylori as well as the two random models (in
fact the average normalized distribution of5 independent networks
generated by the two random models). The results are given in
Figure 5.

It can be observed that the treelet distributions of all five networks
are not far from each other. However, the one generated by the
duplication model is much closer to the PPI networks; in all three
plots, the distribution of the preferential attachment model can be
seen to vary the most with respect to the other networks.

8



4 CONCLUSION
Recently developed algorithms such as (Hormozdiari et al 2007;
Przulj et al 2005; Grochow and Kellis 2007) have been able to
count the number ofinduced occurrences of subgraphs with≤ 7
vertices in available PPI networks. Unfortunately as the number
of vertices increase, the running time of these algorithms grow
exponentially and thus they become impractical. Furthermore, such
algorithms can not countnon-induced occurrences of subgraphs. A
non-induced occurrence of a subgraphG′ in a graphG can have
additional edges between the vertices. Thus the number of non-
induced occurrences of a subgraph is many times more than the
number of induced occurrences. Counting non-induced occurrences
sizable network motifs is not only challenging but also quite
desirable as available PPI networks include many false and missing
interactions.

This paper addresses both of the above challenges provided that
the subgraphs in question are in the form of trees or bounded
treewidth graphs. We show how to apply color coding technique
to count the number of non-induced occurrences of such subgraphs
in time polynomial withn if k = O(log n).

We used our algorithm to obtain “treelet” distributions fork ≤
10 of the PPI networks of unicellular organisms (S. cerevisiae, E.
coli andH. pylori), which are all quite similar, and a multicellular
organism (C. elegans) which is significantly different. Furthermore
the treelet distribution of the unicellular organisms are similar to
that obtained by the “duplication model” but are quite different from
that of the “preferential attachment model”. The treelet distribution
is robust w.r.t. sparsification with bait/edge coverage of70% but
differences can be observed when bait/edge coverage drops to50%.
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