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ABSTRACT

Protein protein interaction (PPI) networks of many organisms
share global topological features such as degree distribution, & — hop
reachability, betweenness and closeness. Yet some of these networks
can differ significantly from the others in terms of local structures: e.g.
the number of specific network motifs can vary significantly among
PPI networks.

Counting the number of network motifs provides a major challenge
to the comparing biomolecular networks. Recently developed
algorithms have been able to count the number of induced
occurrences of subgraphs with & < 7 vertices. Yet no practical
algorithm exists for counting non-induced occurrences, or counting
subgraphs with £ > 8 vertices. Counting non-induced occurrences
of network motifs is not only challenging but also quite desirable as
available PPI networks include several false interactions and miss
many others.

In this paper we show how to apply the “color coding” technique
to counting non-induced occurrences of subgraph topologies in the
form of trees and bounded treewidth subgraphs. Our algorithm can
count all occurrences of motif G’ with k vertices in a network G
with n vertices in time polynomial with n, provided £k = O(logn).
We use our algorithm to obtain “treelet” distributions for £ < 10 of
available PPl networks of unicellular organisms (S cerevisiae, E. coli
and H. pylori), which are all quite similar, and a multicellular organism
(C. elegans) which is significantly different. Furthermore the treelet
distribution of the unicellular organisms are similar to that obtained
by the “duplication model” but are quite different from that of the
“preferential attachment model”. The treelet distribution is robust w.r.t.
sparsification with bait/edge coverage of 70% but differences can be
observed when bait/edge coverage drops to 50%.

Contact: cenk@cs.sfu.ca

1 INTRODUCTION

Topological similarities have also been observed between PPI
networks and networks generated by random processes. For
example, the degree distribution of the “preferential attachment
model” is similar to that of the Yeast(cerevisiae) PPI network
(Eisenberg and Levanon 2003). More interestingly, the “duplication
model” generates networks that are very similar to the PPI networks
of a number of organisms (including that of the Yeast) not only in
terms of degree distribution but aléo— hop reachability (fork <
6), betweenness, and closeness (Hormozdiari et al 2007). Becaus
direct measures for comparing two networks, such as the minimum
number of edges and vertices to be deleted to make two networks
isomorphic are NP-hard to compute, such topological features have
been used to “measure” how similar any given pair of networks
could be.

Two networks which have similar global features can have
significant differences in terms of local structures they include: e.g.,
one of them may include a specific subgraph many more times than
the other. Thus it is important to be able to count the “number
of occurrences” of specific subgraphs in networks as means of
detecting whether two networks are similar or not.

A subgraph that occurs much more frequently in a biomolecular
networkG than one in a “random” network or a “typical” netwofk
whose global properties are similar to thos&of called a network
motif of G (Milo et al 2002). Similarly, a subgraph that occurs much
less frequently iz in comparison taR is called an anti-motif of5.

The use of subgraph distribution with upkwertices to compare
PPI networks with random networks has been the source of a
recent debate. It was argued that the distribution of subgraphs of
up to k& = 5 vertices in the Yeast PPI network is quite different
from that of the preferential attachment model (Przulj et al 2005).
Based on this observation, it was argued that the Yeast PPI network
is not a “scale-free” network and the presumed similarity of the
Yeast PPI network and the “scale-free” networks in terms of degree
distribution is a consequence of sampling errors (Han et al 2005).

Recent research has revealed that many biomolecular networgnally, in (Hormozdiari et al 2007) it was demonstrated that the

share global topological features. Similarities between protei

nSubgraph distribution of the preferential attachment model and that

protein interaction (PPI) networks of several organisms have? the duplication model fok < 6 can be substantially different

been observed with respect to their degree distributibn-

and the seed network of the duplication method could be chosen in

hop reachability, betweenness and closeness (Bebek et al 2008; W&y that its subgraph distribution can be made “very similar” to

Bollobas et al 2001; Hormozdiari et al 2007; Przulj et al 2005).
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that of the available PPI networks including that of the Yeast.
Although it is possible to make the general distribution of
subgraphs in a random model (more specifically the duplication

© Oxford University Press 2005.



et al

model) very similar to that of a specific PPl network, there are(Shlomi et al 2006; Dost et al 2007). Color coding is based on
a number of subgraphs, for example in the Yeast PPI networkassigning random colors to the vertices of an input graph. For
which occur much more frequently than that in the associatedubgraph detection purposes, it considers only those subgraphs
random model. These motifs were suggested to be recurringthere each vertex has a unique color as a potential answer to a
circuit elements that carry out key information processing taskgjuery subgraph. Such “colorful” subgraphs which are isomorphic
(Milo etal 2002) and thus are of considerable interest. As ato the query subgraph can then be detected through efficient use
result novel computational tools have been developed for countingf dynamic programming, in time polynomial with, the size
subgraphs in a network (Przulj et al 2005; Hormozdiari et al 2007)of the input graph. If the above procedure is repeated sufficiently
and discovering network motifs (Grochow and Kellis 2007). many times (polynomial withn, provided that the subgraph we
Counting the number of all possible “induced” subgraphs in a PPhare looking for is of sizék = O(logn)), it is guaranteed that a
network has been proved to be a challenging task. (Przulj et al 2005pecific occurrence of the query subgraph will be detected with high
describes how to count all induced subgraphs with ug te 5 probability.
vertices in a PPl network. Faster techniques that count induced (Arvind and Raman 2002) use the color coding approach to count
subgraphs of size up tb = 6 (Hormozdiari et al 2007) anél = the number of subgraphs in a given grapkvhich are isomorphic to
7 (Grochow and Kellis 2007) were developed very recently. Thea bounded treewidth grapti. They give a randomized approximate
running time of these techniques all increase exponentially iith counting algorithm with running timé&®® . p*+9M wheren
thus novel algorithmic tools are now needed for counting subgraphand k& are the number of vertices i& and H, respectively, and
of sizek > 8. b is the treewidth ofH. The framework which they use is based
Note that an induced subgraph (more accurately a vertex inducedn (Karp and Luby 1983) on approximate counting via sampling.
subgraph) of a networ& is a subset of the vertices 6f together  Provided that: = O(logn), the running time of this algorithm is
with any edges whose endpoints are both in this subset(i.és super-polynomial with n, and thus is not practical.
an induced subgraph @ if and only if for each pair of vertices’ Alon and Gutner (Alon and Gutner 2007) combine the color
andw’ in G’ and their corresponding verticesandw in G, either ~ coding technique with a construction of what they call Balanced
there are edges between bethw’ pair andv, w pair or there are  Families of Perfect Hash Functions to obtaindaterministic
no edges between any of the pairs. For exampléldte a fully  algorithm to count the number of simple paths or cycles of size
connected graph of size. Then a cycle that goes through every k in an input graph with running time2© (¢ 1egleg ), O(1) - |
vertex inG is not an induced subgraph 6f; it is called a “non-  super-polynomial in n whenk = O(logn).
induced” subgraph of7.
All the above techniques consider only induced subgraphs of L
a given network; there are many more non-induced subgraphd-1 Our contributions
isomorphic to a given topology and thus it is more difficult to count Given a network withn vertices, we show how to apply the color
non-induced subgraphs of a network. As a result, there are onlgoding technique toount non-induced trees and bounded treewidth
a limited number of earlier studies on biomolecular networks thatsubgraphs with: vertices. We present a randomized approximation
consider non-induced subgraphs (Dost et al 2007; Scott et &)200 algorithm with running time°®) . p®) 'which is polynomial in
The motivation for considering non-induced subgraphs are cleam for k = O(logn) and thus is faster than available alternatives
available PPI networks are far from complete and error free; th€Arvind and Raman 2002; Alon and Gutner 2007). Our algorithm
interactions between proteins reported by these networks includis quite efficient in practice; we were able to go beyond what the
both false positives and false negatives. Thus an occurrence of @gorithms presented in (Przulj et al 2005; Hormozdiari et al 2007;
specific network motif in one network may include additional edgesGrochow and Kellis 2007) achieve, and count, for the first tiatle,
in its occurrence in another network and vice versa. possible tree topologies &, 9 and 10 vertices in PPl networks
The specific problem addressed by earlier studies on nonef various organisms such &Cerevisiae (Yeast), E. coli, H.
induced subgraphs (e.g. (Dost et al 2007; Scott et al 2005))tis nqylori and C. elegans (Worm) PPl networks available via the
the subgraph counting problem. Rather these papers focus on tii¥P database (Xenarios et al 2002). We also compare them with
“subgraph detection” problem, which aims to respond to queries ofandom networks generated by the Preferential Attachment Model
the form does an input networ have a non-induced subgraph (Barabasi and Albert 1999; Aiello et al 2000; Bollobas et al 2001)
G’ - where G’ is a user specified query subgraph. Subgraphand the Duplication Model (Vazquez et al 2003; Chung et al 2003;
detection problem is somewhat easier than the subgraph countirBebek et al 2006).
problem. (Dost et al 2007), for example, show how to solve the The distribution of bounded treewidth subgraphs, and in
subgraph detection problem for subgraphs of dize O(logn) particular trees of up ta0 vertices provides us powerful means to
- much larger than what can be tackled by (Przulj et al 2005;,compare biomolecular networks. One of the important features of
Hormozdiari et al 2007; Grochow and Kellis 2007) for subgraphwhat we call the “normalized treelet distribution”, the distribution of
counting - provided that the query subgra@his either a simple the number of occurrences of non-induced trees in a PPI network,
path, a tree, or a bounded treewidth subgraph. The main tool thegormalized by the total number of such treelets, is that it is quite
employ to makes subgraph detection problem tractable for suchobust. On the well known Yeast PPI network (Xenarios et al 2002),
subgraphs is the “color coding” technique (Alon et al 1995). even after random sparsification with bait coverage0$t and edge
Color coding is an innovative combinatorial approach that wascoverage of70% (as suggested by (Han et al 2005)), the normalized
introduced to detect simple paths, trees and bounded treewidtinee distribution does not change much. However, no means of graph
subgraphs in unlabeled graphs (Alonetal 1995). It was latecomparison should be too robust w.r.t. sparsification - otherwise it
applied to subgraph detection in biomolecular networks bycan not illustrate the differences between a pair of networks that




are very similar, and those which are not. The normalized treelein what follows, we give the details of the above steps and explain
distribution is indeed not robust to an extreme; after sparsifyinghow and why they work.

the Yeast PPI network witts0% bait and50% edge coverage,

differences become noticeable. 2.1 Color coding step

It is interesting to note that .the normalized treelet distribu.tionsWe note that the color coding step not only works for trees but also
of the three unicellular organisms we compared, Ye&Stcoli 1, nded treewidth graphs with constant treewidth.sLis¢ the total
and H. pylori were all fairly similar; however the distribution of number of copies of" in G. We assign a color to each vertex@f
the more complexXC. elegans was quite different. Furthermore, the ¢ 0 the color sefk] = {1, -, k}. The colors are assigned to each

normalized treelet distribution of the random graphs generated by, .. independently and uniformly at random. It is easy to see that
the Duplication Model is quite close to that of the three unicellularfOr a particular non-induced occurrence’Bfin G the probability

organisms we tested but the. distribu.tion of the preferentialthat allits vertices are assigned unique cologsis k!/k*, thus the
attachment model has some noticeable differences. expected number of colorful copies@is rp.

Let F denote the family of all copies d&f in G. For each such
copy F' € F, letzr denote the indicator random variable whose

2 THE SUBGRAPH COUNTING ALGORITHM value is1 if and only if the copy is colorful in our randonk-

In this section we describe how to apply the color coding techniqueCOIOrIng Oﬂ./(G)’ the Yemces . Let X = ) pepar b? the
rgndom variable counting the total number of colorful copie% of

to approximately count the number of non-induced occurrences of " ' . . T
each possible tree topolody with O(log n) vertices in a network y linearity of expectation, the expected valueXis £(X) = rp.

. . . . . It is possible to estimate the varianceXfas follows. Notefirst,
G with n vertices. Note that this method can be generalized withou . . , o
- . hat for every two distinct copies8, I’ € F, the probability that
difficulty to count all non-induced occurrences of each bounde

4 . . .
treewidth graphG’ in G as well, provided that the treewidth is oth I and I are colorful is at mosp (and in fact strlcﬂy smgller .
unless both copies have exactly the same set of vertices), implying

constant. that the covarianc€'ov( ) satisfies
Given a graphG with n vertices and a tre& with k vertices, OV\TF, T
we consider the problem of counting the number of non-induced Cov(zp,zp) = E(xrpxp) — E(zr)E(xp) < p.

subtrees ofG which are isomorphic td". Note that we use the ) L
L . . Therefore, the variance of satisfies

standard definition of a tree, i.e. for us, a tree is an unlabeled,

connected graph with no cycles. It is unrooted and its vertices are  Var(X) = Z Var(zr) + Z Cov(zp,xp)

unordered: A tree T is said to be isomorphic to a subtr@é in a FeF FAF'€F

graphG if there is a bijection between the verticesBfand the

vertices ofT” such that for every edge between two vertieeand

b of T there is an edge between the vertiecdsand b’ in 7" that It follows that if Y is the average of independent copies of

correspond ta andb respectively. Such a tréE’ is considered to  (obtained bys independent random colorings), then

be a non-induced occurrenceBfin G.

Note that we allow overlaps between the trees we count, i.e. two E(Y)=EX)=rp
occurrences df’, namelyT” andT” may share vertices; in fact the and
vertex sets of” and7”’ may be identical. We consid&t' and7”’ Var(Y) = Var(X)/s < r’p/s.
distinct occurrences df provided that the edge sets Bfand 7"

< rptr(r—1p=r’p.

Therefore, by Chebyshev’s Inequality, the probability thatis

are not identical. . . . .
A ) maller than (or bigger than) its expectation by at leagtis at
Our algorithm counts the number of non-induced occurrences o ost ( 99 ) P y P

atreel with k = O(log n) vertices in a grapld” with n vertices as rp 1
follows.

€e2r2p2s  €e2ps’
In particular, ifs = ﬁ this probability is at most /4.
In case we wish to decrease the error probability, we can compute
Y ¢ times independently and I¢f be the median. The probability
that the median is less thdih — €)rp is the probability that at least

2. Counting. Apply a dynamic programming routine (explained naif of the copies of” computed will be less than this quantity,
later) to count the number of non-induced occurrenceéB of  \yhich is at most

which each vertex has a unique color. ¢
47 <27

1. Color coding. Color each vertex of input grapha
independently and uniformly at random with one of the
colors.

3. Repeat the above two stap$e”) times and add up the number t/2

gigfrcrggfggieé of” to get an estimate on the number of its A similar estimate holds for the probability that is bigger than

' (1 + €)rp. Therefore, ift = log(1/9) then with probabilityl — 26
the value ofZ will lie in [(1 — €)rp, (1 + €)rp]. Note that the total
number of colorings in the process is

e log(1/9)

1 Thus, for example, consider a tr@awith a root vertexa with two children
b andc, with b having a single childl. For our purpose¥’ is isomorphic to log(1/6)

another tree wheriis the root with two childrer anda, anda with a single O(iegp ) = O( 2 )
child c. In fact both of these trees are isomorphic to a simple pathimg
four vertices. Our estimate for is, of courseZ/p = Zlc’“/k!.
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2.2 Counting step
Given a random coloring of the input gragh with £ colors, we

# of vertices(k) # of unlabeled trees  Running time (mins)

present a dynamic programming algorithm to compute the number, 11 2
of colorful subgraphs oz which are isomorphic to the query tree g 23 14
r. . _ _ 9 47 100
To give a flavor of our algorithm, we first present for the case in 4 106 700
which the query graph is a single path of length~or each vertex
v and each subset of the color se{1,- -, k}, we aim to record  Tapje 1. Number of unlabeled tree topologies, and the running time of ou

the number of colorful paths for which one of their endpoints.is  algorithm to count them in the Yeast PPI network.
Let C (v, S) be the number of such paths, afd(v) be the color of
vertexv. Given a color, forallv € V(G):

1 ifcol(v)=¢ Network # Vertices # Edges Average degree
Clv,{6}) = :
0 otherwise
S cerevisiae 2345 5609 4.78
For each vertex and color sefS where|S| > 1, we have E. coli 1441 5871 8.14
H. pylori 687 1351 3.93
C(u, S = col(v)). C.elegans 2387 3825  3.20

u;(u,v)€EE(G)

Table2. Number of vertices, edges, and average degree in the PPInkstwo

Note that the number of single colorful paths of lengtivould be we studied.

1
LS ot ).
As mentioned earlier, we will only describe the counting stepc(t: 72(p”), S2). The next step is to computez, 7'(p’), 5), by

for the casel” is a tree, however the algorithm we present can betSing the values of(z, 71(p"), S1) andc(u, 72(p"), S2) for every
generalized to bounded treewidth graphs with constant treewidty connected ta, and all feasible set of colorS, and.S,. This is

without much difficulty. easily achieved by the fact that
As a first step we pick an arbitrary vertexof 7' and set it as .
the root. We will denote this rooted tree by(p). Then we count c(z,7(p),5) =
the number of colorful occurrences ofp) in the given graplG as 1
follows Gp) 9 grap -3 Z C(val(p/)asl) . C(u77_2(p//)752)'

For each vertew of the graphG, we computec(v, 7(p), [k]), Vo182l 51052 =0

the number ofk]-colorful rooted subtrees with roet, which are
isomorphic tor(p).
The actual number dgk]-colorful occurrences df’ in G is

Here, d is the over counting factor and is equal to one plus the
number of siblings op”, i.e. vertices connected 9, in 7' (p’).

1
gzc(v,f(p), (k]) 3 EXPERIMENTAL RESULTS

We tested our algorithm to count non-induced occurrences of
wheregq is equal to the number of verticesin T, for which the  subgraphs witlk = 8,9, 10 vertices. Due to limits of computational

rooted treer (u) is isomorphic tor (p). resources, we have not been able to go beybne= 10. The
In order to compute(v, 7(p), [k]) for every vertex in the graph  table 1 shows the number of unlabeled tree topologies for different
G, we use the following dynamic programming routine. values ofk together with the total running time of our algorithm for

Let 7’'(p’) be a subtree of the tree(p) with root p’, we denote  counting the non-induced occurrences of these trees in on largest
the size ofr’(p") by v(7'(p’)). For any vertex: in G, and a subset  connected component of Yeast PPI network. Note thak fer 10,
S of the color setk] with |S| = v(7/(p')), lete(z, 7' (p’), S) be the  our algorithm takes 12 hours to count all tree topologies on a Sun
number ofS-colorful subgraphs with roat and color sefS, which Fire X4600 Server with 64GB RAM, when executed in parallel on
are isomorphic ta”’ (o). We compute:(z, 7' (p’), S) inductively as 8 dual AMD Opteron CPUs 2.6 Ghz.
follows. The list of different tree topologies of varying can be

The base case wherdr'(p’)) = 1 is obvious: For any single obtained from the Combinatorial Object Server Generation website(
color setS = {a}, c(z,7'(p"), S) is equal tal if z has colom, and  http://theory.cs.uvic.ca/cos.html). Figures 6, 7, 8 depict all tree
otherwise is equal to. topologies fork = 8,9, 10 respectively.

For the case whene(7'(p')) > 2, letp” be a vertex connectedto ~ We tested our algorithm on the protein-protein interaction
p in 7'(p"). Removing the edgéy’, p”) partitionst’(p’) into two ~ networks of four speciesS. cerevisiae (Yeast),E. coli, H. pylori,

smaller subtrees, say (p') with root p’, andrs(p") with root p”. andC. elegans (Worm). Since the PPI networks of these species are
Now for every vertexu connected toxr in G, and all set far from complete, we focus on the largest connected component of
of colors S; and S2 C [k] with |S1| = v(ri(p")), |S2] = each network. For each PPI network and for all trees e 8, 9, 10

v(t5(p")), andS1NS2 = O we recursively find:(x, 1 (p"), S1) and  vertices, we counted the number of non-induced occurrences of
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each tree topology. The distribution of the number of such subtree
topologies (which will be called “treelets”) for varying values/of I Shinieass v |
provide means of comparing PPI networks. e Shrnkyeasts
Note that the number of vertices, their average degree, etc. vary
significantly from one PPl network to the other. Table 2 shows
the number of vertices and edges of the PPl networks we used
in our study. Thus it should be expected that the number of non-
induced occurrences of treelets should differ considerably among
the networks.
As a result, wenormalize the treelet distributions of each
individual network, for each value d@f as follows. For each treelet
T of k vertices, consider thigaction of the number of occurrences

164009 &

of T in a networkG amongtotal number of occurrences of all 101008 g s 10 15 20 2
possible treelets of sizek in G. The normalized treelet distribution o .
refers to this fractional count of treelets in a given PPI network. (a) Treelet distribution of size 8

We note that as specific fractions of treelets vary by several orders
of magnitude, our normalized treelet distributions are all given in
logarithmic scale. Shimveastz

ShrinkYeast3 ------
L ShrinkYeastd & |
1e+011 ShrinkYeasts

3.1 Robustnessof thetredet distribution

In order to use the normalized treelet distribution as a reliable means
of comparing PPI network topologies, one needs to ensure that tes010 |
it is robust; i.e. it does not change much with respect to small
alterations to the network. This is of key importance as the available
PPI networks are neither complete nor error free. In fact the PPI
networks we use in this study are known to include only a subset

of proteins in the respective organism and the interactions between Les000 N N T N

0 5 10 15 20 25 30 35 40 45 50
them (Han et al 2005). Thus we explore the robustness of the
normalized treelet distribution with respect to random sparsification (b) Treelet distribution of size 9

as proposed in (Han et al 2005).

The sparsification process involves two parametersand a.
which are defined as followsy,, the bait sampling probability, e e
is the probability that a vertex is kept in the network during the ol Shincieasts x|
sparsification processy., the edge sampling probability, is the shrinkreasts
probability that an edge is kept in the network during sparsification.

We performed two independent experiments for evaluating the
robustness of the normalized treelet distribution on the Yeast PPI
network, which is the best developed among the networks we
considered. In the first experiment we set beth and a. to
0.7, and in the second one we set bothOté. We performeds
independent sparsifications of the Yeast network; their normalized
treelet distributions are provided in Figures 1 and 2.

In (Hormozdiari et al 2007) it was observed that sparsification as
suggested by (Han et al 2005) has limited effect on the distribution
of all subgraph topologies of up tvertices, provided one focuses o ]
on induced occurrences of these subgraphs. Here, we obtain similar (c) Treelet distribution of size 10
results on the robustness of the non-induced occurrences of trees of

up to10 vertices, fora, = a. = 0.7. However, fora, = a. = 0.5 ! . o )
P b b Fig. 1. A comparison of treelet distributions of five networks geteidrom

significant variations can be Observe(_j' . . _the Yeast PPI network with both the bait and edge samplinggtnitity equal
Note that among the tree topologies we considered there is nQ o7

“natural” ordering that can be used in our normalized distribution

plots. As a result, we chose to use the ordering implied by the

robustness of independent treelets with respect to the bait and edge

sampling probability of0.5. In all our plots, the “robustness” of

the treelets, i.e. the ratio between the minimum normalized count

and the maximum normalized count of the treelets amongsthe words, a treelet with i.d¢ is at least as robust as (or more robust
sparsifications we obtained, decrease from left to right. In othethan) a treelet with i.d¢ + 1 for all values of?.
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Fig. 2. A comparison of the normalized treelet distributions of fivevorks Fig. 3. Normalized treelet distribution of the Yeast PPI network dRé&.
generated from the Yeast PPI network with both the bait agg edmpling  coli (Green) andH. pylori (Blue)
probability equal to 0.5

. . Interacting Proteins (Xenarios et al 2002). Figure 3 compares the
32 C_om_parl_ng PPI networksw.r.t. normalized treelet normalized treelet distributions of the Yealt, pylori, andE. coli
distribution PPI networks (in fact their largest connected components). Although
We first discuss how the normalized treelet distributions vary amongll three PPI networks of unicellular organisms are quite similar
the most complete PPI networks available via thatabase of with respect to normalized treelet distributions, it is interesting to
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Fig. 4. Normalized treelet distribution of the Yeast PPI network dRé&. Fig. 5. Normalized treelet distribution of the Yeast (ReH),pylori (Blue),
coli (Green) H. pylori (Blue) andC. elegans (Pink) E. coli (Green) PPI networks and Preferential Attachment model {Pink
Duplication model (Cyan)

note that the PPI network of the Yeast appears to be more similar

to that of theH. pylori in comparison to thé&. coli PPI network.

We also compare the normalized treelet distributions of these three

unicellular organisms’ PPI network with that of the most completecan be seen, the normalized treelet distributio@oflegansis very

PPI network of a multicellular organisr@, elegansin Figure 4. As  different from that of the YeasE. coli or H. pylori.
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Fig. 7. List of treelets withk = 9
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3.3 Comparing PPI networkswith random networks
w.r.t. normalized treelet distribution

We also compare the normalized treelet distribution of the PP
networks of the Yeast. coli, H. pylori with two random network
models that have been proposed to emulate the evolution of PF 2
networks. Such a comparison can not only give some insight into th:
evolution of PPI networks but also may help detect network motifs. gs4

The preferential attachment model starts with a small seec
network and grows by adding to the network one vertex in eactFig. 8. List of treelets withk = 10
iteration. The new vertex is connected to every other vertex
independently with a fixed probability that determines the average
degree of the vertices. As per the available PPl networks, the
preferential attachment model is known to generate networks withattachment model. Here, again we consider the specific duplication
power-law degree distribution. and preferential attachment models, whose parameters are chosen

The duplication model again starts with a small seed networkso as to approximate the degree distribution of the Yeast network
and grows by “duplicating” a randomly picked vertex with all its as much as possible. We then apply our algorithm to count the
links (Chung et al 2003; Bebek et al 2006; Hormozdiari et al 2007) number of non-induced occurrences of all possible treelets in the
Then each link is deleted with some fixed probability. This is Yeast,E. coli andH. pylori as well as the two random models (in
followed by establishing links with every other vertex, again with fact the average normalized distributionfofindependent networks
constant probability. As per the above networks, duplication modefenerated by the two random models). The results are given in
generates power-law degree distributions. Figure 5.

In (Hormozdiari et al 2007) it was observed that the duplication |t can be observed that the treelet distributions of all five networks
model better emulates the available PPl networks with respecire not far from each other. However, the one generated by the
to k — hop reachability, closeness, betweenness and graphleduplication model is much closer to the PPI networks; in all three
distribution with up to6 vertices, in comparison to the preferential plots, the distribution of the preferential attachment model can be

seen to vary the most with respect to the other networks.
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4 CONCLUSION [Barabasi and Albert 1999]Barabi, A.-L., Albert, R. A., Emergence of scaling in

. - . random networksScience 286, pp 509-512, 1999.
Recently develqped algorithms such as (Hormozdiari et al 2007, o\ o1 a1 2006]Bebek G.. Berenbrink P, Cooper C.. Friedetzky T, Nadeau J.,
Przulj et al 2005; G_rOChOW and Kellis 2007) have been_ able 10 sahinalp S.C. The degree distribution of the general duplication modeor
count the number oinduced occurrences of subgraphs with 7 Comp Sci, Vol 369 (1-3), pp 239-249, 2006.
vertices in available PPI networks. Unfortunately as the numbefBollobas etal 2001]Bolloas, B., Riordan, O., Spencer, J., and Téshp G. The

of vertices increase, the running time of these algorithms grow 969re€ sequence of a scale-free random graph proBaseom Str & Alg, 18, pp
; 279-290, 2001.

exponentlally and thus they_become impractical. Furthermore, Sucfthung etal 2003]Chung, F., Lu L., Dewey T.G., Galas D.J., Duplicathodels for
algorithms can not coumon-induced occurrences of subgraphs. A biological networks,) Comp Bio, 10, pp 677-687, 2003.

non-induced occurrence of a subgraghin a graphG can have  [Dostetal 2007]Dost B., Shiomi T., Gupta N., Ruppin E., Bafna Vd &haran R.
additional edges between the vertices. Thus the number of non- (l?Nlest 2/(\)(;'700I for Querying Protein Interaction Networksroc. RECOMB, pp
induced OQCurrences of a subgraph IS_ many t_lmes more than trtEisenberg and Levanon 2003]Eisenberg E. and Levanon E. V. Preferential Adathm
number of induced occurrences. Counting non-induced OCCW@$eNC in the Protein Network EvolutioiPhysical Review Letters (2003) 91: 138701
sizable network motifs is not only challenging but also quite [Han et al 2005]Han, J., Dupuy, D., Bertin, N., Cusick, M., Vidal, M., feEt of

desirable as available PPI networks include many false and missing sampling on topology predictions of protein-protein interaction netwdesure
interactions Biotech 23, pp 839-844, 2005.

. . Hormozdiari et al 2007]Hormozdiari F., Berenbrink P., Przulj N., and Sahinalp. S.C
This paper addresses both of the above Cha”enges prowded th%‘t Not all scale-free networks are born equal: The role of the seed graph in PPI network

the subgraphs in question are in the form of trees or bounded evolution. PLoS Computational Biology, 3(7):e118, 2007.
treewidth graphs. We show how to apply color coding techniqueKarp and Luby 1983]Karp R. and Luby M. Monte-Carlo Algorithms for Enumeration
to count the number of non-induced occurrences of such subgraph 2nd Reliability Problem®roc. FOCS, pp 56-64, 1983.

intime polynomial withn if k = O(log n). [Grochow and Kellis 2007]Grochow J., Kellis M., Network Motif Discovery ikt
We used our algorithm to obtain “treelet” distributions for< Subgraph Enumeration and Symmetry-Breakingroc. RECOMB, pp 92-106,

. . .. - 2007.
10 of the PPI networks of unicellular organisnts Cerevisiae, E.  vio et al 2002]Milo R., Shen-Orr S., Itzkovitz S., Kashtan N., Chklav., and

coli andH. pylori), which are all quite similar, and a multicellular Alon U. Network motifs: simple building blocks of complex networkScience,
organism C. elegans) which is significantly different. Furthermore 298(5594):824-827, 2002. ' . .
the treelet distribution of the unicellular organisms are similar to!Motwani and Raghavan 2005]Motwani R. and Raghavan P.. Randomized Algsrit

. “ L " . . Cambridge University Press, 2005.
that obtained by the dUphcat'on model” but are qwte different from [Przulj et al 2005]Przulj, N., Corneil, D. G., Jurisica, ., Modeling InteractoBeale-

that of the “preferential attachment model”. The treelet distribution  Free or GeometricBioinformatics 150, 1-3, pp 216-231, 2005.
is robust w.r.t. sparsification with bait/edge coverager@ but [Salwinski et al 2004]Salwinski, L. et al., The Database of interacting Rrsi2004
differences can be observed when bait/edge coverage drép$ito update,Nucl Acids Res 32 Database issue:D, pp 449-451, 2004.
[Scott et al 2005]Scott J., Ideker T., Karp R., Sharan R., Efficient algorithms for
detecting signaling pathways in protein interaction netwoRsc. RECOMB, pp
1-13, 2005.
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