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Abstract

We consider a variant of the Cops and Robbers game where the robber can move s edges at a

time, and show that in this variant, the cop number of a connected graph on n vertices can be as

large as Ω(n
s
s+1 ). This improves the Ω(n

s−3
s−2 ) lower bound of Frieze et al. [5], and extends the result

of the second author [10], which establishes the above bound for s = 2, 4.

1 Introduction

The game of Cops and Robbers, introduced by Nowakowski and Winkler [11] and independently by

Quilliot [13], is a perfect information game played on a finite graph G. There are two players, a set of

cops and a robber. Initially, the cops are placed on vertices of their choice in G (where more than one

cop can be placed at a vertex). Then the robber, being fully aware of the cops placement, positions

herself in one of the vertices of G. Then the cops and the robber move in alternate rounds, with the cops

moving first, where every cop may move in each round and players are permitted to remain stationary

on their turn if they wish. The players use the edges of G to move from vertex to vertex. The cops win

and the game ends if eventually a cop steps into the vertex currently occupied by the robber; otherwise,

i.e., if the robber can elude the cops indefinitely, the robber wins. The parameter of interest is the cop

number of G, which is defined as the minimum number of cops needed to ensure that the cops can win.

We will assume that the graph G is simple and connected, because deleting multiple edges or loops does

not affect the set of possible moves of the players, and the cop number of a disconnected graph obviously

equals the sum of the cop numbers for each connected component.

∗Research supported in part by an ERC Advanced grant, by a USA-Israeli BSF grant, by the Oswald Veblen Fund and

by the Bell Companies Fellowship.

1



For a survey of results on the cop number and related search parameters, see [6]. The best known open

question in this area is Meyniel’s conjecture, published by Frankl [4]. It states that for every graph G on

n vertices, O(
√
n) cops are enough to win. This is asymptotically tight, i.e. for every n there exists an n-

vertex graph with cop number Ω(
√
n). The best upper bound found so far is n2−(1−o(1))

√
log2 n ([5, 7, 14]).

Here we consider the variant where in each move, the robber can take any path of length at most

s from her current position, but she is not allowed to pass through a vertex occupied by a cop. The

parameter s is called the speed of the robber. This variant was first considered in [3]. Frieze et al. [5]

showed that the cop number of a connected n-vertex graph can be as large as Ω(n
s−3
s−2 ). Later, the second

author improved the lower bound to Ω(n
s
s+1 ) for s = 2, 4 [10]. In this note we show that this lower bound

holds for all s.

2 The main result

Let k be a positive integer. For a vertex u of a graph G, Nk(u) denotes the set of vertices whose distance

from u is exactly k. If k = 1, then we simply write N(u). If A is a subset of vertices, then NA
k (u) denotes

the set of vertices v such that:

• The distance between u and v is k, and

• for every shortest (u, v)-path uu1u2 . . . uk−1v, we have u1 /∈ A.

Note that for every u, A and k, N
A∩N(u)
k (u) = NA

k (u). For vertices u, v, we denote their shortest-path

distance by d(u, v). The diameter of G is the maximum distance between any two vertices of G.

Lemma 1. Let s, d,m be positive integers and q be a positive real such that qds/2 is an integer larger

than m. Let G be a d-regular bipartite graph of diameter larger than s with the following properties:

(1) For every two vertices u, v of G of distance at most s + 1, there are at most m distinct shortest

(u, v)-paths.

(2) For every vertex u of G and every subset A of size at most m, |NA
s (u)| ≥ qds.

Then, assuming the robber has speed s, the cop number of G is at least q2ds/24ms.

Proof. Let us first define a few terms. A cop controls a vertex u if the cop is on u or on an adjacent

vertex. A cop controls a path if it controls a vertex of the path. The cops control a path if there is a cop

controlling it. A vertex r is safe if there is a subset X ⊆ Ns(r) of size qds/2 such that for all x ∈ X, all

shortest (r, x)-paths are uncontrolled.

Let the number of cops be c with c < q2ds/24ms, and we will show that the robber can evade forever.

If this many cops can capture the robber, then they can capture her from any starting configuration.

Thus we may assume that the cops all start in one vertex u, and the robber starts in a vertex r at distance

s + 1 from u. Such two vertices exist as G has diameter larger than s. Property (2) gives Ns(r) ≥ qds,

and by property (1), the cops control at most m vertices of Ns(r). Since qds −m > qds/2, the robber is
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in a safe vertex at the starting configuration. Hence we just need to show that if the robber is in a safe

vertex before the cops move, then she can move to a safe vertex after the cops move.

Suppose that the robber is in a safe vertex r, so by definition, there is a subset X ⊆ Ns(r) of size

qds/2 such that for all x ∈ X, all shortest (r, x)-paths are uncontrolled. Denote by A the set of vertices

of all shortest (r, x)-paths for all x ∈ X. In particular, r ∈ A and X ⊆ A. Now, the cops move to new

positions. At this moment there is no cop in A, so the robber is able to move to any vertex of X in her

turn; thus to complete the proof, we need to show that there is a safe vertex in X.

Claim. Every vertex u /∈ A has at most m neighbors in X.

Proof. If u has no neighbor in X, then the claim is true, otherwise let x ∈ X be adjacent to u. Note that

as d(r, x) = s, we have d(r, u) ∈ {s−1, s, s+1}. The graph G is bipartite, so d(r, u) 6= s. If d(r, u) = s−1

then u is on a shortest (r, x)-path, which contradicts the assumption u /∈ A. Therefore, d(r, u) = s + 1,

and x is on a shortest (r, u)-path. Hence by property (1), the number of neighbors of u in X is at most

m.

Remark. It can be shown using a similar argument that every x ∈ X has at most m neighbors in A.

By an escaping pair we mean a pair (x, y) of vertices with x ∈ X and y ∈ NA
s (x). We call x the head

and y the tail of the pair. By the remark, the set A ∩ N(x) has at most m elements, and property (2)

ensures that |NA
s (x)| = |NA∩N(x)

s (x)| ≥ qds. That is, every x ∈ X is the head of at least qds distinct

escaping pairs. We say that an escaping pair (x, y) is free if all shortest (x, y)-paths are uncontrolled. We

just need to prove that there is an x ∈ X such that x is the head of at least qds/2 free escaping pairs,

because then x would be a safe vertex, and the robber, having speed s, can move to x in her move. If

(x, y) is an escaping pair, then every shortest (x, y)-path is called an escaping path. By definition, every

escaping path can be written as u1u2u3 . . . us+1, where u1 ∈ X and u2 /∈ A.

Claim. Each cop controls at most 3msds escaping paths.

Proof. We first prove that every vertex v is on at most ds +msds−1 escaping paths, and if v /∈ X, then v

is on at most msds−1 escaping paths. Let u1u2u3 . . . us+1 be an escaping path with u1 ∈ X and u2 /∈ A,

such that v is its i-th vertex, i.e. v = ui.

Assume first that i 6= 1. There are at most d choices for each of ui−1, . . . , u2, and for each of

ui+1, ui+2, . . . , us+1. By the previous claim, once u2 is determined, there are at most m choices for u1.

Consequently, for each 2 ≤ i ≤ s + 1, v is the i-th vertex of at most mds−1 escaping paths, so if v /∈ X
then v is on at most msds−1 escaping paths.

If i = 1 then v ∈ X and there are at most d choices for each of u2, u3, . . . , us+1, thus each v ∈ X is the

first vertex of at most ds escaping paths. This shows that v is on at most ds +msds−1 escaping paths.

Recall that since the robber was in a safe vertex before the cops’ move, no cop is in A at this moment.

By the previous claim, each cop controls at most m vertices of X, through which he can control at most

m(ds +msds−1) escaping paths. Through every other neighbor he can control at most msds−1 escaping

paths. He controls d+ 1 vertices in total, so he controls no more than

m(ds +msds−1) + (d+ 1−m)(msds−1) ≤ 3msds
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escaping paths.

Since there are c cops in the game, the cops control at most 3msdsc escaping paths. By controlling

each escaping path, the cops can decrease the number of free escaping pairs by at most 2 (as each path

has two endpoints), hence the number of non-free escaping pairs is at most 6msdsc.

Now we prove that there is an x ∈ X such that x is the head of at least qds/2 free escaping pairs,

completing the proof. Recall that every x ∈ X is the head of at least qds escaping pairs. Hence if there

were no x ∈ X such that x is the head of at least qds/2 free escaping pairs, then every x ∈ X would be

the head of at least qds/2 non-free escaping paths. As by definition of safeness, X has size qds/2, this

would imply that the number of non-free escaping pairs is at least (qds/2)2, which is larger than 6msdsc.

This contradiction shows that the robber can evade c cops forever. �

Let k, s be positive integers and d = 2k. Let x1, x2, . . . , xd be the d elements of GF (2k) represented

as column vectors of length k over Z2. Let H be the following 1 + k(s+ 1) by d matrix over the field Z2:

H =



1 1 . . . 1

x1 x2 . . . xd

x31 x32 . . . x3d
...

...
. . .

...

x2s+1
1 x2s+1

2 . . . x2s+1
d


Let S = {e1, e2, . . . , ed} ⊆ Z1+k(s+1)

2 be the set of columns of H. It is known that every set of 2s + 3

columns of H is linearly independent over Z2 (c.f., e.g., [1]), hence, in particular, every (2s + 2)-subset

of S is linearly independent over the field Z2. Let G be the graph with vertex set Z1+k(s+1)
2 , and with

vertices u, v adjacent if u− v ∈ S (the Cayley graph of the additive group Z1+k(s+1)
2 with respect to S).

Lemma 2. If d ≥ 2(s+ 1)!, then the graph G has the following properties.

(i) G is connected.

(ii) G is d-regular.

(iii) G is bipartite.

(iv) For every two vertices u, v of G of distance at most s+1, there are at most (s+1)! distinct shortest

(u, v)-paths.

(v) For every vertex u of G and every subset A of size at most (s+ 1)!, |NA
s (u)| ≥ (d/2s)s.

(vi) G has diameter larger than s.

Proof. (i) To show connectivity one has to prove that every element of Z1+k(s+1)
2 can be written as a

linear combination of members of S, which is equivalent to the matrix H having rank 1 + k(s+ 1).

Note that H has 1 + k(s+ 1) rows, thus we need to show that no nontrivial linear combination of

its rows over Z2 is the zero vector. But it is known that the rows 2, 3, . . . , 1 + k(s + 1) generate a

dual BCH codes, and every nontrivial linear combination of them has almost the same number of

zeros and ones (see [9]).
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(ii) This is clear as |S| = d.

(iii) This follows from the fact that each member of S has 1 as its first coordinate, hence there is no

odd-size subset of S whose sum of members is zero.

(iv) Let u, v be two vertices of G of distance m, where m ≤ s + 1. Each (u, v)-path of distance m

corresponds to a unique ordered representation

u− v = s1 + s2 + · · ·+ sm,

with s1, . . . , sm ∈ S. If some s ∈ S appears more than once in this summation, then we can

delete a pair of them (we are in Z2, so s+ s = 0) and find a shorter representation (and a shorter

(u, v)-path), which does not exist. So s1, . . . , sm are distinct. Moreover, if there is another ordered

representation

u− v = s′1 + s′2 + · · ·+ s′m,

then s′1, . . . , s
′
m are distinct by a similar argument, and we have s1 + · · ·+ sm + s′1 + · · ·+ s′m = 0.

By linear independence of every (2s+ 2)-subset of S, (s′1, . . . , s
′
m) is a permutation of (s1, . . . , sm).

Therefore, the number of ordered representation of u− v using members of S is m!, so the number

of shortest (u, v)-paths in G is also m!.

(v) Without loss of generality, we may assume that A ⊆ N(u). Every a ∈ A can be written as a = u+ei

for some ei ∈ S. There is a set B ⊆ S of size at least d− |A| such that for every e ∈ B, u+ e /∈ A.

For every s-subset {ei1 , . . . , eis} of B, we have a vertex u+ei1 + · · ·+eis of distance s from u. These

vertices are all in NA
s (u) and are distinct, because of the linear independence of every (2s+2)-subset

of S. Hence we have

|NA
s (u)| ≥

(
d− |A|
s

)
≥
(
d− |A|
s

)s

≥ ds

(2s)s
,

where the last inequality follows from d ≥ 2(s+ 1)! ≥ 2|A|.

(vi) By linear independence of every 2s+2 members of S, the distance between vertices 0 and e1 + · · ·+
es+1 is at least s+ 1. �

Theorem 1. Let s be a fixed positive integer denoting the speed of the robber. For every n, there exists

a connected n-vertex graph with cop number Ω(ns/s+1).

Proof. Take k0 large enough so that d = 2k0 satisfies d ≥ 2(s + 1)! and ds > 4(s + 1)!(2s)s. We may

assume that n > 21+k0(s+1). Let k ≥ k0 be the largest integer with 21+k(s+1) ≤ n, and let n0 = 21+k(s+1).

By the way k is defined, we have n < 2s+1n0, so n = Θ(n0). Let G be the graph described above with

parameters k, s. Let m = (s + 1)! and let q satisfy the equation qds = 2
⌊

ds

2(2s)s

⌋
. By Lemma 2, G is

a connected bipartite d-regular graph with n0 = O(ds+1) vertices and diameter larger than s. Also, for

every two vertices u, v of G of distance at most s+ 1, there are at most m distinct shortest (u, v)-paths,

and for every vertex u of G and every subset B of size at most m,

|NB
s (u)| ≥ (d/2s)s ≥ qds.

Moreover, qds/2 is an integer and

qds/2 =

⌊
ds

2(2s)s

⌋
≥ ds

4(2s)s
> m.

5



Now by Lemma 1, if the robber has speed s, then the cop number of G is Ω(ds) = Ω(n0
s/s+1) = Ω(ns/s+1).

Let G′ be the graph obtained by joining some vertex of G to an endpoint of a path with n− n0 vertices.

It is easy to check that G′ is a connected graph on n vertices, whose cop number is the same as the cop

number of G, which is Ω(ns/s+1). �

3 Concluding remarks

Following the notation of [10], let fs(n) be the maximum cop number of a connected n-vertex graph when

the robber has speed s. It is well-known that f1(n) = Ω(
√
n) (the standard construction comes from the

incidence graph of a projective plane, see, e.g., [12]). Meyniel conjectured that in fact f1(n) = Θ(
√
n) [4].

Frieze et al. [5] showed that fs(n) = Ω(n
s−3
s−2 ). They also showed that when the robber can move through

an unblocked path of arbitrary length in her turn, the cop number can be Ω(n). The second author

conjectured that fs(n) = Θ(ns/s+1) for every s [10]. In the present note we proved that fs(n) = Ω(ns/s+1),

so the natural open question is to prove or disprove that fs(n) = O(ns/s+1). This seems to be a difficult

problem (even for the case s = 1 the best known bound is f1(n) ≤ n1−o(1), which is far from the

conjectured O(
√
n) bound), and the only general upper bound, given by Frieze et al., is the following:

If α = 1 + s−1, then fs(G) ≤ nα−(1−o(1))
√

logα n. Another interesting line of research is to study the

maximum cop number of certain classes of graphs, e.g., random graphs - see [2, 8] for several results.
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