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Abstract

We consider list-decoding in the zero-rate regime for two cases: the binary alphabet and the
spherical codes in Euclidean space. Specifically, we study the maximal τ ∈ [0, 1] for which there
exists an arrangement ofM balls of relative Hamming radius τ in the binary hypercube (of arbitrary
dimension) with the property that no point of the latter is covered by L or more of them. As
M →∞ the maximal τ decreases to a well-known critical value τL. In this work, we prove several
results on the rate of this convergence.

For the binary case, we show that the rate is Θ(M−1) when L is even, thus extending the

classical results of Plotkin and Levenshtein for L = 2. For L = 3 the rate is shown to be Θ(M− 2
3 ).

For the similar question about spherical codes, we prove the rate is Ω(M−1) andO(M
− 2L

L2−L+2 ).

1 Introduction

This work concerns list-decoding under worst-case errors in the zero-rate regime. We consider the case
of the binary alphabet in Sections 1-7 and the case of the unit sphere in Hilbert space in Section 8.

Specifically, suppose we transmit a sequence of n symbols from {0, 1} over a channel that can
adversarially change less than fraction τ of the symbols. The locations of corrupted symbols are
unknown to the receiver. The goal is to find a code C ⊂ {0, 1}n such that the receiver can always
produce a list of fewer than L messages containing the transmitted message. In other words, we seek a
code C such that for every w ∈ {0, 1}n there are fewer than L codewords within Hamming distance τn
from w. We call such code <L-list-decodable with radius τ . The largest such τ is denoted by ρ̃L(C)

and is called the (normalized) L-radius of the code.
Let

τL
def
=

1

2
−
(

2k
k

)
22k+1

if L = 2k or L = 2k + 1. (1)
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It is known [3] that for radius τ < τL the largest <L-list-decodable code is exponentially large in n,
and for radius τ > τL the largest <L-list-decodable code is of constant size. The aim of this paper is
to understand how this constant varies as τ approaches τL from above. We define

maxcodeL(ε)
def
= max

{
|C| : C ⊂ {0, 1}n is <L-list-decodable of radius τL + ε

}
.

Note that in this definition we do not restrict the block length n. The maximum is over all choices of
n ∈ N.

We are aware of three results on maxcodeL(ε). First, a construction due to Levenshtein [8] shows
that the so-called Plotkin bound is sharp in the unique decoding case, namely

maxcode2(ε) =
1

4ε
+O(1).

Levenshtein’s construction uses Hadamard matrices, and so requires ε to be of a special form. As a
part of Theorem 1 below we present a construction without a condition on ε.

Second, Blinovsky [3] proved that maxcodeL(ε) is finite for every L and every ε > 0. His proof
iterates Ramsey’s theorem, and gives a very large bound on maxcodeL(ε) (which is not made explicit
in the paper). Finally, in [5, Theorem 1] Blinovsky claims an upper bound on maxcodeL(ε) of the
form maxcodeL(ε) = O(1/ε). Below we construct a counterexample to this bound for L = 3.1

We next overview our results for the binary alphabet.

1.1 Our results (binary alphabet)

Our first result is a version of Levenshtein’s construction for any fixed L. In comparison to Leven-
shtein’s result, we have no restriction on ε, but our codes are longer (the value of n is larger).

Theorem 1. Let L ≥ 2, suppose m is a positive integer, and letM =
(

2m
m

)
. Let cL = 2−LbL/2c

(
L−1
bL/2c

)
.

Then there exists an <L-list-decodable code in {0, 1}M of size 2m and radius τ = τL+cL/2m+O(m−2).
In particular,

maxcodeL(ε) ≥ cLε−1 +O(1).

Theorem 2. Let L ≥ 2 be even. Then

maxcodeL(ε) = O(ε−1)

We believe that in fact maxL(ε) = cLε
−1 +O(1) for even L.

The case of odd L appears to be significantly harder: the principal reason for this is Lemma 8(b)
below. By a different method, however, we were able to make progress for L = 3:

Theorem 3. We have maxcode3(ε) = Θ(ε−3/2).
1The mistake appears to stem from the second paragraph of the proof of [5, Theorem 1], which proposes a certain

extension procedure for codes and claims that it does not decrease L-radius. A simple counter-example to the claim is
a code C = {0, 1}2 with 4-radius equal to 1, but its extension results in reduction of the 4-radius to 1

2
.
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2 Mean radii

Definitions For x ∈ Rn, let ‖x‖ def
= (1/n)

∑
|xi|. In particular, for x, y ∈ {0, 1}n the quantity ‖x−y‖

is the (normalized) Hamming distance between bit strings x and y.
For points x(1), . . . , x(L) ∈ {0, 1}n let

rad(x(1), . . . , x(L)) = min
y∈[0,1]n

max
i
‖x(i) − y‖. (2)

Note that we allow the coordinates of y to be arbitrary real numbers between 0 and 1. This relaxation
makes only slight effect, as the next proposition shows.

Proposition 4. Let x(1), . . . , x(L) ∈ {0, 1}n. If τ = rad(x(1), . . . , x(L)), then there is a point y ∈
{0, 1}n such that ‖x(i) − y‖ ≤ τ + L

2n .

Proof. For any bit z ∈ {0, 1} and real w ∈ [0, 1] define `(z, w) = w if z = 0 and `(z, w) = 1 − w if
z = 1. Note that with this notation, for every i, ‖x(i)− y‖ = 1

n

∑n
j=1 `(x

(i)
j , yj) is an affine function of

the variables yj .
The assumption rad(x(1), . . . , x(L)) ≤ τ is equivalent to the fact that the polytope in the variables

yj defined by the inequalities 0 ≤ yj ≤ 1 for all 1 ≤ j ≤ n and 1
n

∑n
j=1 `(x

(i)
j , yj) ≤ τ for all 1 ≤ i ≤ L

is nonempty. Hence it contains a vertex y′ = (y′1, . . . , y
′
n). In this vertex there are at most L variables

y′j which are neither 0 nor 1, and the desired result is obtained by rounding each such y′j to the closest
integer yj and by taking yj = y′j for all other coordinates y

′
j .

Let ω be a probability distribution on {1, 2, . . . , L} and let ΩL be the set of all probability measures
on the set [L]. Then for an L-tuple x = (x(1), . . . , x(L)) ∈ ({0, 1}n)L of codewords, we define their
mean-radius with respect to ω by

mradω(x)
def
= min

y∈[0,1]n
E
i∼ω
‖x(i) − y‖. (3)

Because Ei∼ω‖x(i) − y‖ can be written as a sum over the individual coordinates, the y attaining
minimum in (3) may be taken to have all of its coordinates in {0, 1}. This leads to an alternative
formula for mradω(x):

mradω(x) = E
j∈[n]

min

 ∑
x
(i)
j =0

ω(i),
∑
x
(i)
j =1

ω(i)

 (4)

= 1
2 −

1
2 E
j∈[n]

∣∣∣∣∣∣∣
∑
x
(i)
j =0

ω(i)−
∑
x
(i)
j =1

ω(i)

∣∣∣∣∣∣∣ (5)

Duality From the comparison of (2) and (3) it is clear that rad(x) ≥ mradω(x) for any ω. The key
observation is that a suitable converse holds as well.
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Lemma 5. For every x = (x(1), . . . , x(L)) ∈ ({0, 1}n)L we have

rad(x) = max
ω∈ΩL

mradω(x), (6)

where the maximum is over all probability measures ω on {1, 2, . . . , L}.

Proof. Notice that (2) can be rewritten as

rad(x) = min
y∈[0,1]n

max
ω∈ΩL

E
i∼ω
‖x(i) − y‖.

Since the function
(y, ω) 7→ E

i∼ω
‖x(i) − y‖ ,

is convex in y and affine in ω, von Neumann minimax theorem [12] implies

min
y∈[0,1]n

max
ω∈ΩL

E
i∼ω
‖x(i) − y‖ = max

ω∈ΩL

min
y∈[0,1]n

E
i∼ω
‖x(i) − y‖ .

Comparing with (3) completes the proof.

Lemma 6. For every L there exists a finite set of probability measures Ω′L ⊂ ΩL such that

rad(x) = max
ω∈Ω′L

mradω(x). (7)

Furthermore, |Ω′L| ≤ 4L
2.

Proof. To each coordinate j ∈ [n] we can associate the bit string

T (j)
def
=
(
x

(1)
j , x

(2)
j , . . . , x

(L)
j

)
.

For a bit string T ∈ {0, 1}L, put PT = {j ∈ [n] : T (j) = T}. Let αT = |PT |/n. We have that

‖x(i) − y‖ =
∑

T∈{0,1}L
αT |yT − Ti|.

To each probability measure ω ∈ ΩL we can associate a signature, which is a function Sω : {0, 1}L →
{1,−1} defined by

Sω(T )
def
= sign

 ∑
i:Ti=0

ωi −
∑
i:Ti=1

ωi

 for T ∈ {0, 1}L.

Since 2L hyperplanes partition RL−1 into at most
∑

j≤L−1

(
2L

j

)
≤ 2L

2 regions, the number of

possible signatures is at most 2L
2 . For each possible signature S, let ΩS

def
= {ω ∈ ΩL : Sω = S}. Since

ΩS is an intersection of halfspaces, which, in addition to Sω = S, includes the additional inequalities
ωi ≥ 0 for all i and

∑
i ωi = 1, it is a convex polytope.
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By (4), the maximum of mradω(x) over all probability measures ω ∈ ΩS is the maximum of the
following linear function in the variables ωi:∑

T

αT f(ω, T )

where
f(ω, T ) =

∑
i:Ti=0

ωi if S(T ) = −1

and
f(ω, S, i) =

∑
i:Ti=1

ωi if S(T ) = +1.

This maximum is attained at a vertex of the polytope ΩS . Thus, in view of the preceding lemma, we
may take Ω′L to be the union of the vertex sets of all polytopes ΩS , for all signatures S.

Each ΩS is defined by m def
= L+ 2L inequalities, and so by McMullen’s upper bound theorem has

at most
(m−dL/2e
bL/2c

)
+
(m−bL/2c−1
dL/2e−1

)
≤ 2L

2 vertices. Multiplying by the 2L
2 possible signatures, we obtain

the result.

The preceding proof gives an algorithm to compute the set Ω′L. The results of this computation
for small L can be found at http://www.borisbukh.org/code/listdecoding17.html. Interestingly,
for L ≤ 4 the result is very nice. For a set R ⊂ [L] let mradR(x) be the mradω(x) for the probability
measure ω that is uniform on R, i.e., ωi = 1/|R| if i ∈ R. Then

rad(x) = max
|R| is even

mradR(x) if L ≤ 4 (8)

Our proof of Theorem 3 will use (8) with L = 3 and so establish it formally (generalized to
arbitrary `1-vectors).

Proposition 7. For any set of three vectors x, y, z in Rn with respect to the `1-norm, rad(x, y, z) =
1
2 diam(x, y, z).

Proof. Put x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), z = (z1, z2, . . . , zn). Let d be the diameter of
the set {x, y, z}. For each i let mi be the median of xi, yi, zi and define m = (m1,m2, . . . ,mn). Put,
also, a = ‖x − m‖, b = ‖y − m‖, c = ‖z − m‖, where ‖ · ‖ is the `1-norm. Note that, crucially
‖x− y‖ = a+ b, ‖y − z‖ = b+ c, ‖x− z‖ = a+ c. Thus each of these three sums is at most d. If each
of the quantities a, b, c is at most d/2 then m is a center of an `1-ball of radius d/2 containing x, y, z,
showing that in this case the radius is indeed d/2, as needed. Otherwise one of the above, say a, is
larger than d/2. In this case define w = (1− d

2a)x+ d
2am. It is easy to check that x−w = d

2a(x−m)

and hence ‖x− w‖ = d
2aa = d/2. In addition m− w = (1− d

2a)(m− x) and hence ‖m− w‖ = a− d
2 .

Thus, by the triangle inequality, ‖y − w‖ ≤ ‖y −m‖ + ‖m − w‖ = b + a − d
2 ≤

d
2 , and similarly

‖z − w‖ ≤ d
2 , completing the proof.

3 Averaging

Averaging arguments play a major role in this paper. We collect them in this section.
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Mean radii of random bit strings Averaging arguments will allow us to show that, in a large code
C, mean radii of codewords from C rarely exceed the mean radius of random bit strings. Because of
that, we start by computing the mean radius of random bit strings for arbitrary probability measure ω.
In particular, we will see that the radius threshold τL defined in (1) is the radius of a random L-tuple
of bit strings.

Call a random string w ∈ {0, 1}n p-biased if each bit of w is 1 with probability p and 0 with
probability 1− p, and the bits are independent of each other. For a probability measure ω on [L], we
let

τω,p
def
= Emradω(w(1), . . . , w(L)) for independent p-biased w(1), . . . , w(L) ∈ {0, 1}n.

For brevity, write τω in lieu of τω,1/2. Note that τω,p is independent of n, in view of (4).
Let U [L] denote the uniform probability measure on [L].

Lemma 8.

a) For every probability measure ω on [L] and every p we have

τω,p ≤ τU [L],p.

b) If L is even and 0 < p < 1, then the equality holds if and only if ω = U [L].

c) τU [L],1/2 = τL, where τL is defined in (1).

d) We have τω,p < τL whenever p 6= 1
2 .

Proof. Given an ω and a vector of signs ε = (ε1, . . . , εL) ∈ {1,−1}L, define fω(ε)
def
=
∑

i εiω(i). By
(5), maximization of τω is equivalent to minimization of

E
ε
|fω(ε)| for p-biased ε ∈ {1,−1}L.

Let Ω be the set of all probability measures on [L] that maximize τω. (The maximum is achieved
because ω 7→ τω is a continuous function on a compact set.) Let ω ∈ Ω be arbitrary. Suppose ω is
not uniform. Without loss generality, ω(L − 1) 6= ω(L). Let ω′ be obtained from ω by replacing the
values of L− 1 and L by their averages. If εL−1 = εL, then fω(ε) = fω′(ε). Also,

|fω(ε1, . . . , εL−2, 1,−1)|+|fω(ε1, . . . , εL−2,−1, 1)| ≥ |fω′(ε1, . . . , εL−2, 1,−1)|+|fω′(ε1, . . . , εL−2,−1, 1)|.

with equality only if |
∑

i≤L−2 εiω(i)| ≥ |ω(L − 1) − ω(L)|. Since ω ∈ Ω, it follows that the equality
does hold, and that ω′ ∈ Ω as well.

Since the equality holds, we deduce that

|ω(i)− ω(i′)| ≤ min
ε
|
∑

j /∈{i,i′}

εjω(j)| for all i 6= i′ (9)
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From continuity of ω 7→ τω, it follows by repeated pairwise averaging, that if ω′ is obtained from ω

by replacing the values of ω on any subset of [L] by their averages, then ω′ ∈ Ω as well. In particular,
U [L] ∈ Ω and so (a) holds.

Suppose that L is even and (b) does not hold. Let ω ∈ Ω be non-uniform. Without loss of
generality, ω(L − 1) 6= ω(L). Let ω′ be obtained from ω by replacing values on [L − 2] by their
averages. Since

∑
j≤L−2(−1)jω′(j) = 0, the measure ω′ fails (9), and so ω′ /∈ Ω. This contradicts the

assumption that (b) does not hold.

Consider a random walk on Z starting from 0 that makes a step to the right with probability p
and to the left with probability 1− p. Let ∆s,p be the probability distribution of the position of this
walk after s steps. Relation (5) implies that

τU [L],p = 1
2 −

1
2L E|∆L,p|. (10)

From [13, Eq. (23) and (32)] we obtain the formula (1) for τL.

Finally we turn to (d). In view of (a) we may restrict ourselves to the case ω = U [L]. Because of
(10) and the symmetry under p → (1 − p), it suffices to prove that Pr[|∆s,p| ≥ k] > Pr[|∆s,1/2| ≥ k]

for every p > 1/2 and every s ≥ 2. This follows by induction from

Pr[|∆s+1,p| ≥ k] = 1
2 Pr[|∆s,p| ≥ k − 1] + 1

2 Pr[|∆s,p| ≥ k + 1]

+ (p− 1
2)
(
Pr[∆s,p ∈ {k, k − 1}]− Pr[∆s,p ∈ {−k,−k + 1}]

)
Mean radii in large codes Here we show that the average mradω(·) over L-tuples in a large
C ⊂ {0, 1}n can be only slightly larger than τω. In fact, we will show a generalization of this to codes
of possibly small radius.

Lemma 9. Let ω be a probability measure on [L]. Suppose C ⊂ {0, 1}n satisfies rad(C) ≤ p ≤ 1
2 .

Then
E

w(1),...,w(L)∈C
mradω(w(1), . . . , w(L)) ≤ τU [L],p.

Proof. Let pj = Prw∈C [wj = 1]. We have mradU [L](C) ≤ p from (6). Without loss of generality
(otherwise invert some coordinates), we may assume that y attaining mradU [L](C) in (4) is y = 0.
Then we have 1

n

∑
j∈[n] pj ≤ p. Denote by B(q) the distribution on {1,−1}L where each coordinate

is independently 1 with probability q and −1 with probability 1 − q. Given a vector of signs ε =

(ε1, . . . , εL) ∈ {1,−1}L define fω(ε)
def
=
∑

i εiω(i).
From (5) and the proof of part (a) of Lemma 8 we then have

1− 2 E
w∈CL

mradω(w) = E
j∈[n]

E
ε∼B(pj)

|fω(ε)| ≥ E
j∈[n]

E
ε∼B(pj)

∣∣fU [L](ε)
∣∣

By [9, Lemma 8], the function p 7→ Eε∼B(p)

∣∣fU [L](ε)
∣∣ is convex. Jensen’s inequality and the fact that

τU [L],p is an increasing function of p on [0, 1
2 ] then complete the proof.

Corollary 10. Let ω be a probability measure on [L]. Suppose C ⊂ {0, 1}n is of size |C| ≥ L2M and
satisfies rad(C) ≤ p. Then there is an L-tuple w ∈ CL with distinct codewords such that mradω(w) ≤
τU [L],p + 1/M .
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Proof. Let X ⊂ CL be the set of all L-tuples with distinct codewords. The corollary follows from
Pr[w 6∈ X] ≤

(
L
2

)
/|C| and Ew∈C mradω(w) ≥ Pr[w ∈ X]Ew∈X mradω(w).

4 Abundance of random-like L-tuples

Lemma 11. Let π : Rn → Rm be an orthogonal projection on a set of m coordinates. Suppose that
C ⊂ {0, 1}n satisfies rad(π(C)) ≤ 1

2 − ε. Then there is a C ′ ⊂ C of size |C ′| ≥ |C|/2 satisfying
rad(C ′) ≤ 1

2 −
m
n ε.

Proof. Let π′ be the projection on the remaining n−m coordinates. Classify codewords c ∈ C based
on whether ‖π′(c)‖ ≤ 1

2 or > 1
2 . Without loss of generality, at least half of them (call it C ′) satisfy

‖π′(c)‖ ≤ 1
2 . Let y1 ∈ Rm be the center minimizing rad(π(C)) and define y ∈ Rn to be the solution

to π(y) = y1, π
′(y) = 0. We have for any c ∈ C ′

‖y − c‖ = m
n ‖π(y)− π(c)‖+ n−m

n ‖π
′(y)− π′(c)‖ ≤ m

n

(
1
2 − ε

)
+ n−m

2n = 1
2 −

m
n ε .

For an L-tuple x = (x(1), . . . , x(L)) ∈ ({0, 1}n)L, we define type(x)
def
=
(
type(x)u

)
u∈{0,1}L to be the

probability distribution on {0, 1}L with type(x)u
def
= 1

n#{j : x
(i)
j = ui, ∀i ∈ [L]}. The next result shows

that the only obstruction to finding a large number of L-tuples with approximately uniform type(x)

is the existence of a large biased subcode.

Lemma 12. Let s be a natural number. There exist constants M0 = M0(s) and c = c(s) such that for
any ε > 0 there is a δ > 0 with the following property. For any code C ⊂ {0, 1}n with M def

= |C| ≥M0

one of the following two alternatives must hold:

a) ∃C ′ ⊂ C such that |C ′| ≥ s and rad(C ′) ≤ 1
2 − δ, or

b) there exists at least ML − cML−1 many L-tuples of distinct codewords from C such that

| type(x)u − 2−L| ≤ ε ∀u ∈ {0, 1}L (11)

and, in particular, for any ω
|mradω(x)− τω,1/2| ≤ 2Lε . (12)

Consequently, if C does not satisfy a), then the the number of L-tuples of distinct codewords of C
violating (11) is of size at most cML−1.

Proof. Set 2δ0
def
= (1 + 2Lε)1/L − 1 and note that with this choice we have |(1

2 ± δ0)L − 2−L| ≤ ε. Set
also µ def

= (1
2 − δ0)L and δ

def
= δ0µ. Finally, set c(s) def

= s2L+3 and M0(s)
def
= s2L+3. Note that (11)

implies (12) via (4), and so we only consider (11) below.
Let us assume that a) does not hold. Then in any C ′′ with |C ′′| ≥ 4s and for any orthogonal

projection πA on a subset of coordinates A ⊂ [n] there must exist a c ∈ C ′′ such that

‖πA(c)‖ ∈ (1/2− δ0, 1/2 + δ0), (13)

provided that δ0
|A|
n ≥ δ. Indeed, if all c ∈ C ′′ violate (13), then at least half of c ∈ C should satisfy

‖πA(c)‖ ≤ 1/2− δ0, say. Denote this collection by C0 and observe that rad(πA(C0)) ≤ 1/2 − δ0 and
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|C0| ≥ 2s. By Lemma 11 there must exist C ′ ⊂ C0 of size ≥ s such that rad(C ′) ≤ 1
2−δ, contradicting

assumption.
It follows that for any collection of subsets A1, . . . , Ar with |Aj | ≥ µn for all j ∈ [r], and any C ′′

with |C ′′| ≥ 4sr there must exist c ∈ C ′′ such that (13) holds simultaneously for all A = Aj , j ∈ [r].
We next show that there are more than

N1 =

L−1∏
j=0

(M − j − 4s · 2j)

L-tuples x of distinct codewords from C that satisfy (11). Indeed, at least M − 4s codewords x(1)

have |‖x(1)‖ − 1
2 | ≤ δ0. Once one such codeword x(1) is selected, let A0 = {j ∈ [n] : x

(1)
j = 0} and

A1 = Ac0. Each of these two subsets has cardinality ≥ n(1
2 − δ0) ≥ µn. By the argument above, there

are more than M − 1− 4s · 2 codewords x(2) not equal to x(1) such that projections of x(2) on A0 and
A1 both have weights ∈ [1

2 − δ0,
1
2 + δ0]. Selecting one such x(2), we define partitions A0 = A00 ∪A01

and A1 = A10 ∪ A11 according to the values of coordinates of x(1) and x(2). Proceeding similarly, we
construct x(3), . . . , x(L). The resulting L-tuple has distinct elements and satisfies

(1
2 − δ0)L ≤ type(x)u ≤ (1

2 + δ0)L ∀u ∈ {0, 1}L ,

which by the choice of δ0 implies that it satisfies (11) as well.
Note that for M ≥ maxj kj we have

L−1∏
j=0

(M − kj) = ML
L−1∏
j=0

(1− kj/M) ≥ML −ML−1
L−1∑
j=0

kj .

Setting kj = s2j+3 ≥ j + 4s · 2j we obtain

N1 ≥ML − cML−1 ,

provided M ≥M0, completing the proof of the first part.
The final statement of the lemma follows from the fact that there are at most ML− cML−1 many

L-tuples violating (11).

5 Proof of Theorem 2

Let L be even, and suppose C ⊂ {0, 1}n is an <L-list-decodable code of radius τL + ε. We wish to
prove that |C| = O(ε−1). Let ρL(C) = minx∈CL rad(x) with the minimum taken over all L-tuples x
with distinc elements. Unlike ρL(C), the L-radius of a code (denoted ρ̃L(C)) is not a well-behaved
quantity. Sadly, our assumptions on C do not imply that ρL(C) ≥ τL. For example, if L = 2 then
the radius of {000, 100} is 1/3 > 1/4 = τ2 whereas rad(000, 100) = 1/6. To get around this, we use
the pigeonhole principle to find a subcode C ′ of size |C ′| ≥ 2−8L|C| consisting of codewords with the
same prefix of length 8L. Removing the common prefix yields a code of block length n − 8L whose
L-radius is at least

n

n− 8L
(τL + ε) ≥ (1 + 8L/n)τL + ε ≥ τL + ε+ 2L/n.

9



By Proposition 4 we have rad(x) ≥ τL+ε for every L-tuple x of distinct codewords from this new code.
With slight abuse of notation, we rename this new code C (and adjust the value of n accordingly).

Lemma 13. Any subset C ′ ⊂ C satisfying rad(C ′) ≤ 1
2 − δ has size |C ′| < s for some s depending

on δ.

Proof. Let p = 1
2 − δ. Fix ω ∈ Ω′L and consider any subset C ′′ ⊂ C satisfying a) rad(C ′′) ≤ 1

2 − δ and
b) mradω(x) ≥ τL for any L-tuple x ∈ (C ′′)L with distinct elements. From Corollary 10 and the bound
τU [L],p < τL from Lemma 8 we know that |C ′′| ≤ L2

τL−τU[L],p
. Next, color each L-tuple x of distinct

elements of C ′ according to ω ∈ Ω′L that solves (7). From finiteness of Ω′L and Ramsey’s theorem, we
conclude that had there existed arbitrary large C ′ then there would have existed an arbitrary large
subcode C ′′ satisfying conditions a) and b) above, violating the established upper bound.

Let H be the set of all L-tuples x ∈ CL such that mradω(x) ≥ τL + ε for some ω 6= U [L].

Lemma 14. We have |H| ≤ cL|C|L−1 for some constant cL that depends only on L.

Proof. Let ε = 2−L min{τL − τω,1/2 : ω ∈ Ω′L, ω 6= U [L]}. Since Ω′L is finite, part (b) of Lemma 8
implies that ε > 0. So, let δ be as in Lemma 12. Let s be the bound from Lemma 13. Note that by
the choice of ε, H consists entirely of the L-tuples violating (12) and hence (11). Also by the choice
of s, alternative a) in Lemma 12 is impossible. Therefore, by the last statement of the latter Lemma,
we have |H| ≤ c(s)|C|L−1.

Proof of Theorem 2. Call an L-tuple x ∈ CL good if all of its codewords are distinct, and x /∈ H. For
a randomly chosen L-tuple x ∈ CL, the probability that x(i) = x(i′) for some i 6= i′ is less than L2/|C|.
By the preceding lemma and finiteness of the set Ω′L, the probability that x ∈ H is also O(1/|C|). So
a random x is good with probability 1−O(1/|C|). Lemma 9 then implies that

Pr[x is good] E
good x

mradU [L](x) ≤ τU [L],1/2 = τL .

On the other hand, for a good L-tuple we have rad(x) = mradU [L](x) and thus the expectation is
lower bounded by τL + ε. In all, we conclude that ε

τL+ε = O(1/|C|), completing the proof.

6 Proof of Theorem 1

Proof of Theorem 1. Recall that M =
(

2m
m

)
. Consider an 2m-by-M matrix with {0, 1} entries whose

columns are all possible vectors consisting of exactly m ones. The 2m rows of the matrix are the
codewords of a code C ⊂ {0, 1}M . We claim that mradU [L](x) ≥ τL + cL/2m + O(m−2) for every
L-tuple x of distinct codewords from C.

By symmetry, mradU [L](x) is independent of the actual choice of x. So, fix any x, and pick j at
random from [M ]. Let 0j be the number of these codewords that have 0 in the j’th column. Similarly,
let 1j be the number of these codewords that have 1 in the j’th column. Let Xj = min(0j , 1j)/L.
Note that mradU [L](x) = EXj by (4).

10



Suppose L = 2k + 1 is odd. Then

E
j
Xj =

1

2k + 1

∑
l≤k

l · Pr[min(0i, 1i) = l]

=

(
2m

m

)−1 1

2k + 1

∑
l≤k

2l

(
2k + 1

l

)(
2m− 2k − 1

m− l

)

=

(
2m

m

)−1 ∑
1≤l≤k

2

(
2k

l − 1

)(
2m− 2k − 1

m− l

)

=
∑

1≤l≤k
2

(
2k

l − 1

)
m(m− 1) · · · (m− l + 1) ·m(m− 1) · · · (m− 2k + l)

2m(2m− 1) · · · (2m− 2k)

which, as m→∞, is

=
∑

1≤l≤k

(
2k

l − 1

)
2−2k

[
1 +

1

2m

(
2k + 1

2

)
− 1

m

(
l

2

)
− 1

m

(
2k − l + 1

2

)
+O(m−2)

]

= τ2k+1 + 2−2k−1k

(
2k

k

)
/2m+O(m−2)

In the last equality here we used the expression for τ2k+1, the formula for the variance of the binomial
random variable B(2k, 1/2), and the known expression for the expected distance of a balanced random
walk of 2k steps from the origin.

Similar computations hold if L = 2k. Denote by
∑′ the sum in which the last summand is halved.

The expected value of Xj is(
2m

m

)−1 1

2k

∑′

l≤k
2l

(
2k

l

)(
2m− 2k

m− l

)

=

(
2m

m

)−1∑′

l≤k
2

(
2k − 1

l − 1

)(
2m− 2k

m− l

)

=
∑
l≤k

2

(
2k − 1

l − 1

)
m(m− 1) · · · (m− l + 1) ·m(m− 1) · · · (m− 2k + l + 1)

(2m)(2m− 1) · · · (2m− 2k + 1)

=
∑
l≤k

(
2k − 1

l − 1

)
2−2k+1

(
1 +

1

2m

(
2k

2

)
− 1

m

(
l

2

)
−
(

2k − l
2

)
+O(m−2)

)

= τ2k + 2−2kk

(
2k − 1

k

)
/2m+O(m−2)

7 Proof of Theorem 3

We start with the proof of the upper bound, following the approach of Konyagin in [7]. Let C be
<3-list-decodable code of vectors in {0, 1}n of radius at most τ3 + ε = 1/4 + ε. By Proposition 7
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this implies that among any 3 codewords in C there are two of distance at least (1/2 + 2ε)n. For
each codeword x = (x1, x2, . . . , xn) define a vector v = (v1, v2, . . . , vn) in the Euclidean space Rn by
vi = (−1)xi√

n
. Note that each such vector is of unit norm, and among any three vectors there are two

whose inner product is at most −4ε. Let V be the set of all the vectors obtained from the words in C
and put |V | = m. Our objective is to show that m ≤ O(1/ε3/2). Let H = (V,E) be the graph whose
set of vertices is V in which two vertices u, v are connected iff their inner product is larger than −4ε.
Fix a vertex v ∈ V and letW = N(v) be the set of all its neighbors in H. Note that the inner product
between any two vertices in W is at most −4ε. Therefore, if d = |W | is the degree of v in H and ‖v‖
denotes the Euclidean 2-norm of a vector v, then

0 ≤
∥∥∥∥∑
u∈W

u

∥∥∥∥2

≤ d− d(d− 1)4ε (14)

implying that d ≤ 1
4ε + 1 and also implying that∥∥∥∥∑
u∈W

u

∥∥∥∥2

≤ d− d(d− 1)4ε =
1

4ε
(4εd)(1 + 4ε− 4εd) ≤ (1 + 4ε)2

16ε
.

Therefore, by Cauchy–Schwarz, for every v ∈ V∑
u∈N(v)

〈v, u〉 ≤
∥∥∥∥ ∑
u∈N(v)

u

∥∥∥∥ ≤ 1 + 4ε

4
√
ε
. (15)

This gives the following (which can be slightly improved, but as this only changes the error term we
prefer to present the simple version below):

0 ≤
∥∥∥∥∑
v∈V

v

∥∥∥∥2

= m+
∑
v∈V

∑
u∈N(v)

〈v, u〉+
∑

u6=v∈V,uv 6∈E
〈v, u〉

≤ m+m
1 + 4ε

4
√
ε
−m

(
m− 1

4ε
− 2

)
4ε.

By the last inequality (
m− 1

4ε
− 2

)
4ε ≤ 1 +

1 + 4ε

4
√
ε
,

implying that

m ≤ 1

16ε3/2
+O

(
1

ε

)
. (16)

This completes the proof of the upper bound.

We proceed with the proof of the lower bound by describing an appropriate construction. Let G =

(V,E) be a graph onm vertices, suppose it is a Cayley graph of an elementary abelian 2-group Zr2, let A
be its adjacency matrix, and let d = λ1 ≥ λ2 ≥ · · ·λm = −λ be its eigenvalues, where d is the degree of
regularity and −λ is the smallest eigenvalue. Assume, further, that G is triangle-free. As G is a Cayley
graph of an elementary abelian 2-group, it has an orthonormal basis of eigenvectors v1, v2, ..., vm in
which each coordinate of each vector is in {−1/

√
m, 1/

√
m}. Define B = (A + λI)/λ where I is the

12



m-by-m identity matrix. Then B is a positive semidefinite matrix, its diagonal is the all-1 vector, its
eigenvalues are µi = (λi + λ)/λ and the corresponding eigenvectors are the vectors vi. Let P be the
m-by-m orthogonal matrix whose columns are the vectors vi, and note that the first v1 is the constant
vector 1/

√
m. Let D be the diagonal matrix whose diagonal entries are the eigenvalues µi and let

√
D

denote the diagonal matrix whose entries are √µi. Then P tBP = D and thus B = (P
√
D)(
√
DP t).

The rows of the matrix P
√
D are vectors x1, x2, . . . , xm where xi = (xi1, xi2, . . . , xim). Note that

for each j, xij ∈ {−
√
µj/m,

√
µj/m} for all i, and that xi1 is positive for all i. In addition xtixj = Bij

for all i, j meaning that the `2-norm of each vector xi is 1 and that among any three vectors xi there
is an orthogonal pair. Let yi be the vector obtained from xi by removing its first coordinate (the one
which is

√
µ1/m =

√
(d+ λ)/mλ). Then each yi is a vector of `2-norm 1 − µ1/m and among any

three of them there is a pair with inner product −µ1/m. We can normalize the vectors by dividing
each entry by

√
1− µ1/m to get m unit vectors z1, z2, . . . , zm, where any three of them contain a pair

with inner product −δ, where δ = µ1/(m− µ1). Moreover, for the vectors zi = (zij), for each fixed j
the absolute value of all zij is the same for all i, denote this common value by tj . We can now use the
vectors zi to define functions mapping [0, 1] to {1,−1} as follows. Split [0, 1] into disjoint intervals Ij
of length t2j and define fi to be sign(zij) on the interval Ij . It is clear that the `2-norm of each fi is 1

and the inner product between fi and fj is exactly that between zi and zj . In particular, each three
functions fi contain a pair whose inner product is at most −δ.

One can replace the functions by vectors of 1,−1 with essentially the same property, using an
obvious rational approximation to the lengths of the intervals.

The graph in [1] is a triangle-free Cayley graph of an elementary abelian 2-group with d =
(
1/4 +

o(1)
)
m2/3 and λ =

(
9 + o(1)

)
m1/3. This gives us δ = (1/36 + o(1))m−2/3 and hence the number of

vectors is m = Θ
(
(1/δ)3/2

)
. This gives a binary code with m = Θ

(
(1/ε)3/2

)
codewords of length n so

that among any three codewords there are two such that the Hamming distance between them is at
least (1/2 + ε)n. According to Proposition 7, this means that the code is <3-list-decodable.

8 Spherical codes in the Hilbert space

Let us now consider a similar question for the case of the real Hilbert space H (the space of square-
summable sequences of real numbers). Similar to the binary alphabet, we may motivate the question
by the desire to construct a maximal number M of unit-energy signals, such that when one of them is
sent and adversarial noise of bounded energy is applied, it is still possible to reconstruct the original
signal, to within a list of size < L. We also note that results on adversarial-noise lead to bounds for
the average-noise variation, as propounded in [11, Section XII]. We proceed to formal definitions.

We shall employ the same notation as in the rest of the paper, but with the meaning adapted to
spherical codes. For example, we denote the norm in H by ‖ · ‖. We redefine rad(x) similarly: for an
arbitary L-tuple x = (x(1), . . . , x(L)) ∈ HL we define

rad(x) = min
y∈H

max
j
‖x(j) − y‖ , diam(x) = max

i,j
‖x(i) − x(j)‖ .

Recall Jung’s theorem [6, (2.6)]: For any L-tuple x we have

rad(x) ≤
√
L− 1

2L
diam(x) (17)
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with equality if and only if x(1), . . . , x(L) are the vertices of an (L − 1)-simplex, i.e., when x consists
of L vectors with pairwise distances all equal.

A spherical code C is a finite collection of unit-norm vectors in H and its L-radius ρL(C) is the
minimum value of rad(x) among all L-tuples x of distinct elements of C. We define

maxcodeL(ε)
def
= sup

{
|C| : ρL(C) ≥ τL + ε

}
,

where in this section τL
def
=
√

L−1
L . Our formulation corresponds to the problem of packing balls

B(x, r)
def
= {y ∈ H : ‖x− y‖ ≤ r} centered on the unit sphere so that no point of H is covered by more

than (L − 1) of them. Another equivalent way is to consider the problem of packing spherical caps
C(x, α) = {y : ‖y‖ = 1, 〈y, x〉 ≥ cosα}, where ‖x‖ = 1, with the requirement that no point of the unit
sphere is covered by more than (L− 1) of them.

A classical result of Rankin [10] solves the case L = 2:

maxcode2(ε) =

⌈
1 +

1

2
√

2ε+ 2ε2

⌉
= Θ

(
1

ε

)
. (18)

For L > 2, Blachman and Few [2] proved that if H is replaced by Rn then codes with ρL(C) > τL
have size polynomial in n, while for ρL(C) < τL exponentially large codes exist. This was improved
by Blinovsky [4], who demonstrated that codes with ρL(C) > τL have a finite upper bound on their
size, which does not depend on n. His proof relied on the Ramsey theorem and can be condensed as
follows:

Proposition 15 ([4]). For any ε > 0 maxcodeL(ε) is finite.

Proof. Consider a code C with ρL(C) ≥ τL + ε. Fix an integer q ≥ 1, and break [0, 2] into q intervals
of size 2

q . Consider a code C and label each pair (c, c′) ∈
(
C
2

)
according to the interval which contains

‖c − c′‖. By Ramsey’s theorem if C is sufficiently large then there should exist a large subcode C ′

whose all pairwise distances are in [a, a + 2
q ). From (18) we have a ≤

√
2 + O(1/|C ′|) and from (17)

we get that ρL(C) ≤ ρL(C ′) ≤ τL + O(1/|C ′|) + O(1/q) and hence |C ′| ≤ O(1/ε) when q = O(1/ε).
Consequently, C cannot be arbitrary large for a given ε > 0.

Our main result on spherical codes is the following.

Theorem 16. For any L ≥ 2 there exist constants c1, c2 > 0 such that for all ε > 0

c1ε
−1 ≤ maxcodeL(ε) ≤ c2ε

−L2−L+2
2L . (19)

Before proving the theorem we establish two auxiliary lemmas.

Definition. Call a collection S of unit vectors an (m, ε)-system if among any m distinct elements
x1, . . . , xm ∈ S there exists a pair with 〈xi, xj〉 < −ε.

Lemma 17. For each m there exists Cm > 0, such that the size of any (m, ε)-system S is at most
Cmε

−m
2 and

‖
∑
x∈S

x‖ ≤ Cmε−
m−1

2 .
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Proof. For m = 2 this follows from (18) and (14). For m = 3 this was shown above in (15) and (16),
essentially by reducing to m = 2. In general, for arbitrary m we can define a graph with vertices S as
in the proof of (16) and notice that the neighborhood N (v) is an (m − 1, ε)-system and then apply
induction.

Lemma 18. For any L ≥ 3 there exists a non-negative function τ(γ) = 2γ
L2−L−2

+OL(γ2), γ ∈ [0, 1],
with the following property. Consider any L-tuple x = (x1, . . . , xL) of unit-norm vectors with rad(x) ≥
τL. If 〈x1, x2〉 ≥ γ ≥ 0 then there exist i, j such that 〈xi, xj〉 ≤ −τ(γ).

Proof. Entirely like in (6) we can prove

rad(x)2 = max
ω∈ΩL

min
y∈H

E
i∼ω
‖xi − y‖2 = max

ω∈ΩL

min
y∈H

(
1− 2

〈∑
i

ωixi, y
〉

+ ‖y‖2
)

= max
ω

(
1−

∥∥∥∑
i

ωixi

∥∥∥2
)

= 1− min
ω∈ΩL

V (ω) ,

(20)

where V (ω) =
∑

i,j vi,jωiωj is the quadratic form corresponding to the Gram matrix of x with vi,j =

〈xi, xj〉.
Fix some 0 ≤ τ ≤ 1

L−1 and suppose now that x is such that 〈xi, xj〉 ≥ −τ for all i, j. We will
show that for some function τ(γ) if τ < τ(γ) then rad(x) < τL. To that end, we introduce another
quadratic form U(ω) =

∑
i,j ui,jωiωj with

ui,j =


1, i = j,

γ, {i, j} = {1, 2},
−τ, otherwise.

(21)

Note that according to assumptions vi,j ≥ ui,j and, therefore, on ΩL we have V (ω) ≥ U(ω), and

min
ΩL

V (ω) ≥ min
ΩL

U(ω) .

We next show that U is non-negative definite for all 0 ≤ τ ≤ 1
L−1 and all − 1

L−1 ≤ γ ≤ 1. From
convexity of the PSD cone, it is sufficient to check the four corners. For τ = 0 the statement is
clear. For τ = 1

L−1 we consider the two endpoints: γ = − 1
L−1 , γ = 1. For γ = − 1

L−1 the resulting
quadratic form equals U1(ω) =

∑
i ω

2
i − 1

L−1

∑
i 6=j ωiωj and corresponds to the Gram matrix of unit-

norm vectors forming an (L− 1)-simplex centered at the origin. Consequently, U1 is positive definite.
Similarly, for γ = 1, the quadratic form corresponds to Gram matrix of the following collection: take
unit-norm vectors forming an (L − 1)-simplex, delete one vector and add a copy of another. The
resulting quadratic form is non-negative definite.

Since U is convex, we could evaluate minω U(ω) by arguing that optimal assignment is symmetric
(has equal coordinates 3, . . . , n and 1, 2). Instead we prefer to proceed indirectly and show another
useful property of radii in Hilbert space.

Since U � 0, it is a Gram matrix of some other L-tuple x′ of unit-norm vectors and we know

rad(x′) ≥ rad(x) . (22)
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We temprorarily forget about the special form of U , as defined in (21), and view it as a generic Gram
matrix of some L-tuple x′ of unit-norm vectors with the property that |〈x′i, x′j〉| ≤ θ for i 6= j. We
will prove

rad(x′)2 = τ2
L −

1

L2

∑
i 6=j
〈x′i, x′j〉+O(θ2) , (23)

where the O(·) term is uniform in x′. Note that the first two terms of the expression in (23) correspond
to ω = U [L] in (20). As θ → 0 the L-tuple x′ becomes very close to L orthogonal vectors, and hence
in (20) we expect that the optimal ω = U [L]+O(θ), cf. (24). Since we are operating near the minimum
of the quadratic form, the O(θ) deviation of ω translates to O(θ2) deviation for the value of U .

Proceeding to a formal proof of (23), first notice that if ω1 = 0 then as θ → 0 we must have
1 − U(ω) ≤ τL−1 + o(1) (since we are considering only L − 1 almost orthogonal vectors). But 1 −
minω U(ω) tends to τL > τL−1, implying that for all sufficiently small θ, the minimizer of U(ω) is in
the interior of ΩL. At the optimal point ω∗ the gradient of U is proportional to a vector of all ones 1,
from where we find

ω∗ = c(IL + ∆)−1 1 , (24)

where (IL + ∆) is the matrix of U , and the normalizing constant c is found from 〈ω∗,1〉 = 1 yielding
c = 〈(IL + ∆)−1 1,1〉−1. Altogether, we get

U(ω∗) = 〈(IL + ∆)ω∗, ω∗〉 = c = 〈IL 1,1〉+ 〈∆1,1〉+O(θ2) .

Finally, since rad(x′)2 = 1− U(ω∗) we get (23).
To complete the proof of the Lemma, note that from (22), (23) and (21) we have

rad(x)2 ≤ τ2
L −

1

L2

(
2γ − (L2 − L− 2)τ

)
+O(γ2) +O(τ2) .

Consequently, for appropriately defined τ(γ), if τ < τ(γ) we should have rad(x) < τL. Furthermore,
as γ → 0 we have that τ(γ) = 2γ

L2−L−2
+OL(γ2), as claimed.

Proof of Theorem 16. Consider a regular (M−1)-simplex of unit vectors in H. The pairwise distances
are equal

√
2M
M−1 and thus from (17) we have that the radius of any L-tuple is at least τL

√
M
M−1 =

τL + Ω(1/M), proving the lower bound in (19).

We proceed to the upper bound. Fix a code C with ρL(C) ≥ τL + ε. The main idea is again
essentially due to Konyagin: fixing one point c ∈ C and considering its close neighbors, we notice
that the radius constraint (cf. Lemma 18) introduces repulsion between these neighbors (that is they
should be widely separated among themselves) and consequently, neighborhoods can not be too large.

We proceed with the argument. First, by (17) any L-tuple with rad(x) ≥ τL + ε also satisfies
diam(x) ≥

√
2 +

√
2
τL
ε, and thus the code C is also an (L, ε′)-system, with ε′ = 2√

τL
ε.

Next, let ε1 = ε
L−1
L and ε2 = τ(ε1), where τ(·) is from Lemma 18. We consider two types of

neighbors c of each point ci ∈ C, depending on

− ε′ ≤ 〈c, ci〉 ≤ ε1, or 〈c, ci〉 > ε1 . (25)
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Let N ′(ci) and N ′′(ci) be the two respective sets of neighbors. The rest of the points are “far away”
from ci and satisfy

〈c, ci〉 < −ε′ . (26)

First, notice that since C is an (L, ε′)-system, we have that N ′(ci) ∪N ′′(ci) is an (m, ε′)-system with
m

def
= L− 1. Thus from Lemma 17

|N ′(ci)| ≤ |N ′(ci) ∪N ′′(ci)| ≤ Cmε′−
m
2 . (27)

Second, take any m = (L − 1) distinct points in N ′′(ci). Adding ci to this m-tuple and applying
Lemma 18 to the resulting L-tuple, we conclude that N ′′(ci) is an (m, ε2)-system. Therefore, from
Lemma 17 we have ∥∥∥ ∑

c∈N ′′(ci)

c
∥∥∥ ≤ Cmε−m−1

2
2 . (28)

Consider 〈
ci,
∑
c∈C

c
〉

= 1 +
〈
ci,

∑
c∈N ′′(ci)

c
〉

+
〈
ci,

∑
c∈N ′(ci)

c
〉

+
〈
ci,

∑
c 6∈N ′∪N ′′∪{ci}

c
〉

(29)

≤ 1 + Cmε
−m−1

2
2 + Cmε1ε

′−m
2 − ε′(|C| − 1− Cmε′−

m
2 ) (30)

where the second term is estimated by Cauchy–Schwarz and (28), the third term is by the definition
of N ′(ci) and (27), and the fourth term is the combination of (26) and the bound in (27).

Summing (30) over all ci ∈ C and using
∑

ci,c∈C〈ci, c〉 ≥ 0 we get

ε′|C| ≤ 1 + ε′ + Cmε
−m−1

2
2 + Cmε1ε

′−m
2 + Cmε

′1−m
2 ,

from where, recalling that ε1 � ε2 � ε
L−1
L and ε′ � ε we get that the first two terms and the last are

negligible compared to the third and fourth, which are comparable and � ε−
(L−1)(L−2)

2L . Canceling ε′

we get an upper bound in (19).

9 Remarks and open problems

• The 2L in Proposition 4 can be improved to O(
√
L) using a combination of the Beck–Fiala

floating colors argument with Spencer’s six deviations theorem. However, even with this im-
provement, we do not see a way to prove Theorem 2 with a good value of the implicit constant.

• For odd L ≥ 5, the best upper bound we have is a tower of exponentials of height L. To that
end, one colors L-tuples of codewords according to the measure ω for which rad(x) = mradω(x),
uses Ramsey’s theorem to get a monochromatic set, and then proceeds similarly to the proof of
Theorem 2.

• In the <L-list-decodable code in Theorem 1, the code length is exponential in ε−1. One can
restrict that code to a random subset of O(ε−1 log ε−1) coordinates, and obtain a code of asymp-
totically the same size cLε−1 +O(1).

For L = 2 and L = 4, the Levenshtein’s code has length O(ε−1) and size cLε−1 +O(1). However,
we do know if one can make the code in Theorem 1 of linear size for general L.
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