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Abstract

While the maximin strategy has become the standard, and most agreed-upon solution for
decision-making in adversarial settings, as discussed in game theory, computer science and other
disciplines, its power arises from the use of mixed strategies, a.k.a. probabilistic algorithms.
Nevertheless, in adversarial settings we face the risk of information leakage about the actual
strategy instantiation. Hence, real robust algorithms should take information leakage into account.
To address this fundamental issue, we introduce the study of adversarial leakage in games. We
consider two models of leakage. In both of them the adversary is able to learn the value of b binary
predicates about the strategy instantiation. In one of the models these predicates are selected after
the decision-maker announces its probabilistic algorithm and in the other one they are decided in
advance. We give tight results about the effects of adversarial leakage in general zero-sum games
with binary payoffs as a function of the level of leakage captured by b in both models. We also
compare the power of adversarial leakage in the two models and the robustness of the original
maximin strategies of games to adversarial leakage. Finally, we study the computation of optimal
strategies for adversarial leakage models. Together, our study introduces a new framework for
robust decision-making, and provides rigorous fundamental understanding of its properties.
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1 Introduction

Decision-Making lies in the foundations of fields such as Economics, Operations Research, and Arti-
ficial Intelligence. The question of what should be the action to be taken by a decision-maker when
facing an uncertain environment, potentially consisting of other decision makers, is a fundamental
problem which led to a wide variety of models and solutions. The only type of situations for which
this question got an agreed-upon answer is in the context of two-player zero-sum games. This set-
ting can model any situation in which a decision-maker aims at maximizing his guaranteed payoff.
When mixed strategies are allowed, such desired behavior, termed an agent’s maximin (or safety
level) strategy, leads to a well defined expected payoff (known as the value of the game). Moreover,
when presented explicitly in a matrix form, the computation of a maximin strategy is polynomial (by
solving a linear program). Various equilibrium concepts have been considered in the game-theoretic
literature, but none of them provides a prescriptive advice to a decision-maker which will be as
acceptable as the maximin strategy solution in adversarial settings. Since the introduction of the
study of two-person zero-sum games [13], maximin strategies have received very little criticism (see
[5] for an exception). Moreover, the safety level strategy has been advocated for some non zero-sum
settings as well (see [11], following observations by [4]).

Much of the power of a maximin strategy is associated with the use of mixed strategies, a.k.a.
randomized algorithms. In such algorithms the randomization phase is assumed to be done in
a private manner by the decision-maker, and no information about the instantiation selected in
that phase is assumed to be revealed. In reality, however, nothing is really private; for example,
competitors will always strive to obtain the private actions of a business, possibly by means of
industrial espionage [10]; hence, information leakage should be considered. As a result, it may be
of interest to study the effects of adversarial leakage, where a limited amount of information on an
agent’s instantiation of its mixed strategy may leak in an adversarial manner. We believe that only
by considering this situation, it will be possible to construct robust strategies when acting in an
adversarial setting. Information leakage appeared in game theory in the context of conditioning a
player’s strategy about the other player’s strategy [12, 8]; however that work did not consider the
leakage of mixed strategy instantiations nor its effects on designing robust algorithms in adversarial
settings taking information leakage into account.

Our model of adversarial leakage is general. We consider a two-player zero-sum game in strategic
form (a.k.a. matrix form), where the MAX player is our decision-maker and the MIN player is the
adversary. Both MAX and MIN have a set of (pure) strategies they can choose from. MAX chooses
a mixed strategy, that is, a distribution vector over its pure strategies. MIN may base its action on
the value of b binary predicates defined on MAX’ pure strategies; each such predicate is a Boolean
formula on the set of strategies whose value is determined according to the actual instantiation of
MAX’ mixed strategy. The parameter b can be thought of as the amount of information leakage
(or number of leaking bits) regarding the instance of MAX’ mixed strategy; MAX would like to
maximize his guaranteed expected payoff against any choice of such b binary predicates.

We consider two settings, distinguished by the information structure assumed in them. In the
Strong Model the MAX player chooses a mixed strategy, which is observable by the MIN player, who
can then act upon it in determining the b predicates. In the Weak Model, on the other hand, the
MIN player chooses the b predicates first, and MAX can observe it and act upon it in choosing his
mixed strategy.

Compared with the Strong Model, the information structure of the Weak Model provides a poten-
tial advantage to MAX, but is it effectively advantageous? Understanding this issue is particularly
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interesting in light of the minimax theorem, which essentially states that in a classic two-player zero-
sum game, if mixed strategies are allowed, then gaining information about the opponent’s mixed
strategy prior to playing does not give the agent possessing it any strategic advantage.

Other intriguing questions arise in this setting of adversarial leakage. What would be the best
mixed strategy for the MAX player? How well will the original maximin strategy of the game
perform? What is the computational complexity of finding the optimal strategy under information
leakage? We address all these questions, focusing our attention on general two-person games, where
the decision-maker has m strategies to choose from, the adversary has n strategies to choose form,
and the payoffs to the decision maker are either 1 or 0. This is known to be a highly applicable
model, as it captures games in which a goal is either achieved or not.

Our results. For the Strong Model, if the value of the game is q = 1− ε (for small positive ε) and
2b is much smaller than 1/ε, then MAX can ensure value close to 1 (at least 1 − 2bε), and this is
tight. To do so, she simply uses the maximin strategy (that is, the optimal mixed strategy for the
original game with no predicates). On the other hand, if 2b is much bigger than 1/ε, then for every
mixed strategy of MAX, the MIN player can ensure value close to zero (at most e−2bε). Therefore,
for EVERY such game with value 1 − ε, which is close to 1, a sharp transition occurs at b which
is about log(1/ε): if b is slightly smaller, the value stays close to 1; if it is slightly larger, the value
drops to nearly zero.

For games with value q bounded away from 1, even one bit enables MIN to square the value and
drop it to at most q2, and every additional bit squares the value again. There are also examples
showing that this is essentially tight. Finally, for any fixed value q < 1, log logm+Oq(1) bits suffice
to enable MIN to drop the value to precisely 0.

For the Weak Model, the situation is different. Clearly, here MAX is in a better shape, hence
if the value of the game is q = 1 − ε (for small positive ε), MAX can still ensure a value close to 1
if the number of bits is much smaller than log(1/ε) as in the Strong Model. For games with value
q bounded away from 1, however, there are examples in which she can do much better than in the
Strong Model, and in fact can ensure no essential drop in the value as long as the number of leaking
bits is somewhat smaller than log logm. More precisely, for any fixed value 0 < q < 1 and for every
large polynomially related m,n, there are examples of games represented by a binary m by n matrix
with value q + o(1), so that even if b = log logm − O(1), MAX can ensure that the value will stay
roughly q. This should be contrasted with the Strong Model, where every additional bit squares
MAX’ value.

Somewhat surprisingly, once the number of leaking bits is slightly larger, that is, b = log logm+
O(1), the MIN player can already ensure value 0 in any game with a fixed value q < 1. Thus, in
the examples above a sharp transition occurs at nearly b = log logm under the Weak Model: nearly
log logm bits have essentially no effect on the value, while slightly more bits already suffice to drop
the value to 0.

Note that, in contrast to leakage-free settings, where no advantage is gained by observing the
opponent’s mixed strategy (due to the minimax theorem), in settings of adversarial leakage, such
information can contribute a great deal to the informed player, reflected by the advantage obtained
by MAX in the Weak Model compared with the Strong Model.

With respect to computation complexity, computing the optimal strategy in the Strong Model
(for the MAX player) against b leaking bits is poly-time for any fixed b, while this problem becomes
NP-hard to compute, or even to approximate within any factor, for a general b. In the Weak Model,
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the optimal strategy of MAX can be computed in polynomial time for every b. As for the MIN
player, computing the optimal predicates is polynomial for a fixed number of bits, but is NP-hard in
general.

2 Model

We consider two-player zero-sum games defined by an m by n matrix M with {0, 1} entries, where
the rows correspond to MAX’ pure strategies and the columns correspond to MIN’s pure strategies:
Mi,j is the payoff of MAX if MAX and MIN play row i and column j, respectively (the payoff of
MIN is then −Mi,j).1 The matrix M is known to both players.

Given a matrix M and an integer b ≥ 0, we describe a precise setting of adversarial leakage, as
follows:
(1) MAX chooses a distribution vector p = (p1, . . . , pm) on [m] and MIN chooses a b-bit leakage
function f : [m]→ {0, 1}b.
(2) MAX realizes i ∈ [m] according to p (i.e., chooses row i with probability pi).
(3) MIN observes f(i) (for i realized by MAX) and chooses a strategy j ∈ [n].
(4) MAX and MIN receive payoffs Mi,j and −Mi,j , respectively.
The two leakage models we consider, referred to as the Strong Model and the Weak Model differ in
the order in which the choices in step (1) are made. In the Strong Model MAX first chooses a mixed
strategy p and MIN may base its choice of f on the knowledge of p. In the Weak Model MIN first
choose a leakage function f and MAX may base its choice of p on the knowledge of f .

It will be convenient to formalize the choice of (pure) strategy made by MIN in step (3) as a
function g : {0, 1}b → [n]. Note that MIN decides on g when it already knows the mixed strategy p
of MAX. This is less important under the Strong Model, where it can be assumed that MIN chooses
g simultaneously with its choice of f . However, under the Weak Model, the choice of g must be made
at a later stage (when MIN already knows p).

Given a matrix M , a non-negative integer b, a distribution vector p on [m], a function f : [m]→
{0, 1}b, and a function g : {0, 1}b → [n], let

u(M, b,p, f, g) =
∑

w∈{0,1}b

∑
i:f(i)=w

piMi,g(w)

denote the expected payoff of MAX (with respect to these parameters). Denote

up(M, b) = min
f :[m]→{0,1}b and g:{0,1}b→[n]

u(M, b,p, f, g) .

The value of M against b leaking bits under the Strong Model is defined as

vstrong(M, b) = max
p∈∆(m)

up(M, b) ,

where ∆(m) is the set of all distribution vectors on [m]. We denote by p∗b a distribution vector that
realizes vstrong(M, b), i.e., up∗b

(M, b) = vstrong(M, b). The value of M against b leaking bits under the
Weak Model is defined as

vweak(M, b) = min
f :[m]→{0,1}b

max
p∈∆(m)

min
g:{0,1}b→[n]

u(M, b,p, f, g) .

1 While we focus on the natural binary case, some of our results hold for any matrix with entries in [0, 1] as well,
while some become non-interesting or easily seen to be false.
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When the leakage model is clear from the context, we may omit the superscripts and write simply
v(M, b). Observe that under this notation, v(M, 0) is the classical value of (the game defined by) M .

Unless otherwise specified, all logarithms are in base 2.

3 Adversarial leakage in the Strong Model

We first show that for any m by n matrix with {0, 1} entries of value q = 1 − ε, the MAX player
can guarantee herself at least a payoff of 1 − 2bε. This can be done, in particular, by playing the
maximin strategy.

Proposition 3.1. Let M be an m by n matrix with {0, 1} entries. Let q = 1− ε be the value of the
game defined by M , that is, v(M, 0) = 1− ε. Then, for every b ≥ 0, up∗0

(M, b) ≥ 1− 2bε.

Proof. Let p = (p1, . . . , pm). For every w ∈ {0, 1}b, let Sw = {i|f(i) = w}, and let pw =
∑

i∈Sw pi.
Fix some column j. Since 1− ε is the value of the game, it holds that for every w,

∑
i∈Sw piMi,j +∑

i/∈Sw piMi,j ≥ 1 − ε. As Mi,j ≤ 1 for every i, j, we have
∑

i∈Sw piMi,j +
∑

i∈[m]\Sw pi ≥ 1 − ε.
Substituting

∑
i∈Sw pi = 1− pw and rearranging the last inequality yields∑

i∈Sw
piMi,j ≥ pw − ε. (1)

The expected payoff of MAX is given by the expression
∑

w∈{0,1}b
∑

i:f(i)=w pi ·Mi,g(w) and the
expected payoff of MAX conditioned on the event that some row i ∈ Sw is played is given by the
expression

∑
i:f(i)=w

pi
pw ·Mi,g(w), which is at least 1

pw (pw−ε), by Equation (1). Therefore the expected
payoff of MAX is at least

∑
w∈{0,1}b p

w 1
pw (pw − ε) = 1− 2bε.

The above bound is tight, as established in the following proposition.

Proposition 3.2. For every ε > 0 and every b ≥ 0, there exists a matrix M with {0, 1} entries so
that (1) v(M, 0) = 1− ε; and (2) up∗0

(M, b) = up∗b
(M, b) = 1− 2bε.

Proof. Let n = 1/ε and consider the n by n matrix M in which Mi,i = 0 for every i, and Mi,j = 1
for every i 6= j. From symmetry considerations, both the maximin strategy and the optimal strategy
against b leaking bits is the uniform distribution over the rows. Let f be a function which imposes
the following partition on the rows: each one of the first 2b − 1 rows constitutes its own subset, and
the remaining rows constitute the last subset. In this case, if one of the first 2b − 1 rows is chosen
(each with probability ε), then MAX’ payoff is 0, while if one of the remaining rows is chosen (with

a total probability of 1 − (2b − 1)ε), then the payoff obtained by the MAX player is
1
ε
−2b

1
ε
−(2b−1)

. The

expected payoff of the MAX player is therefore (1− (2b − 1)ε) ·
1
ε
−2b

1
ε
−(2b−1)

= 1− 2bε.

The above two propositions essentially say that for games with value q = 1 − ε and b such that
2bε = o(1), MAX can guarantee a payoff of about q2b by playing the maximin strategy, and this
is optimal. The case of general q and b, however, requires more work, and this is the focus of the
following statement.
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Theorem 3.3. Let M be an m by n matrix with {0, 1} entries. Let q be the value of the game
defined by M , that is, q = v(M, 0). Then, for every b ≥ 0 and every distribution vector p of the
MAX player, up(M, b) ≤ q2b.

Proof. Put p(1) = p, and let j1 ∈ [n] be a pure strategy of MIN (a column of M) ensuring a value of
q1 ≤ q against the mixed strategy p(1) of MAX. Such a pure strategy must exist since q is the value of
the game. Define S1 = {i ∈ [m] |Mi,j1 = 0}. It holds that

∑
i∈S1

p(1)
i Mi,j1+

∑
i∈[m]−S1

p(1)
i Mi,j1 = q1,

hence
∑

i∈[m]−S1
p(1)
i = q1.

Let p(2) be the distribution vector defined by restricting p(1) to the rows in [m]− S1, namely,

p(2)
i =

{
p(1)
i /q1 if i ∈ [m]− S1;

0 otherwise.

Let j2 be a pure strategy of MIN ensuring a value of q2 ≤ q against the mixed strategy p(2) of MAX.
Once again, such a pure strategy must exist since q is the value of the game. Define S2 = {i ∈
[m]− S1 |Mi,j2 = 0}. As before, it holds that

∑
i∈S2

p(2)
i Mi,j2 +

∑
i∈[m]−S1−S2

p(2)
i Mi,j2 = q2, hence∑

i∈[m]−S1−S2
p(2)
i = q2.

Continuing in this manner for 2b steps, we obtain 2b pairwise disjoint subsets S1, . . . , S2b of [m]
with corresponding columns j1, . . . , j2b such that Mi,jk = 0 for every 1 ≤ k ≤ 2b and i ∈ Sk. For
convenience we index the words in {0, 1}b by w1, . . . , w2b and fix

f(i) = wk for every 1 ≤ k < 2b and i ∈ Sk , f(i) = w2b for i 6∈ ∪k<2bSk;

g(wk) = jk for every 1 ≤ k ≤ 2b .

The above construction guarantees that when MAX plays according to p, and MIN follows f and g,
the payoff is 1 with probability at most q1q2 · · · q2b ≤ q2b . It follows that up(M, b) = q1 · · · q2b ≤ q2b

as required.

As a corollary of Theorem 3.3, we get the following.

Corollary 3.4. Let M be an m by n matrix with {0, 1} entries, and let q be the value of the game
defined by M , as above. If q2b < 1/m, then for every distribution vector p of the MAX player,
up(M, b) = 0. Therefore, for every fixed q satisfying 0 < q < 1, b = log logm + Oq(1) suffices to
ensure value 0 for the MIN player.

Proof. Let p be the uniform distribution on [m]. Theorem 3.3 guarantees the existence of f : [m]→
{0, 1}b and g : {0, 1}b → [n] such that if MAX plays according to p and MIN follows f and g, then
the expected payoff is at most q2b < 1/m. We argue that if MIN follows f and g, then in fact, the
expected payoff is 0. Indeed, since pi = 1/m for every i ∈ [m], a positive expected payoff is possible
only if it is at least 1/m, which derives a contradiction. It follows that for every w ∈ {0, 1}b and for
every i ∈ [m] such that f(i) = w, we must have Mi,g(w) = 0. But this means that the same f and g
guarantees that the expected payoff is 0 regardless2 of the mixed strategy of MAX.

2 Note that as here the same f and g work against any mixed strategy of MAX, this works in the weak model as
well, providing a proof of Theorem 4.5.
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Remark: The corollary is essentially the known simple fact (proved in [6], [7]) that the ratio between
the fractional cover and the integer cover of a hypergraph with m edges is at most lnm.

The following theorem shows that both Theorem 3.3 and Corollary 3.4 are essentially tight.

Theorem 3.5. For every real 0 < q < 1, for every integer b ≥ 0 and for every large polynomially
related m and n satisfying q2bm > 2b log n, there exists an m by n {0, 1}-matrix M that satisfies
(i) v(M, 0) = q ± o(1), where the o(1)-term tends to 0 as m and n grow; and
(ii) if p = (p1, p2, . . . , pm) is the uniform distribution on the rows, then up(M, b) ≥ (1 − o(1))q2b

(and thus up(M, b) = (1± o(1))q2b, by Theorem 3.3).
In particular, for, say, m = n2 and b ≤ log logm−Θ(1), up(M, b) > 0.

Proof. Let M be a random m by n matrix with {0, 1}-entries obtained by choosing each entry Mi,j ,
randomly and independently, to be 1 with probability q and 0 with probability 1− q. We show that
M satisfies the assertion of the theorem with positive probability.

Since m,n are large and are polynomially related, almost surely (that is, with probability that
tends to 1 as m,n tend to infinity) every row of M has (1 ± o(1))qn 1-entries, and every column
of M has (1± o(1))qm 1 entries. This follows easily by the standard known estimates for Binomial
distributions, see, for example, [3]. This implies that the value of the game is (1± o(1))q: indeed, if
MAX (respectively, MIN) plays according to the uniform distribution on the rows (resp., columns),
then it guarantees an expected payoff of at least (resp., at most) (1± o(1))q. Thus (i) holds almost
surely.

We establish the assertion by showing that (ii) holds with high probability as well. For that
purpose, we argue that for every choice of a set J ⊂ [n] of size |J | = 2b, the number of indices
i ∈ [m] so that Mi,j = 1 for all j ∈ J is, almost surely, (1 ± o(1))q2bm. Indeed, for a fixed choice
of a set J , the random variable X that counts the number of such indices i is a Binomial random
variable with parameters m and q2b . Therefore the probability that X is not (1±o(1))q2bm decreases
exponentially with q2bm > 2b log n = log

(
n2b
)

. The assertion is established by applying the union

bound over all
(
n
2b

)
< n2b choices of the set J .

Remark: The proof of existence of M as in the last theorem is probabilistic. In Appendix A we give
similar explicit examples using either finite geometries, or character sum estimates (Weil’s Theorem
[14]), or any example of small sample spaces supporting nearly 2b-wise independent random variables.
See [9] or [1] for some such examples.

4 Adversarial leakage in the Weak Model

The following result deals with the Weak Model. It shows that in sharp contrast to the situation
with the Strong Model, here there are examples in which log logm−O(1) bits of information do not
enable the MIN player to gain any significant advantage.

Theorem 4.1. For every real q, 0 < q < 1, for every positive δ and for all large polynomially related
n,m satisfying

[(
10
δ

)]n2b < δm/
√
n and [

q(1− q)
10

]2
b ≥ 1√

n
,
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there is an m by n matrix M with {0, 1}-entries so that the value of the game it determines v(M, 0)
is q + o(1), and vweak(M, b) ≥ q − δ.

In particular, if m = n2 and b = log logm−Θ(1), vweak(M, b) is essentially equal to v(M, 0).

The proof of the above theorem is more complicated than the ones in the previous section, and
requires several preparations. We need the following known result.

Lemma 4.2 ([2], Lemma 3.2). Let Y be a random variable with expectation E[Y ] = 0, variance
E[Y 2] and fourth moment E[Y 4] ≤ k(E[Y 2])2, where k is a positive real. Then Prob[Y ≥ 0] ≥ 1

24/3k
.

Using the above lemma, we prove the following.

Lemma 4.3. Let q be a real, 0 < q < 1, and let p = (p1, p2, . . . , pn) be a distribution vector on [n],
that is, pj ≥ 0 for all j and

∑
j pj = 1. Let X1, X2, . . . , Xn be independent, identically distributed

indicator random variables, where each Xj is 1 with probability q (and 0 with probability 1 − q.)
Define X =

∑n
j=1Xjpj . Then the probability that X is at least its expectation (which is q) is bigger

than q(1−q)
10 .

Proof. Define Yj = Xjpj − E[Xjpj ] = Xjpj − qpj , and Y =
∑

j Yj . By linearity of expectation
Y = X − E[X], and E[Y ] = 0. In order to apply the previous lemma, we compute the variance of
Y , and estimate its forth moment.

V ar[Y ] =
∑
j

V ar[Yj ] =
∑
j

[q(1− q)2p2
j + (1− q)q2p2

j ]

= q(1− q)
∑
j

p2
j .

Similarly
E[Y 4] =

∑
j

E[Y 4
j ] + 6

∑
i<j

E[Y 2
i ]E[Y 2

j ]

=
∑
j

[q(1− q)4p4
j + (1− q)q4p4

j ] + 6
∑
i<j

q2(1− q)2p2
i p

2
j

≤ q(1− q)
∑
j

p4
j + 6

∑
i<j

q2(1− q)2p2
i p

2
j ≤

1
q(1− q)

[q2(1− q)2
∑
j

p4
j + 6

∑
i<j

q2(1− q)2p2
i p

2
j ]

≤ 3
q(1− q)

(V ar[Y ])2.

The desired result now follows from Lemma 4.2, (using the fact that 24/3 · 3 < 10).

Remark: For q ≤ 1/2 the estimate in the lemma is tight, up to a constant factor. Indeed, for
p = (1, 0, 0, . . . , 0) the probability that X is at least q is precisely the probability that X1 = 1, which
is q. For q = 1/k with k being an integer there is a simpler argument showing that in this case the
probability that X is at least its expectation is at least q (which is precisely tight). The idea is to
choose the random vector (X1, X2, . . . , Xn) by first choosing, for each 1 ≤ j ≤ n, a random uniform
number nj in {1, 2, , . . . , k} with all choices being independent, and then by selecting a uniform
random Z ∈ {1, 2, . . . , k}, defining Xj to be 1 iff nj = Z. Since the sum

∑
Z∈[k](

∑
j:nj=Z

pj) = 1,
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it follows that for each choice of the values nj , there is at least one Z so that
∑

j:nj=Z
pj ≥ 1/k,

and therefore the probability that the obtained random sum is at least q = 1/k is at least 1/k, as
claimed. Note that for some values of q the probability that X is at least q is strictly smaller than q.
Indeed, for example, if q = 0.501 and the vector p is (0.5, 0.5, 0, 0, . . . , 0), then the probability that
X is at least q is the probability that X1 = X2 = 1, which is q2, that is, roughly q/2.

Corollary 4.4. Let v be a random vector of length n with {0, 1} entries obtained by selecting each
entry, randomly and independently, to be 1 with probability q, and 0 with probability 1− q. Let P be
any fixed set of distribution vectors of length n. Then, the probability that the inner product of the
vector v with each of the vectors p ∈ P is at least q, is at least ( q(1−q)10 )|P|.

Proof. By the FKG Inequality (c.f., e.g., [3], Chapter 6.), the probability that the inner product of v
with each of the vectors p ∈ P is at least q is greater or equal to the product of these probabilities.
But according to Lemma 4.3, for every p ∈ P, the probability that the inner product of v with p is
at least q is greater than q(1−q)

10 . The desired result follows.

We are now ready to state the proof of Theorem 4.1:

Proof. (sketch) Take a δ-net N of distributions of length n with respect to the `1-norm. Apply the
last lemma to every set P of 2b of them to conclude, using the union bound, that almost surely for
every such set there is a pure strategy of the MAX player that ensures her value at least q with
respect to each of these mixed strategies. Here we use the fact that |N | ≤ [(10

δ )]n, and hence there
are at most [(10

δ )]n2b ways to choose a set of 2b members of N . The desired result follows. The
missing details are deferred to the full version.

Somewhat surprisingly, even in the Weak Model, although there are examples in which the MIN
player cannot decrease the value by much using at most log logm − O(1) bits of information, if he
is allowed to use log logm + O(1) bits, he can always decrease the value to 0. This is described in
the next (simple) result, which, together with the previous theorem, exhibits an unexpected sharp
phase transition at b = log logm.

Theorem 4.5. Let M be an m by n matrix with {0, 1} entries, and let q be the value of the game
defined by M . If q2b < 1/m, then vweak(M, b) = 0. Therefore, for every fixed q satisfying 0 < q < 1,
b = log logm+Oq(1) suffice to ensure value 0 for the MIN player, even in the Weak Model.

The proof of Theorem 4.5 follows from the proof of Corollary 3.4.

5 Optimal strategy computation

We begin with a simple example of a {0, 1} matrix M with a maximin strategy p∗0 that satisfies (i)
up∗0

(M, 0) = 1/2; and (ii) up∗0
(M, 1) = 0. On the other hand, there exists another mixed strategy

p of MAX that satisfies (i) up(M, 0) = 3/7; and (ii) up∗1
(M, 1) ≥ 1/7. This shows that playing the

maximin strategy may be a naive behavior for b > 0, and hence motivates the computation of better
strategies. The matrix M showing the above is of dimension 9 × 14 and it is depicted in Table 1.
The main ingredient in the construction is a 7 by 7 matrix T7 with {0, 1} entries that satisfies the
following properties: (1) every row and every column of T7 contains exactly 3 1-entries; and (2) for
every choice of 1 ≤ j ≤ j′ ≤ 7, there exists some 1 ≤ i ≤ 7 such that Mi,j = Mi,j′ = 1. (Refer to
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1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1
T7 T7

Table 1: M ∈ {0, 1}9×14 of value 1/2, satisfying: (i) up∗0
(M, 1) = 0; and (ii) up∗1

(M, 1) ≥ 1/7.

Example 1 in Appendix A.) Playing the first two rows with probability 1/2 each yields an expected
payoff of 1/2 for MAX. One can easily verify that this is a unique optimal strategy when b = 0, while
its expected payoff is clearly 0 when b = 1. Yet, by playing the uniform distribution on the bottom
7 rows, MAX ensures an expected payoff of 3/7 when b = 0 and an expected payoff of at least 1/7
when b = 1.

We now turn to consider the computational complexity of finding the optimal strategy for the
MAX player in the Strong Model. The following theorem shows that computing the optimal strategy
against b bits is poly-time for any fixed b.

Theorem 5.1. Given an m by n matrix M with {0, 1} entries and a fixed b ≥ 0, computing the
optimal strategy against b leaking bits (p∗b) under the Strong Model is poly-time.

Proof. An optimal strategy p∗b = (p1, . . . , pm) can be computed by solving the following linear
program:

maximize z s.t.∑
w∈{0,1}b

∑
i:f(i)=w

piMi,g(w) ≥ z ∀f : [m]→ {0, 1}b,∀g : {0, 1}b → [n]

∑
i∈[m]

pi = 1

pi ≥ 0 ∀i ∈ [m] .

Since there are 2bm possible functions f and n2b possible functions g, this linear program admits
a polynomial number of variables, but an exponential number of constraints. However, a closer
analysis shows that it can be rewritten with a polynomial number of constraints.

The composition of f and g is essentially a mapping h : [m] → [n] with image of cardinality at
most 2b. Fixing some subset J ⊆ [n], |J | ≤ 2b, it is easy to compute a mapping hJ that minimizes
the expected payoff of MAX over all mappings h with image J : hJ simply maps each row i ∈ [m] to
a column j ∈ J that minimizes Mi,j . Therefore an optimal strategy p∗b can be computed by solving
the linear program

maximize z s.t.∑
j∈J

∑
i:hJ (i)=j

piMi,j ≥ z ∀J ⊆ [n], |J | ≤ 2b (2)

∑
i∈[m]

pi = 1

pi ≥ 0 ∀i ∈ [m] ,

whose size is polynomial as long as b is a constant.
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We next show that for general b, computing the optimal strategy against b bits is NP-hard.
Moreover, we show that it is NP-hard to approximate the optimal value by any factor.

Theorem 5.2. Given an m by n matrix M with {0, 1} entries, it is NP-hard to approximate v(M, b)
by any factor under the Strong Model.

Proof. We show that given an m by n matrix M with {0, 1} entries and some b ≥ 0, it is NP-hard
to decide whether v(M, b) > 0. This is done by reduction from set cover (SC). An instance of SC is
composed of a finite set of elements U = {1, . . . ,m}, a collection C = {C1, . . . , Cr} of subsets of U
and an integer k. The question is whether there is a subcollection C′ ⊆ C, |C′| ≤ k, such that every
element in U belongs to at least one member of C′.

Given an instance of SC , 〈U, C, k〉, we construct the following instance of our problem. Let M be
a binary matrix with m = |U | rows and n = r columns such that Mi,j = 0⇔ i ∈ Cj . Fix b = log k.
We show that there is a set cover of size at most k if and only if v(M, b) = 0.

Sufficiency: Suppose the size of the set cover is greater than k. Then, we show that taking the
uniform distribution over the whole action set (i.e. setting pi = 1

m ∀i ∈ [m]) yields v(M, b) > 0.

Consider inequality 2 and let p be the uniform distribution as described above. For every choice
of J ⊆ [n], the left-hand side of the inequality is composed of a finite set of summands. In order to
show that the obtained payoff is greater than zero, it is sufficient to show that at least one summand
is greater than zero. Indeed, since the set cover is greater than k = 2b, there must exist some row
i ∈ [m], call it i′, such that Mi′,j = 1 for every j ∈ J , and also p(i′) > 0 (since p has a full support).
Consequently, v(M, b) > 0.

Necessity: Suppose there exists a set cover of size at most k = 2b. Then, there is a set of columns
S, |S| ≤ 2b, s.t. for every i ∈ [m] there exists j ∈ |S| for which Mi,j = 0. Let g be a function that
maps every w ∈ {0, 1}b to a different column in S (arbitrarily). By the choice of S, it must hold
that for every i ∈ [m], Mi,g(fg(i)) = 0. Therefore, for every distribution vector p, every summand in
inequality 2 equals zero. Consequently, v(M, b) = 0.

In contrast to the last theorem, under the Weak Model, computing the optimal strategy for a
given f : [m] → {0, 1}b is trivially poly-time: For every w ∈ {0, 1}b, let Sw = {i : f(i) = w}, and
let Mw denote the sub-matrix Mw ∈ R|Sw|×n, induced by Sw. MAX will choose w that maximizes
v(Mw, 0) and play the corresponding maximin strategy.

Finally, we consider the computational complexity of finding the optimal f function for the MIN
player in the Weak Model. For a general b, the exact same reduction from Set Cover, presented
in the proof of Theorem 5.2, shows that computing the optimal f function is NP-hard and that it
is NP-hard to find an f function that approximates the optimal value (for the MIN player) within
any factor. For a fixed b, however, the computation of an optimal (from the perspective of MIN)
f : [m]→ {0, 1}b becomes polynomial. Indeed, there are n2b possible functions g : {0, 1}b → [n]. For
each such function g the computation of an optimal f is straightforward.
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APPENDIX

A Explicit Constructions

In this appendix we describe several explicit constructions of n by n {0, 1}-matrices representing
games with value q, such that if the MIN player has b bits and b is smaller than log log n+O(1), then
the MAX player can guarantee a payoff of at least roughly q2b . This shows (by explicit examples)
that the statements of Theorem 3.3 and Corollary 3.4 are essentially tight.

Example 1:

Let p be a prime power and let r be a positive integer. Fix n = pr − 1. Let M = (Mu,v) be
the following n by n binary matrix whose rows and columns are indexed by the set N of all nonzero
vectors of length r over GF (p). For each such u, v, Mu,v = 1 if and only if the two vectors u and
v are orthogonal over GF (p) (namely, their inner product over GF (p) is zero). Note that M is a
symmetric matrix, and every row and every column of it contains exactly pr−1− 1 1-entries. Indeed,
this is the number of non-zero solutions of a single linear equation in r variables over GF (p). It is
easy to check that the maximin strategy of the game determined by M is the uniform distribution
over N , yielding a value of q = pr−1−1

pr−1 . Note that for large n = pr − 1 this is very close to 1/p.

We claim that for every set J ⊆ N of at most logp n columns, there are at least pr−|J | − 1 rows
u so that Mu,v = 1 for every v ∈ J . Note that if pr−|J | is large, then this number is very close to
q|J |n, implying that by playing the uniform distribution on the rows of M , MAX can ensure a value
close to q|J |. Note also that if b ≤ log r − O(1) = log log n − Op(1), then 2b is much smaller than
r, and hence pr−|J | is large provided |J | ≤ 2b. Fix a subset J ⊆ N of cardinality at most logp n.
By definition, row u satisfies Mu,v = 1 for every v ∈ J if and only if the inner product of u and v
over GF (p) is zero for every v ∈ J . This is a homogeneous system of |J | linear equations in the r
variables representing the coordinates of u. This system clearly admits at least pr−|J |− 1 non-trivial
solutions; each such non-trivial solution corresponds to a row with the desired properties, proving
the claim.

This completes the description of the first set of examples. Note that it works for every value q
which is about 1/p, where p is a prime power.

Example 2 (sketch):

Let p be a prime and let M be a p × p binary matrix, where Mi,j = 1 if and only if i − j is a
quadratic residue modulo p (where here zero is considered a quadratic residue). The value of the
game represented by M is (p+ 1)/(2p) which, for large p, is roughly 1/2. Using Weil’s Theorem, it
is not difficult to show that for every subset S of Zp of size at most (0.5 − δ) log p, the number of
rows i such that Mi,j = 1 for all j ∈ S, is (1 + o(1)) p

2|S|
. A similar example holds for characters of

other orders instead of the quadratic character, providing examples with values close to 1/d for any
desired positive integer d > 1 (where here we have to choose a prime p so that d divides p − 1- by
Dirichlet’s Theorem on primes in arithmetic progressions it is known that there are infinitely many
such primes for any such d).

More generally, one can use any construction of small sample spaces supporting nearly 2b-wise
independent binary random variables to supply additional examples. We omit the details, which will
appear in the full version of the paper.
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