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Abstract

For every fixed integers r, s satisfying 2 ≤ r < s there exists some ε = ε(r, s) > 0
for which we construct explicitly an infinite family of graphs Hr,s,n, where Hr,s,n has n
vertices, contains no clique on s vertices and every subset of at least n1−ε of its vertices
contains a clique of size r. The constructions are based on spectral and geometric
techniques, some properties of Finite Geometries and certain isoperimetric inequalities.

1 Introduction

The Ramsey number R(s, t) is the smallest integer n such that every graph on n vertices
contains either a clique Ks of size s or an independent set of size t. The problem of
determining or estimating the function R(s, t) received a considerable amount of attention,
see, e.g., [14] and some of its references. A more general function was first considered (for
a special case) by Erdős and Gallai in [11]. Suppose 2 ≤ r < s ≤ n are integers, and let G
be a Ks-free graph on n vertices. Let fr(G) denote the maximum cardinality of a subset of
vertices of G that contains no copy of Kr, and define, following [12], [8]:

fr,s(n) = min fr(G),

where the minimum is taken over all Ks-free graphs G on n vertices.
It is easy to see that for r = 2, we have f2,s(n) < t if and only if the Ramsey number

R(s, t) satisfies R(s, t) > n, showing that the problem of determining the function fr,s(n)
extends that of determining R(s, t).
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Erdős and Rogers [12] combined a geometric idea with probabilistic arguments and
showed that

fs−1,s(n) ≤ O(n1−1/O(s4 log s)).

This bound has been improved in several subsequent papers [8], [17], [18] and the best
known bounds, proved in [17], [18], are

c1n
1

s−r+1 (log log n)1− 1
s−r+1 ≤ fr,s(n) ≤ c2n

r
s+1 (log n)

1
r−1 ,

where c1, c2 are positive constants depending only on r and s. Note that to place an upper
bound on fr,s(n) one has to prove the existence of a graph with certain properties. As is the
case with the problem of bounding the usual Ramsey numbers, the existence of these graphs
is usually proved by probabilistic arguments. In fact there is no known explicit construction
that provides any non-trivial upper bound for fr,s(n) for any value of r other than 2. By
explicit we mean here a construction that supplies a deterministic algorithm to construct a
graph with the desired properties in time polynomial in the size of the graph. It is worth
noting that for the case r = 2, corresponding to the usual Ramsey numbers, there are
several known explicit constructions; see [10], [13], [9], [1], [2], [3]. Despite a considerable
amount of effort, all these constructions supply bounds that are inferior to those proved by
applying probabilistic arguments. The problem of finding explicit constructions matching
the best known bounds is of great interest, and may have algorithmic applications as well.

In the present note we describe two different explicit constructions providing nontrivial
upper bounds for the function fr,s(n) in the case r > 2. The first one is based on a spectral
technique together with some of the properties of finite geometries and implies that for
every fixed r, s we have:

fr,s(n) = O
(
n

1
2

+ 2r−3
2s−4

)
.

The second construction is based on a geometric idea and certain isoperimetric inequal-
ities, and shows that for every s ≥ 2, fs,s+1(n) ≤ n1−ε(s), where

ε(s) = (1 + o(1))
2

s2(s+ 1)2 ln s

and the o(1) term tends to 0 as n tends to infinity.
Both constructions are explicit according to all common definitions of this notion and,

in particular, provide a linear time deterministic algorithm to construct the appropriate
graph as well as an algorithm that determines if two given vertices are connected using a
constant number of arithmetic or bit operations on words of length O(log n), where n is the
number of vertices.

In the rest of this note we describe these two constructions and prove their properties.
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2 The first construction

The first construction we present applies finite geometries and the proof of its properties
is based on the spectral technique used in [1] for a similar purpose, together with some
additional ideas. Graphs considered in this section may have loops. Each loop contributes
one to the degree of a vertex incident to it and contributes 1/2 when we count the number
of edges spanned by a set of vertices.

We need the following lemma.

Lemma 2.1 Let G be a d-regular graph on n vertices with at most one loop at each vertex
and suppose that the absolute value of any eigenvalue of G but the first is at most λ. For
every integer r ≥ 2 denote

sr =
(λ+ 1)n

d

(
1 +

n

d
+ · · ·+

(
n

d

)r−2
)
.

Then every set of more than sr vertices of G contains a copy of Kr.

Proof. The proof relies on the following simple statement proved (in a slightly stronger
form) in [5] (see also [6], Chapter 9, Corollary 2.6.)

Proposition 2.2 Let G = (V,E) be a d-regular graph on n vertices (with loops allowed)
and suppose that the absolute value of each of its eigenvalues but the first is at most λ. Let
B be an arbitrary subset of bn vertices of G and let e(B) denote the number of edges in the
induced subgraph of G on B. Then

|e(B)− 1
2
b2dn| ≤ 1

2
λbn .

To deduce the lemma from the above proposition we apply induction on r. Note that if
S is a subset of vertices of size k, then, by the proposition above, e(S) ≥ 1

2
k2d
n −

1
2λk.

If r = 2 and k > (λ+ 1)n/d then e(S) ≥ 1
2k
(
kd
n − λ

)
> 1

2k, and therefore S contains at
least one non-loop edge, as needed.

Assuming the assertion of the lemma holds for all integers between 2 and r we prove it
for r+1 ( ≥ 3). Since e(S) ≥ 1

2
k2d
n −

1
2λk, there exists a vertex v ∈ S which is incident with

at least kd
n − λ edges in S, implying that v has at least kd

n − λ − 1 neighbours in S other
than itself. Let N denote the set of all these neighbours. By the induction hypothesis if
kd
n − λ− 1 > sr, then N contains a copy of Kr, that together with v forms a copy of Kr+1.

Hence, any set of more than

(sr + λ+ 1)n
d

=
(λ+ 1)n

d

(
1 +

n

d
+ · · ·+

(
n

d

)r−1
)

= sr+1
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vertices of G contains a copy of Kr+1, completing the proof. 2

For any integer t ≥ 2 and for any power q = 2g of 2 let PG(t, q) denote the finite geometry
of dimension t over the fieldGF (q). The interesting case for our purposes here is that of fixed
t and large q. It is well known (see, e.g., [15]) that the points and hyperplanes of PG(t, q)
can be described as follows. Let Bt denote the set of all nonzero vectors x̄ = (x0, . . . , xt)
of length t+ 1 over GF (q) and define an equivalence relation on Bt by calling two vectors
equivalent if one is a multiple of the other by an element of the field. The points of PG(t, q)
as well as the hyperplanes can be represented by the equivalence classes of Bt with respect
to this relation, where a point x̄ = (x0, . . . , xt) lies in the hyperplane ȳ = (y0, . . . , yt) if and
only if their inner product 〈x, y〉 = x0y0+. . .+xtyt over GF (q) is zero. Let G(t, q) denote the
graph whose vertices are the points of PG(t, q), where two (not necessarily distinct) vertices
x̄ and ȳ as above are connected by an edge if and only if 〈x, y〉 = x0y0 + . . . + xtyt = 0,
that is, the point represented by x̄ lies on the hyperplane represented by ȳ. The graphs
G(t, q) have been considered by several authors - see, e.g., [1], [7]. It is easy to see that
the number of vertices of G(t, q) is nt,q = (qt+1 − 1)/(q − 1) = qt(1 + o(1)) and that it is
dt,q = (qt − 1)/(q − 1) = qt−1(1 + o(1))– regular, where here and in what follows the o(1)
term tends to zero as q tends to infinity. It is also easy to see that the number of vertices of
G(t, q) with loops is precisely dt,q = (qt−1)/(q−1), since the equation x2

0 + . . .+x2
t = 0 over

GF (q) is equivalent to the linear equation x0 + . . .+xt = 0, which has exactly qt−1 nonzero
solutions. This is the only place we use the fact that the field GF (q) is of characteristic
2. A similar construction exists for any prime power q, but the computation in this case is
(slightly) more complicated.

We claim that each copy of Kt+2 in G(q, t) contains at least one vertex represented
by a vector x̄ with 〈x̄, x̄〉 = 0. Indeed, let x̄1, . . . , x̄t+2 be vectors of PG(t, q) such that
〈x̄i, x̄j〉 = 0 for every pair 1 ≤ i 6= j ≤ t + 2. Since these are t + 2 vectors in a vector
space of dimension t + 1 there are ν1, . . . , νt+2 ∈ GF (q) which are not all zero, such that
ν1x̄

1 + . . . νt+2x̄
t+2 = 0̄. Multiplying this equality by x̄i for every 1 ≤ i ≤ t+ 2, we conclude

that νi〈x̄i, x̄i〉 = 0, and hence there exists at least one index i such that 〈x̄i, x̄i〉 = 0.
The eigenvalues of G(t, q) are known and easy to compute. To see this, let A be the

adjacency matrix of G(t, q). By the properties of PG(t, q), A2 = AAT = µJ + (dt,q − µ)I,
where µ = (qt−1 − 1)/(q − 1), J is the nt,q × nt,q all 1-s matrix and I is the nt,q × nt,q

identity matrix. Therefore the largest eigenvalue of of A2 is d2
t,q and all other eigenvalues

are dt,q − µ. It follows that the largest eigenvalue of A is dt,q and the absolute value of all
other eigenvalues is (dt,q − µ)1/2. Put λ = (dt,q − µ)1/2 = q(t−1)/2. By Lemma 2.1 every set

of λ(nt,q/dt,q)r−1(1 + o(1)) = n
1
2

+ 2r−3
2t

t,q (1 + o(1)) vertices spans a copy of Kr.
Let H(t, q) denote the graph obtained from G(t, q) by deleting all vertices represented

by vectors x̄ with 〈x̄, x̄〉 = 0. This is a Kt+2-free graph on n = qt vertices, for which the
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following holds:

Theorem 2.3 For every fixed t and large enough q the graph H(t, q) on n = qt vertices
has the following properties:

1. Kt+2 6⊂ G.

2. For every r ≥ 2 every set of n0(r, t) vertices spans a copy of Kr, where n0(r, t) =
n

1
2

+ 2r−3
2t (1 + o(1)).

To get a result for a general n, we can, for example, start with H(t, q), where q is the
minimal integer of the form q = 2g for which qt ≥ n. Then 2tn ≥ qt. Now delete from
H(t, q) an arbitrary subset of qt− n vertices, thus obtaining a graph on n vertices with the
desired properties. This gives

Corollary 2.4 By an explicit construction for every fixed r, t satisfying 2 ≤ r < (t+ 1)/2,
and for every n,

fr,t(n) = O
(
n

1
2

+ 2r−3
2t−4

)
.

3 The second construction

The second construction we present borrows the core idea from the construction of Erdős
and Rogers [12]. Their argument is non-constructive and relies on the concentration of
measure phenomenon in the high-dimensional sphere. Our construction is explicit and
somewhat simpler to handle.

We begin with some notation.
Let s ≥ 2 and k be positive integers (where s is assumed to be fixed while k tends to

infinity). Denote V = [s]k. Thus, the elements of V are vectors x̄ of length k. We endow V

with the normalized counting measure P , that is, P (A) = |A|/|V | for every subset A ⊆ V .
For every two vectors x̄, ȳ ∈ V denote by d(x̄, ȳ) the Hamming distance between x̄ and ȳ,
that is,

d(x̄, ȳ) = |{1 ≤ i ≤ k : xi 6= yi}| .

Also, for a set ∅ 6= U ⊆ V and a vector x̄ ∈ V let

d(x̄, U) = min{d(x̄, ȳ) : ȳ ∈ U}

denote the distance between x̄ and U .
For every integer δ > 0 define the δ-neighbourhood U(δ) of a nonempty subset U ⊆ V as

U(δ) = {x̄ ∈ V : d(x̄, U) ≤ δ} ;
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thus U(0) = U .
Define a graph G = G(s, k) as follows. The vertex set of G is V , and two vectors x̄, ȳ ∈ V

are connected by an edge in G if and only if d(x̄, ȳ) > k
(
1−

(s+1
2

)−1
)
. Let us investigate

the properties of this graph.

Proposition 3.1 The graph G does not contain a copy of Ks+1.

Proof. Suppose indirectly that x̄1, . . . , x̄s+1 are the vertices of Ks+1 ⊆ G, then according
to the definition of G we have d(x̄i1 , x̄i2) > k(1−

(s+1
2

)−1
) for every pair 1 ≤ i1 6= i2 ≤ s+1.

For every 1 ≤ j ≤ k, there exists at least one pair of vertices of Ks+1 having the same
value in the j-th coordinate. Therefore, summing over all k coordinates and averaging,
we obtain that there exists at least one pair of vectors x̄i1 , x̄i2 , that agree on at least
k
(s+1

2

)−1
coordinates. Thus d(x̄i1 , x̄i2) ≤ k− k

(s+1
2

)−1
, supplying the desired contradiction.

2

We next prove that every sufficiently large subset of V spans a copy of Ks. Define
an s-simplex S to be a set of s vectors x̄1, . . . , x̄s ∈ V with d(x̄i1 , x̄i2) = k for every pair
1 ≤ i1 6= i2 ≤ s.

Proposition 3.2 If V0 ⊆ V and P [V0] > (s−1)/s, then V0 contains a copy of an s-simplex.

Proof. Clearly, each vector of V lies in the same number of s-simplices.
Choose randomly and uniformly a simplex S among all s-simplices in V . Then

P [S 6⊂ V0] = P [ at least one vertex of S does not belong to V0 ]

≤ s
|V | − |V0|
|V |

< s

(
1− s− 1

s

)
= 1.

Hence there exists at least one s-simplex S with all vertices in V0. 2

The next step is to obtain a good isoperimetric inequality for the finite metric space
(V, d). We use martingales as in, e.g., [20], [19], [21].

Lemma 3.3 For c > 0 denote δ(c) = d(
√

ln s/2 + c)
√
ke. If A is a subset of V with

P [A] ≥ 1/s, then P [A(δ)] > 1− e−2c2.

Proof. Define a function f : V → R by f(x̄) = d(x̄, A). This function is clearly Lipschitz
with constant 1, that is, |f(x̄) − f(ȳ)| ≤ d(x̄, ȳ) for all x̄, ȳ ∈ V . Also, f(x̄) = 0 for every
x̄ ∈ A. Let Ef = X0, X1, . . . , Xk = f be the coordinate exposure martingale with respect
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to f , that is, Xi(x̄) = E[f(ȳ) : ȳ ∈ V : ȳj = x̄j ∀j ≤ i]. Hence Hoeffding’s inequality (see,
e.g. Lemma 1.2 of [19]) implies:

P [Xk −X0 < −c
√
k] < e−2c2 , (1)

P [Xk −X0 > c
√
k] < e−2c2 (2)

for all c > 0. In particular, substituting c =
√

ln s/2 in (1) and recalling that P [A] ≥ 1/s,
we see that there exists at least one point x̄ ∈ A, for which

Xk(x̄)−X0(x̄) = f(x̄)−X0 ≥ −
√

ln s/2
√
k .

However, since x̄ ∈ A, one has Xk(x̄) = 0, and therefore X0 ≤
√

ln s/2
√
k. Thus (2) implies

that
P [f > (

√
ln s/2 + c)

√
k] < e−2c2 .

The left-hand side of the above inequality is at least P [V \ A(δ)] with δ = δ(c) as in the
formulation of the lemma, and hence

P [A(δ)] > 1− e−2c2 . 2

Remark. McDiarmid gives in [19] an isoperimetric inequality for graph product spaces
(see [19], Prop. 7.12), implying directly our Lemma 3.3. We chose however to present its
proof here for the sake of completeness. Moreover, it is possible to improve the inequality
and obtain an asymptotically tight isoperimetric inequality. This and related results will
appear in [4]. For our purpose here the present estimate suffices.

The result of the lemma can be reformulated in the following more convenient way:
for every c > 0, if U ⊆ V and P [U ] ≥ e−2c2 , then P [U(δ)] > (s − 1)/s. Indeed, assuming
P [U(δ)] ≤ (s−1)/s, denote W = V \U(δ), then P [W ] ≥ 1/s and therefore P [W(δ)] > 1−e−2c2 ,
contradicting the fact that W(δ) ∩ U = ∅. Define

c =

√
k

2
(s+1

2

) −√ln s/2− 1 =

√
k

s(s+ 1)
(1 + o(1)) , (3)

where the o(1) tends to 0 as k tends to infinity. Then if P [U ] ≥ e−2c2 , then P [U(δ)] >
(s− 1)/s, where δ = δ(c). Therefore, by Proposition 3.2, the set U(δ) contains an s-simplex
S. Let x̄1, . . . , x̄s denote its vertices. Let ȳi ∈ U satisfy d(x̄i, ȳi) ≤ δ(c), where 1 ≤ i ≤ s.
By the triangle inequality

d(ȳi1 , ȳi2) ≥ d(x̄i1 , x̄i2)− 2δ(c)
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> k − k(s+1
2

) + 2
√
k − 2

≥ k

(
1− 1(s+1

2

)) .

This means that the vertices ȳ1, . . . , ȳs ∈ U form a copy of Ks. Recalling (3), we see that
every subset U ⊆ V of size |U | = |V | e−2c2 = |V | e−(1+o(1))2k/(s2(s+1)2) spans a copy of Ks.

Summing up the above, we obtain the following

Theorem 3.4 For every fixed s and large k the graph G = G(s, k) described above is a
graph on n = sk vertices, having the following properties:

1. Ks+1 6⊂ G;

2. Every set of at least n1−ε(s) vertices spans a copy of Ks, where ε(s) = (1+o(1))2/(s2(s+
1)2 ln s) and the o(1) term tends to 0 as k tends to infinity.

Corollary 3.5 By an explicit construction, for every fixed s ≥ 2,

fs,s+1(n) ≤ n1−ε(s) ,

where ε(s) = (1 + o(1))2/(s2(s+ 1)2 ln s).

Remarks. 1. For the case s = 2 the above construction coincides with the construction
of Erdős [10], proving a lower bound for the Ramsey number R(3, t). In this case instead
of applying our approach based on isoperimetric inequalities one can calculate exactly the
maximum size of a subset of vertices of G not containing an edge K2, using the well-known
result of Kleitman [16].
2. For general s, our estimate on ε(s) is better by a factor of 4 than the one of Erdős and
Rogers.
3. A similar construction, requiring somewhat more complicated analysis, yields an im-
provement of the expression for ε(s) by a logarithmic factor. Below we give an outline of
the argument, leaving all technical details to the reader.

For a given s, define

t = t(s) = min{2 ≤ i ≤ s : s(mod i) < i/2} .

It can be shown that t(s) is at most polylogarithmic in s. Put s = tq + r. It follows from
the definition of t that r < t/2. Let V = [t]k. Define

α1(s) = 1−
(r + 1)

(q+1
2

)
+ (t− r − 1)

(q
2

)(s+1
2

) ,

α2(s) = 1−
r
(q+1

2

)
+ (t− r)

(q
2

)(s
2

) .

8



It is easy to see that α1(s)k is an upper bound for the minimum Hamming distance between
a pair in any family of s + 1 vectors in V . Similarly, α2(s)k is an upper bound for the
minimum Hamming distance between a pair in any family of s vectors in V .

Note that since r < t/2 we have

α2(s)− α1(s) =
2q(t− r − 1)

(s− 1)s(s+ 1)
≥ 1

2s(s+ 1)
.

Now define a graph G with vertex set V by joining two vectors x̄, ȳ ∈ V by an edge if their
Hamming distance exceeds α1(s)k. Then G is clearly Ks+1-free. Define an s-simplex to
be a family of s vectors in G, whose mutual Hamming distances are all equal to α2(s)k.
Assuming ”nice” divisibility properties of k, we can claim that such an s-simplex indeed
exists and that every s−1

s |V | vertices of G span an s-simplex. Now the same argument as in
the proof of Theorem 3.4 shows that every |V |e−ck/s4 = n1−c/s4 ln t = n1−c′/s4 ln ln s vertices
of G span a copy of Ks, where n = |V | and c, c′ are some absolute constants. This gives
the bound

fs,s+1(n) ≤ n1− c0
s4 ln ln s ,

where c0 is an absolute constant.
4. The idea applied in the construction of Theorem 3.4 can be used also for obtaining
constructive upper bounds for the function fr,s(n) for values of r other than s − 1. The
bounds obtained (as well as the above bound for fs−1,s(n)) are considerably weaker that
the ones proved in [18] by probabilistic arguments. It would be interesting to find explicit
examples providing bounds closer to the last ones.

Acknowledgement. We would like to thank Benny Sudakov and an anonymous referee
for many helpful comments.
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