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Abstract

We introduce the study of adversarial effects on
wisdom of the crowd phenomena. In particular,
we examine the ability of an adversary to influence
a social network so that the majority of nodes are
convinced by a falsehood, using its power to in-
fluence a certain fraction, µ < 0.5 of N experts.
Can a bad restaurant make a majority of the over-
all network believe in the quality of that restaurant
by misleading a certain share of food critics into
believing its food is good, and use the influence of
those experts to make a majority of the overall net-
work to believe in the quality of that restaurant? We
are interested in providing an agent, who does not
necessarily know the graph structure nor who the
experts are, to determine the true value of a binary
property using a simple majority. We prove bounds
on the social graph’s maximal degree, which en-
sure that with a high probability the adversary will
fail (and the majority vote will coincide with the
true value) when he can choose who the experts
are, while each expert communicates the true value
with probability p > 0.5. When we examine ex-
pander graphs as well as random graphs we prove
such bounds even for stronger adversaries, who are
able to pick and choose not only who the experts
are, but also which ones of them would communi-
cate the wrong values, as long as their proportion is
1− p. Furthermore, we study different propagation
models and their effects on the feasibility of obtain-
ing the true value for different adversary types.

1 Introduction
Understanding the way opinions are formed and disseminated
throughout a social setting has been explored for the past few
decades, following the key insight by Rogers [Rogers, 2003]
that new and unfamiliar products (and ideas) are spread by
a core group of “early adopters” which, depending on their
size, their positions in the social graph, and their inclinations
can either make a product successful or doom it to oblivion.

A similar dynamic can be observed when people form an
opinion regarding uncertain properties of some product or
service, such as the quality of a new restaurant. Members

of a social network are usually either experts — those who
form their opinions based on first-hand experience — or non-
experts who are influenced by the opinions of their expert
friends. For example, people forming opinions about a new
restaurant will often rely on a set of experts, such as food crit-
ics, or first-hand observers, to form their own opinion. Once
experts report their opinions, it is reasonable for them to form
their own opinions by conforming with the majority opinion
of their expert friends. This phenomenon is magnified in on-
line social networks, where new ideas, opinions and technolo-
gies spread easily through the network, and experts can have
a huge effect on the population.

In this work we take an adversarial approach, where an ad-
versary attempts to intentionally mislead the population and
disseminate a falsehood throughout the network. Considering
again the restaurant example, a mediocre restaurant (that can
improve its quality with some additional effort) might try to
choose the restaurant reviewers (=experts) that come in dur-
ing its warm-up period in order to influence them. We con-
sider different adversarial (and non-adversarial) models that
differ from each other in the power of the adversary to di-
rectly approach specific individuals and affect their opinions.

As opinions propagate throughout the graph, the follow-
ing question arises: how can an oblivious observer infer the
ground truth from the network? That is, while agents who
know who are the experts in the system can approach them
when forming an opinion, an oblivious observer might not
even be able to identify these experts. Moreover, an oblivious
observer might not be familiar with the network structure. All
that our observer can see is the number of ”voters” for each
opinion. Thus, it is of great interest to make sure the major-
ity of agents hold the ground truth. In this work, we study
network properties that make the network robust against ad-
versarial attempts to mislead the population. Specifically, we
wish to identify network topologies and opinion formation
models in which, with high probability, the majority of the
population believe in the ground truth.

Our model We consider a social network, given by an undi-
rected graph G = (V,E), with |V | = n nodes, correspond-
ing to agents. The agents live in a world with a ground truth,
which is either red (R) or blue (B). It will be convenient to
assume, without loss of generality, that the ground truth is R.
Agents form opinions about the state of the world through a



process we shall describe soon. We denote by c(v) ∈ {R,B}
the opinion of node v.

A set V ′ ⊆ V of size µ|V | (for a fixed µ), constitutes the
expert set. Experts can be chosen randomly or adversarially.
For both adversary types considered here, it is assumed the
adversary has complete information of the graph, and we as-
sume the adversary seeks to fool our observer, and make it
seem as if the underlying truth is different than it really is.
We distinguish between three models of expert formation.
• Strong adversary: an adversary chooses an expert set
V ′ ⊆ V (such that |V ′| = µ|V |), and assigns opin-
ions to agents in V ′ satisfying the following equations:
|{v ∈ V ′|c(v) = R}| = ( 1

2 + δ)|V ′| and |{v ∈
V ′|c(v) = B}| = ( 1

2 − δ)|V
′|, for some fixed δ.

• Weak adversary: an adversary chooses an expert set
V ′ ⊆ V (such that |V ′| = µ|V |). Experts receive sig-
nals about the state of the world, and are more likely to
be correct than incorrect. Specifically, for every agent
v ∈ V ′ independently, it holds that c(v) = R with prob-
ability 1/2 + δ and c(v) = B with probability 1/2 − δ,
for some fixed δ.
• Random process: a set of µ|V | nodes are chosen uni-

formly at random forming expert set V ′. Opinion forma-
tion of agents in V ′ is as in the weak adversary model.

We next describe the dissemination process. For every
agent v, let N(v) denote the set of agent v’s neighbors; i.e.,
N(v) = {u|(v, u) ∈ E}. Every agent v 6∈ V ′ forms its
opinion by conforming with the majority opinion of its ex-
pert neighbors. That is, if |{u ∈ N(v) ∩ V ′|c(u) = R}| >
|{u ∈ N(v) ∩ V ′|c(u) = B}|, then c(v) = R. If the in-
equality is reversed, then c(v) = B. Finally, if it holds with
equality, then c(v) = R with probability 1/2 and c(v) = B
with probability 1/2. Note that this tie breaking rule implies
that nodes with no neighbors in V ′ form their opinion uni-
formly at random. In Section 4, we examine whether a more
“viral” propagation model is more beneficial than this one.

A network is said to be robust against a particular adversary
model if, with high probability, the majority of agents hold
the true opinion, despite an adversary’s attempt to deceive.

Our results We find that the power of the adversary is
strongly affected by the network structure. Specifically, in the
case of a weak adversary (i.e., one who can choose the set of
experts, but cannot determine the partition of opinions within
the set), we show that any network is robust as long as the
highest degree does not exceed some upper bound1. For ex-
panders and random graphs, we establish robustness results
even with respect to a strong adversary (i.e., one who can
choose the set of experts, and also determine the partition of
opinions within the set). Finally, we study similar questions
under an extended propagation model, where similar dynam-
ics take place iteratively (so that experts’ opinions propagate
beyond their direct friends in the network). We find that an it-
erative propagation can either help or harm a weak adversary.

1Bounds which also seem to be ensured, for example, by Face-
book’s maximal bound for friend numbers (though the more recent
and unlimited “follower” status upends this property, naturally).

Similarly, under a random process, iterative propagation can
be either helpful or harmful. In the case of a strong adversary,
we conjecture that an iterative propagation can never harm the
adversary, and we give an example where it can be helpful.

Related Work The discussion of how opinions and ideas
spread through society has been an active research field since
the seminal work of Rogers 2003, which introduced the con-
cept of “early adopters” as a vanguard from which an inven-
tion may spread to the rest of society. From that line of re-
search, various directions were adopted to try and understand
– both theoretically and empirically – how agents might adopt
a certain property depending on how many were adopting it
in the society surrounding them.

On issues on which agents have an innate opinion while be-
ing influenced externally, research expanded to cases where
agents do not have full information, first for very limited set-
tings [Farrell and Saloner, 1985], and then for richer ones,
which involved finding equilibria in these scenarios [Katz
and Shapiro, 1985], and creating models to incorporate in-
fluence of agents on each other, first on limited, lattice-like,
graphs [Blume, 1993; Ellison, 1993], and then on general
graphs [Morris, 2000; Young, 2000; Tangand et al., 2009;
Kameda et al., 1997; López-Pintado and Watts, 2008]. A
particular strand of this research focused on “informational
cascade” or “herd mentality” when choices are made se-
quentially in political settings (where there is a ground truth,
which agents aim to reach) or market cases (where there is
no underlying truthful choice) [Bikhchandani et al., 1992;
Banerjee, 1992; Arthur, 1989], with more recent research try-
ing to find various equilibria in such cascades [Alon et al.,
2012], and examining such cascades on graph structure, in-
cluding, as in our scenario, on random graphs [Watts, 2002].

In particular, two fairly recent papers dealing with cascades
when there is a ground truth are related to ours: Both Mos-
sel et al. 2014 and Feldman et al. 2014 include a ground truth
which agents have a higher probability of supporting. Despite
different synchronous modes between these papers, both uti-
lize the same dynamic we explore: nodes adopting the color
of the majority of their already colored neighbors. However,
both papers focus on reaching a consensus in the social net-
work (as we don’t allow agents to change their views, this
goal is irrelevant in our model), and strategies for a truthful
consensus, while we only strive to have the majority of the
agents be truthful, and include an active adversary, trying to
prevent acceptance of the ground truth.

A closely related track of research explores “word of
mouth” models for information diffusion, where agents have
no particular opinion. Exploring word of mouth travel in-
volved empirical work [Brown and Reingen, 1987], as well
as theoretical one, examining propagation models [Granovet-
ter, 1973; Goldenberg et al., 2001; Young, 2009], attempt-
ing to explain how marketing works using combination of
ads (to “early adopters”) and word of mouth (an overview
of much of the research can be seen in Mahajan et al. 1990
and Young 2009), and trying to find influential agents in
the network [Kempe et al., 2003]. Some of the research
in this direction has evolved into work on recommendation



systems, where agents have trust relationships according to
which they accept recommendations [Andersen et al., 2008;
Domingos and Richardson, 2001; Richardson and Domingos,
2002]. Similar to these models (in particular, Andersen et
al. 2008), one can look at our experts as the opinionated nodes
in these recommendation systems.

2 Weak Adversaries
In this section we consider the robustness of networks to weak
adversaries. We establish a property that ensures that the
ground truth is held by the majority of the population with
high probability. We begin with a few simple examples.
Example 1. Consider the clique graph. There is a higher
probability a majority of V ′ would be Red, and then, all
nodes that are not in V ′ will turn Red. It is easy to verify
that in this example the majority of the population will turn
Red with high probability.
Example 2. Consider a ”star” network, with a single cen-
tral mode connected to all other nodes. If the central mode
belongs to V ′, then, with probability 1

2 − δ it will be Blue,
thereby causing all nodes not in V ′ to turn Blue. Thus, in
this example, the majority will beBlue with probability close
to 1/2, so the network is not robust against a weak adversary.

We shall now show that for any ε < µ, δ, for 0 < µ, δ <
1
2 , if n is sufficiently large, we have a sufficient criterion for
majority to reflect the truth.
Theorem 1. For 0 < ε < µ, δ < 1

2 , if n is sufficiently large,
there is an absolute positive constant c1 so that if the highest
degree ∆ satisfies

∆ ≤ c1
εδ4µn

log(1/ε)

then majority over all vertices gives the truth with probability
at least 1− ε.

This is nearly tight, (though the precise best possible de-
pendence on δ and ε is not), as shown by the following.
Proposition 1. There is an absolute positive constant c2 such
that for all ε, δ, µ and all large n there is an example of a
graph G = (V,E) with |V | = n, highest degree

∆ ≤ c2
δ2µn

log(1/ε)

and a choice of V ′ ⊂ V , |V ′| = µn for which the majority
fails to give the truth with probability exceeding ε.

Proof of Theorem 1: Put V ′T = {v ∈ V ′ : c(v) = R}, V ′F =
{v ∈ V ′ : c(v) 6= R}. By Chernoff’s Inequality (c.f. [Alon
and Spencer, 2008], appendix A), if n is sufficiently large

Prob(|V ′T | − |V ′F | < δµn) < ε/4. (1)
Split the vertices of V −V ′ into three groups, VH , VL and VN ,
according to the number of their neighbors in V ′, as follows.
Put M = c3

1
δ2 log(1/ε) (with c3 an absolute constant chosen

appropriately).
VH = {v ∈ V − V ′ : |Nv ∩ V ′| ≥M}
VL = {v ∈ V − V ′ : 1 ≤ |Nv ∩ V ′| < M}
VN = {v ∈ V − V ′ : Nv ∩ V ′ = ∅}

Put VHT = {v ∈ VH : c(v) = R}, VHF = VH − VHT and
define VLT , VLF , VNT , VNF similarly.

By Chernoff, again, the opinions in VN are balanced with
high probability and in particular, for sufficiently large n

Prob(|VNF | − |VNT | > δµn/4) < ε/4. (2)

Fix a vertex v ∈ VH . The probability that the opinions of
at least half of his neighbors are B is the probability that a
binomial random variable with parameters ` ≥ M and p =
1
2 + δ has a value of at most `2 , which is, by Chernoff, at most

e−c4δ
2M < ε3/16 ≤ εµδ

16
,

where the first inequality follows by choosing c3 (in the def-
inition of M ) appropriately, and the second by the fact that
ε < µ and ε < δ. It follows that the probability that the
opinion of v is c(v) = B is at most εµδ/16, and hence, by
linearity of expectation, the expected size of VHF is at most
|VH |εµδ/16. By Markov’s Inequality this implies

Prob(|VHF | − |VNT | >
δµn

4
) < Prob(|VHF | >

δµ|VH |
4

) <
ε

4
(3)

It remains to estimate the contribution of VL vertices opin-
ions. This is done using the second moment method de-
scribed, for example, in [Alon and Spencer, 2008], Chapter
4:

For each vertex v ∈ VL, let Xv be the indicator random
variable with value 1 iff c(v) = B (and 0 otherwise). Note
that since v has at least one neighbor in V ′, the probability
that Xv = 1 is at most 1/2 − δ. Put X =

∑
v∈VN

Xv ,
then X is the random variable whose value is exactly |VLF |.
Put m = |VL| and note that by linearity of expectation the
expected value of X satisfies E[X] ≤ m(1/2 − δ). We next
bound the variance of X . For v, v′ ∈ VL, let v ∼ v′ denote
that v 6= v′ and v, v′ have at least one common neighbor
in V ′. Note that if v 6= v′ do not satisfy v ∼ v′ then the
random variables Xv, Xv′ are independent, and hence their
covariance is 0. We thus have

V ar[X] =
∑

v∈VN

V ar(Xv) +
∑

v,v′∈VL,v∼v′

Cov(Xv, X
′
v),

where the sum ranges over all ordered pairs v, v′ ∈ VL, v ∼
v′.

As each Xv is an indicator random variable, its variance is
at most its expectation. Similarly, for v, v′ ∈ VL, v ∼ v′:

Cov(Xv, X
′
v) = E[Xv ·Xv′ ]−E[Xv]E[Xv′ ] ≤ E[Xv ·Xv′ ] <

1

2
.

Note, crucially, that for each v ∈ VL, the number of v′ ∈ VL
so that v ∼ v′ is smaller than M(∆ − 1), as v has less than
M neighbors in V ′, and each of them can have at most ∆− 1
other neighbors in VL. We thus conclude that

V ar[X] ≤ E[X] + |VL|(∆− 1)M · 1

2
<

m/2 +m(∆− 1)M · 1

2
< m∆M/2

Note that the probability that X = |VLF | is at least m/2 +
δµn/4 is at most the probability that it exceeds its expecta-
tion, which is at most m(1/2− δ), by at least

δm+ δµn/4 ( ≥ δ√µmn ).



By Chebyshev’s Inequality we conclude that if

∆ ≤ c1
εδ4µn

log(1/ε)

then
Prob(|VLF | − |VLT | ≥ δµn/2) =

Prob(|VLF | ≥ m/2 + δµn/4) ≤ V ar[X]

δ2µmn
≤

m∆M

2δ2µmn
= c5

∆ log(1/ε)

δ4µn
≤ ε/4

(4)

for an appropriate choice of c1 in Theorem 1.
Combining (1),(2), (3) and (4) we conclude that with prob-

ability at least 1 − ε none of the events in these inequalities
holds. It is easy to see that if this is the case then the majority
opinion is indeed R, as needed.

Proof of Proposition 1: Let G = (V,E) be a graph con-
sisting of vertex disjoint stars, each of size t = c6

δ2µn
log(1/ε) .

For the set V ′ we choose the centers of q = c7
1
δ2 log(1/ε)

of the stars, as well as µn − q additional vertices in some
d(µn − q)/te other stars. For the right choice of c6, c7, the
probability that at least q/2 + 2δq of the centers in V ′ will
have the wrong opinion B is at least 2ε. They will affect all
the leaves of the stars giving an advantage of at least 4δµn
to the wrong opinion over the truth T among the vertices of
these q stars. The probability that the other opinions will
change the majority is smaller than ε, implying the desired
result. The detailed computation is omitted.

3 Strong Adversaries
Here we examine the robustness of networks against a strong
adversary. We begin with an example demonstrating the po-
tential vulnerability of networks against a strong adversary.

Example 3. We show here a case where a network is more
robust against a weak adversary than against a strong one:
Let δ = 1

4 , µ = 1
10 . The graph consists mostly of atoms (i.e.,

nodes not connected to any other node), except for 5
40n nodes,

which are divided into quintets – every 5 nodes form a clique.
As the maximal degree is fixed at 4, according to Theorem 1,
for a large enough n, majority will prevail and reflect the
underlying truth (i.e., Red) with very high probability.

However, a strong adversary shall choose one node in each
of the quintets to be an expert ( 1

40n nodes) which it will turn
Blue, and 3

40n other nodes which are atoms, to be experts
which will turn Red. The left over atoms ( 45n nodes) will
be, by Chernoff, roughly equally divided into Red and Blue
(about 2

5n nodes each) with high probability, while all the
quintets will turn Blue. Ultimately, we have, with high prob-
ability, ( 19

40 +o(1))n Red nodes and ( 21
40 +o(1))n Blue nodes

– making Blue, the adversary’s choice, the majority winner.

3.1 Expanders
An (n, d, λ)-graph is a d-regular graph on n vertices in which
the absolute value of every eigenvalue besides the first is at
most λ.

The following theorem will be useful in establishing the
robustness of expanders against strong adversaries.

Theorem 2. LetG = (V,E) be an (n, d, λ)-graph, letA and
B be subsets of V and assume that |A| > |B|. Let X be the
set of all vertices v of G satisfying |N(v)∩B| ≥ |N(v)∩A|,
where N(v) is the set of neighbors of v in G. Then

|X| ≤ 2λ2

d2
|A|(1− |A|/n) + |B|(1− |B|/n)

(|A| − |B|)2 n2.

To prove the theorem we need the following known result
that shows that if λ is much smaller than d, then for every set
of vertices A, most vertices have roughly the ”right” number
of neighbors in A.
Lemma 1 ([Alon and Spencer, 2008], Theorem 9.2.4). Let
G = (V,E) be an (n, d, λ)-graph, and let A ⊂ V be an
arbitrary set of vertices of G, then∑

v∈V

(|N(v) ∩A| − d|A|
n

)2 ≤ λ2|A|(1− |A|
n

)

We also need the following simple fact.
Lemma 2. Let a > b be two reals and suppose x ≥ y. Then
(x− b)2 + (y − a)2 ≥ (a− b)2/2.

Proof of Theorem 2: By Lemma 1∑
v∈V

(|N(v) ∩A| − d|A|
n

)2 ≤ λ2|A|(1− |A|
n

)

and ∑
v∈V

(|N(v) ∩B| − d|B|
n

)2 ≤ λ2|B|(1− |B|
n

).

therefore∑
v∈V

(|N(v) ∩A| − d|A|
n

)2 + (|N(v) ∩B| − d|B|
n

)2

≤ λ2[|A|(1− |A|
n

) + |B|(1− |B|
n

)].

By Lemma 2 (with a = d|A|
n and b = d|B|

n ), each vertex
v ∈ X contributes to the left hand side of the last inequality
at least d

2(|A|−|B|)2
2n2 and we thus conclude that

|X|d
2(|A| − |B|)2

2
≤ λ2[|A|(1− |A|

n
) + |B|(1− |B|

n
)]n2,

completing the proof.
Theorem 2 implies that if the network in our social voting

game is an (n, d, λ)-graph with λ much smaller than d and d
sufficiently large as a function of µ and δ, then majority gives
the truth (deterministically) even against a strong adversary,
that is, an adversary who is allowed to select a set V ′ of µ|V |
experienced vertices, and is also allowed to select any parti-
tion of it into two disjoint setsA andB with |A| = ( 1

2+δ)|V ′|
and |B| = ( 1

2 − δ)|V
′|, where all members of A get the truth

Red and all those in B get Blue.
Theorem 3. Let G = (V,E) be an (n, d, λ)-graph and sup-
pose that

d2

λ2
>

1

δ2µ(1− µ+ 2δµ)
.

Then for any strong adversary as above the majority gives
the truth. In particular, if G is a Ramanujan graph, that is,
λ ≤ 2

√
d− 1 this is the case provided

d ≥ 4

δ2µ(1− µ+ 2δµ)
.



Proof. It suffices to check that if A and B are disjoint sets of
vertices satisfying |A| = ( 1

2 + δ)µn and |B| = ( 1
2 − δ)µn,

then the number of vertices v outsideA∪B for which |N(v)∩
B| ≥ |N(v) ∩A| is smaller than ( 1−µ

2 + δµ)n. By Theorem
2 this number is smaller than

2λ2

d2
µn

4δ2µ2n2
n2

which satisfies the required bound provided the assumption
on d2/λ2 holds.

3.2 Binomial Random Graphs
G = G(n, p) is the binomial random graph, in which each
edge has a probability of p of existing in the graph. As with
expander graphs, these graphs have particular properties that
let us elaborate on their robustness in the face of strong adver-
saries. Specifically, with high probability (that is, with prob-
ability that tends to 1 as n tends to infinity) the statement of
Theorem 3 holds even for average degree that is a bit smaller
than the one above. For this model the following holds:
Theorem 4. There exists an absolute constant c so that if
µ < 1/2 and

d = np ≥ c · max { log(1/µ)

δ2
,

1

µδ
}

then with high probability if G = G(n, p) then for any strong
adversary as above the majority gives the truth.

The proof is by showing that for any fixed two disjoint
sets of vertices A and B of sizes as in the previous section,
the probability that there are too many vertices having more
neighbors in B than in A is sufficiently small to ensure that
even after multiplying it by the number of possible setsA and
B the number obtained still tends to zero as n tends to infinity.
Its details are omitted due to space constraints

4 Iterative Propagation
We now seek to understand how changing the propagation
model from the one we have used so far to a more ”viral”
one affects the adversary, and how that effect changes as we
accord different powers to the adversaries — random, weak
and strong.

So far, we have dealt with a limited propagation, which
only handles the influence experts have over the agents di-
rectly connected to them. An alternative model, iterative
propagation tries to incorporate the influence agents have
over others in the social network. I.e., once the experts’ view
propagates to the agents connected to it, those agents propa-
gate their view to those connected to them, and so on, until
the whole connectivity component is influenced.

More formally, starting from V ′, if |{u ∈ N(v) ∩
V ′|c(u) = R}| > |{u ∈ N(v) ∩ V ′|c(u) = B}|, then
c(v) = R. If the inequality is reversed, then c(v) = B, and if
it holds with equality, then c(v) = R with probability 1

2 and
c(v) = B with probability 1

2 (same as with the limited propa-
gation we used). Now, defining V 1 as V ′ ∪

⋃
v∈V ′ N(v), we

repeat this process, but with V 1 instead of V ′, creating V 2,
and then over and over until V k includes all vertices of the
connected components containing vertices of V .

…"

…"

Figure 1: Iterative propagation will cause the line graph to turn
Blue if last node is colored Blue, ensuring the color’s propagation
(striped nodes indicate propagation).

4.1 Strong Adversaries
Recall that strong adversaries can choose V ′ and the color of
each of its nodes, subject to having (1/2 + δ)|V ′| red nodes
and (1/2 − δ)|V ′| blue ones. We conjecture that in this case
iterative propagation is always beneficial. We shall demon-
strate its usefulness in a specific case.

Example 4. Iterative Propagation helps the adversary
Consider a graph consisting of a path on m = 0.024n

nodes together with 0.976n isolated nodes. Suppose µ =
δ = 1

10 . Thus, the fraction of blue nodes in V ′ is 1
2 − δ = 2

5 .
With limited propagation, it is not difficult to check that the

best strategy of the adversary is to place m/3 = 0.008n of
the blue nodes along the path ensuring that all of it becomes
blue, and place the remaining 0.04n −m/3 = 0.032n blue
nodes and 0.06n red nodes outside the path. (For simplicity
we omit all floor and ceiling signs whenever these are not
crucial). By Chernoff, with high probability the total number
of blue nodes will be 0.024n+0.032n+(1/2+o(1))0.884n =
(0.498 + o(1))n. Thus, in this case if n is sufficiently large
then with high probability the majority is red, meaning that
the adversary fails.

On the other hand with iterative propagation the adversary
can place one blue node in the path and place all the other red
and blue nodes outside it. This will ensure, by Chernoff, that
with high probability the total number of blue nodes will be
0.024n+0.04n−1+(1/2+o(1))0.876n = (0.502+o(1))n.
Thus, with high probability with iterative propagation Blue
attains the majority of nodes.

4.2 Weak Adversaries
Here we consider weak adversaries, and in this case, iterative
propagation can both help and hinder the adversary.

Example 5. Iterative Propagation can help the adversary:
Consider a path on n nodes with µ = 1

10 and δ = 1
10 .

With limited propagation, as the maximum degree in the
graph is the constant 2, by Theorem 1 if n is sufficiently large
Red wins with high probability, i.e., the adversary fails.

However, with iterative propagation, the adversary can
choose V ′ to consist of the first µn = n/10 nodes of the path.
The probability that the last among those is Blue is 2/5, and
in this case we will have a majority of Blue in the process
(see Figure 1).

Example 6. Iterative propagation can harm the adver-
sary:

Consider a graph which is the disjoint union of a star on
n/14 nodes together with a 3-regular high girth expander on
the remaining nodes. Let µ = δ = 1/12.

With limited propagation the adversary can place the cen-
ter of the star in V ′, and place the remaining nodes of V ′ in
the expander, so that no node of the expander has more than



one neighbor in V ′ (this is possible by a simple greedy pro-
cedure). Now there are 3(|V ′| − 1) expander nodes that are
neighbors of the ones in V ′, and including the members of
V ′ in the expander we have n/3 − O(1) nodes. Thus, with
high probability the difference between the number of Red
and Blue nodes in the expander will be (1 + o(1))0.2 ·n/3 =
(1/15+o(1))n. However, with probability 0.4 the star’s cen-
ter is Blue, turning all the star blue, giving majority to Blue.

Consider now iterated propagation. Any node with a
neighbor in V ′ (or more than one) also becomes Red with
probability at least 0.6 during the first iteration. As nodes
that have no common neighbor are independent this means
that after the first iteration, with high probability the number
of Red nodes in the expander exceeds that of the number of
Blue nodes by at least a factor of 3/2 − o(1). A similar ar-
gument shows that with high probability this is also the case
after any constant number of steps, where here it is conve-
nient to use the assumption that the expander is of high girth.
This ensures the neighborhood of any vertex is locally a tree,
and if its distance from V ′ is r, it gets a color in iteration
number r. Therefore, with high probability at least 0.6−o(1)
fraction of the expander’s nodes will be Red, and even if the
star is Blue, Red will still have majority. We omit the details.

4.3 Random Process
Finally we consider the random process model, with a passive
adversary, in which both V ′ and the node color assignment is
done randomly, and in this case iterative propagation can be
both a curse and a blessing for the adversary:

Example 7. Iterative Propagation can help the adversary:
Take n/60 paths, each of length 3. Add a special node

s and join it to the first node of each path. The graph we
consider consists of this structure together with 19n/20 − 1
additional isolated nodes. Take µ = δ = 1/10. With
limited propagation Red is the majority with high probabil-
ity. Indeed, by Chernoff Red has an advantage of at least
(1− o(1))0.2 · 0.1 · (59n/60− 1) > (0.019− o(1))n among
the nodes besides s and its neighbors, hence even if s and all
its n/60 neighbors become Blue, Red still has the majority.

With propagation, however, with probability 0.4 · 0.1 =
0.04 s is in V ′ and is colored Blue. Also, with high probabil-
ity, more than 0.7 fraction of the paths connected to s have
no member of V ′, and will thus all become Blue during the
iterated propagation. This gives, with high probability, an
advantage of more than 0.4 · 3 · n/60 = n/50 to Blue among
the non-isolated nodes, and by Chernoff in this case Blue has
the majority with high probability.

Example 8. Iterative propagation can harm the adver-
sary:

Consider a graph consisting of 10 stars, each of size n/10,
where µ = δ = 1/10.

With limited propagation if V ′ contains exactly one center
of a star and this node gets Blue, then with high probability,
by Chernoff, Blue has the majority. This happens with prob-
ability bigger than 0.4/e > 0.1 (see Figure 2).

With iterated propagation, Red gets, with high probability,
a large majority in each star in which the center is not in V ′
and Blue, hence Red has the majority unless at least 5 centers

…"

…"

…"

Figure 2: With limited propagation, the chance of a Blue majority
relies on Blue being in a star center, propagating its color to the
whole star, while the Red nodes of V ′ are not centered, limiting
their propagation capacities (striped nodes indicate propagation).

…"

…"
Figure 3: With iterative propagation, even non-center Red nodes
have a significant impact, as much as star-centered Blue nodes
(striped nodes indicate propagation).

belong to V ′ and are all Blue, and this happens with a much
smaller probability (see Figure 3).

5 Discussion
In this paper we approach the issue of robustness – whether a
social network is vulnerable to an adversarial attempt to prop-
agate information through it. We found bounds that ensure a
majority of network agents will not, with high probability, be
duped by an adversary trying to manipulate agents. For ex-
pander graphs and random graphs, we even found such a limit
for a strong adversary, which can decide which specific agents
to deceive. Furthermore, we show that neither limited nor it-
erative propagation methods have deterministic influence on
the capabilities of passive or weak adversaries.

This line of research opens various new questions and di-
rections of work: we use a simple node majority as enabling
an observer to attempt to find what the real truth is, yet
one can imbue this agent with various capabilities, including
some limited knowledge of the topological properties of the
graph. Moreover, one can choose hybrid variants of adver-
saries (or a multitude of them), and examine how this affects
the bounds and results we have shown.

Another natural extension deals with examining more par-
ticular sorts of graphs, perhaps relying on data on common
graph structures in various social communities. As we have
shown, assuming expander graphs or random ones allows us
to show a bound for strong adversaries and, naturally, differ-
ent types of graphs may be more or less robust to various sorts
of adversaries and manipulations.
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