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Abstract

We prove that for every fixed k and ` ≥ 5 and for sufficiently large n, every edge coloring of
the hypercube Qn with k colors contains a monochromatic cycle of length 2`. This answers an
open question of Chung. Our techniques provide also a characterization of all subgraphs H of
the hypercube which are Ramsey, i.e., have the property that for every k, any k-edge coloring of
a sufficiently large Qn contains a monochromatic copy of H.

1 Introduction

Let Qn denote the graph of the n-dimensional hypercube whose vertex set is {0, 1}n and two vertices
are adjacent if they differ in exactly one coordinate. Ramsey and Turán-type questions concerning
the hypercube were mentioned in a 1984 paper by Erdős [8], but in fact had been considered even
earlier, as in this paper he outlined a collection of “old unsolved problems which had been perhaps
undeservedly neglected”. In one of these problems he asked how many edges of an n-dimensional
hypercube are necessary to imply the existence of a 4-cycle. Erdős conjectured that (1

2 + o(1))n2n−1

edges are enough to force the appearance of C4. A similar question was posed for the existence of a
cycle C2` for ` > 2 where Erdős asked whether o(n)2n edges would suffice (see also [9]). Since Qn is
a bipartite graph, clearly only cycles of even length are in question.

It is easy to see that there are n2n−2 edges of Qn avoiding a C4, e.g., for all odd values of 1 ≤ k ≤ n

take those edges lying between levels k−1 and k. This example is not maximal and can be improved
by adding some independent edges. The best example to date was obtained by Brass, Harborth and
Nienborg [2]. For n = 4t it has (n +

√
n)2n−2 edges which may well be a tight bound for Erdős’s
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conjecture. Bialostocki proved in [1] that for any 2-edge coloring of Qn without a monochromatic
C4, the number of edges in each color is at most (n +

√
n)2n−2. Hence, this is indeed the maximum

size of a C4-avoiding set of edges, with the additional assumption that it intersects every C4 in at
least one edge. However, this assumption appears difficult to remove. On the other hand, Chung
[4] proved that any subset of αn2n−1 edges, where α

.= 0.623, must contain a C4. This remains the
best upper bound to this date. For small values of n, the exact number of edges in a largest C4-free
subgraph of Qn was determined in [7], [10]. Some further results on C4-avoiding sets of edges which
are connecting vertices of three consecutive levels of the hypercube can be found in [11].

For longer cycles C2`, Erdős’s question was resolved positively for even ` ≥ 4. In [4], Chung proved
that for a fixed even ` ≥ 4, any subset of edges of Qn avoiding C2` has size o(n)2n. On the other
hand, she showed that this is not the case for cycles of length 6 since the edges of Qn can be colored
using 4 colors so that there is no monochromatic C6 (a similar coloring was discovered also in [3]).
Therefore, a subset of 1

4n2n−1 edges avoiding C6 exists. This sparked new interest in edge colorings of
the hypercube without monochromatic cycles. A 3-coloring avoiding a monochromatic cycle of length
6 was found in [6]. On the other hand, it was shown in [4] that any subset of (

√
2− 1 + o(1))n2n−1

edges must contain a C6.

Since a coloring avoiding a monochromatic C2` using a constant number of colors is impossible for
even ` ≥ 4 due to [4], it remains to determine whether such a coloring exists for odd ` ≥ 5. This
question was posed by Chung in [4] (see also [5], pp. 43–44). In this paper, we prove the following
theorem which answers it negatively.

Theorem 1.1 For every fixed k and ` ≥ 5 and sufficiently large n ≥ n0(k, `), every edge coloring of
the hypercube Qn with k colors contains a monochromatic cycle of length 2`.

In fact, our techniques provide a characterization of all subgraphs H of the hypercube which are
Ramsey, i.e., have the property that for every k, any k-edge coloring of a sufficiently large Qn

contains a monochromatic copy of H. We also present examples of graphs which are not Ramsey but
the number of colors required to avoid their monochromatic copies is arbitrarily large. (In contrast,
every even cycle is either Ramsey or it can be avoided using 2 or 3 colors.) More details are given in
Section 4.

Definitions and notation.

Recall that Qn denotes the n-dimensional hypercube whose vertex set is {0, 1}n. We refer to the n

coordinates as bits and write vertices as n-bit words, for example x = [10001], y = [10101]. Edges are
between vertices that differ in exactly one bit. We call the unique bit where xi 6= yi the flip-bit. The
vertex where the flip-bit is zero is called the lower vertex and the other vertex is called the upper
vertex. For example, for the vertices x, y above, {x, y} is an edge where x is the lower vertex, y is the
higher vertex and the 3-rd bit is the flip-bit. To simplify notation, we write such an edge as [10 ∗ 01];
the ∗ symbol denotes the flip-bit and we obtain the two vertices of the edge by substituting 0 or 1
in place of ∗.
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2 Cycles of length 10

First, we address the question for cycles of length 10. The colorings that have been used in order to
avoid monochromatic cycles of length 4 and 6 are based on two parameters: for an edge e = {x, y}
where x is the lower vertex and j is the flip-bit, define

• w(e) =
∑n

i=1 xi.

• p(e) =
∑j−1

i=1 xi.

The first parameter distinguishes different levels of vertices; each level is defined by a constant value
of

∑n
i=1 xi. The second parameter further distinguishes the edges between each pair of consecutive

levels; we call p(e) the prefix sum of e. To avoid monochromatic cycles of length 4 and 6, it is enough
to consider colorings based on these two parameters, taken modulo a suitable number (see, e.g., [6]).

In contrast, it turns out that for cycles of length 10, no such coloring can work. The reason is the
following cycle in Q5:

e1 = [ 1 ∗ 0 0 1 ]
e2 = [ 1 1 0 0 ∗ ]
e3 = [ 1 1 0 ∗ 0 ]
e4 = [ ∗ 1 0 1 0 ]
e5 = [ 0 1 ∗ 1 0 ]
e6 = [ 0 1 1 ∗ 0 ]
e7 = [ ∗ 1 1 0 0 ]
e8 = [ 1 ∗ 1 0 0 ]
e9 = [ 1 0 1 0 ∗ ]
e10 = [ 1 0 ∗ 0 1 ]

Here, every odd edge e2i−1 goes from ∗ = 0 to ∗ = 1, and every even edge e2i goes from ∗ = 1 to
∗ = 0. The reader can verify that these edges form a C10. Observe that w(ei) is equal for all these
edges which corresponds to the fact that the cycle is alternating between two levels of the hypercube.
Regarding p(ei), it is not the same for each edge, but it depends only on the location of the flip-bit;
for each pair of edges with the same flip-bit, p(ei) is the same: either 0, 1, or 2. It is not difficult to
see that for any coloring of the type (p(ei) mod k), we can insert blocks of 1’s between these 5 bits so
that the resulting cycle (in a higher-dimensional hypercube) is monochromatic. In the following, we
show that there is a deeper reason why this kind of coloring cannot avoid monochromatic 10-cycles:
in fact, for any coloring with a fixed number of colors, there is some form of the cycle above which
turns out to be monochromatic.

Theorem 2.1 For any fixed k and sufficiently large n ≥ n0(k), every edge coloring of Qn with k

colors contains a monochromatic cycle of length 10.
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Proof. Consider an arbitrary k-edge coloring χ of Qn, for a very large n to be chosen later. Let’s
consider only edges between levels 2k and 2k +1, which are defined by 2k coordinates equal to 1 and
a given flip-bit. We call these 2k + 1 bits the support of an edge. We can encode each edge uniquely
by (S, p) where S ⊂ [n] is the support of the edge, and p ∈ {0, 1, ..., 2k} denotes its prefix sum. In
other words, p determines the relative location of the flip-bit in the support of the edge. Each pair
(S, p) gets some color χ(S, p) in our coloring. Let’s assign a vector c(S) = (χ(S, 0), . . . , χ(S, 2k)) to
each subset S, i.e. the edge colors for all possible locations of the flip-bit. We get a coloring of the
complete (2k + 1)-uniform hypergraph on [n], using k2k+1 colors.

By Ramsey’s Theorem for hypergraphs, for sufficiently large n ≥ n0(k), there is a subset of coordi-
nates T ⊂ [n] of size 2k +3 such that all (2k +1)-subsets S ⊂ T have the same color c(S) = c∗. Now,
since c∗ has 2k + 1 coordinates colored by k colors, there must be 3 indices p1, p2, p3 ∈ {0, ..., 2k}
such that c∗p1

= c∗p2
= c∗p3

. This means that all edges (S, pi) where S ⊂ T, |S| = 2k +1 and i = 1, 2, 3,
have the same color. We show that this set of edges contains a monochromatic cycle of length 10,
which can be obtained from the cycle above by inserting blocks of 1’s of suitable length in front of
the first bit, between the first and second bit, and between the third and fourth bit. Since we want
the prefix sum p(ei) for each edge to be equal to p1, p2 or p3, we choose these blocks as α = 1p1 (a
string of p1 ones), β = 1p2−p1−1, γ = 1p3−p2−1 and δ = 12k−p3 . The cycle looks like this: (only the
coordinates of T are shown, the rest is zero)

e1 = [ α 1 β ∗ 0 γ 0 1 δ ]
e2 = [ α 1 β 1 0 γ 0 ∗ δ ]
e3 = [ α 1 β 1 0 γ ∗ 0 δ ]
e4 = [ α ∗ β 1 0 γ 1 0 δ ]
e5 = [ α 0 β 1 ∗ γ 1 0 δ ]
e6 = [ α 0 β 1 1 γ ∗ 0 δ ]
e7 = [ α ∗ β 1 1 γ 0 0 δ ]
e8 = [ α 1 β ∗ 1 γ 0 0 δ ]
e9 = [ α 1 β 0 1 γ 0 ∗ δ ]
e10 = [α 1 β 0 ∗ γ 0 1 δ ]

It can be seen that for edges e4 and e7, the prefix sum is |α| = p1, for edges e1, e5, e8, e10, the prefix
sum is |α|+ |β|+1 = p2 and for e2, e3, e6 and e9, the prefix sum is |α|+ |β|+ |γ|+2 = p3. Thus each
of these edges is encoded by (S, p1), (S, p2) or (S, p3) for some S ⊂ T, |S| = 2k + 1, and therefore
they all have the same color. 2

3 Cycles of length 2` ≥ 12

In this section, we extend the proof for 10-cycles to all even cycles of length at least 12. All we have
to do is find a cycle of length 2` with properties similar to the 10-cycle shown above.
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Lemma 3.1 For any ` ≥ 6, Q` contains a cycle of length 2` in which each edge has a support of
size 3, such that for some 1 < a < b < `,

1. Each edge with a flip-bit located in {1, . . . , a} has prefix sum p(e) = 0.

2. Each edge with a flip-bit located in {a + 1, . . . , b} has p(e) = 1.

3. Each edge with a flip-bit located in {b + 1, . . . , `} has p(e) = 2.

Proof. For any ` ≥ 6, we define a cycle on vertices with ` bits, consisting of edges (e1, e2, . . . , e2`),
associated with a permutation π ∈ S`:

• Each edge in the cycle has a support of size 3.

• Every odd edge e2i−1 has bits π(i), π(i + 1) equal to 1, and π(i + 2) is the flip-bit (going up).

• Every even edge e2i has bits π(i + 1), π(i + 2) equal to 1, and π(i) is the flip-bit (going down).

To simplify notation, we consider π as a periodic function, i.e. π(i + `) = π(i) for any i.

It is easy to verify that this is indeed a cycle of length 2`. We need to find a permutation such that
the cycle satisfies the requirements of the lemma. Observe that for a given i, there are exactly two
edges with flip-bit π(i). The other non-zero bits on these two edges are π(i−1), π(i−2) for one edge
and π(i + 1), π(i + 2) for the other edge. Thus the prefix sum p(e) for each edge is determined by
the two nearest elements in the permutation, on either side.

First, consider ` ≥ 6 divisible by 3 and set ` = 3a, b = 2a. Take an arbitrary permutation of type
(A,B, C, A,B,C, . . . , A, B, C), where each A stands for some element in {1, . . . , a}, each B for an
element in {a + 1, . . . , b} and each C for an element in {b + 1, . . . , `}. It can be seen that for each A,
the two nearest elements in the permutation, on either side, are B,C, which defines the location of
the other two non-zero bits. Such an edge looks like this:

∗ 1 1

where the three blocks correspond to bits of type A, B and C. Therefore, in this case p(e) = 0.
Similarly for each B, the two nearest elements on each side are A,C and the prefix sum in both cases
is p(e) = 1:

1 ∗ 1

For each C, the two nearest elements on each side are A,B and the prefix sum is p(e) = 2:

1 1 ∗

Next, we handle the case of ` = 3a + 1. We insert an element of a new type X, located between
B and C; that is, X stands for 2a + 1 and the range for C is shifted to {2a + 2, . . . , `}. We take
a permutation of type (A,X,B,C, A,B, C, . . ., A,B, C). Note that for each flip-bit of type A, the
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other two non-zero bits are of types B,C or B,X and the prefix sum is p(e) = 0. For flip-bits of
type B, the non-zero bits are of types A,C or A,X; in either case, p(e) = 1. For a flip-bit of type
X, the non-zero bits are of types A,C or B,C; again, p(e) = 1. Finally, for flip-bits of type C, the
two non-zero bits are of types A,B or X, B, and p(e) = 2. So the lemma holds with b = 2a + 1.

For ` = 3a + 2 > 5, X stands for an element in {2a + 1, 2a + 2} and the range for C is shifted
to {2a + 3, . . . , `}. We take a permutation of type (A,X,B,C, A,X,B,C, . . ., A,B, C). The same
analysis yields that the prefix sums are 0 for flip-bits of type A, 1 for flip-bits of type B or X, and
2 for flip-bits of type C. Therefore lemma holds with b = 2a + 2. 2

Theorem 3.2 For any fixed k and ` ≥ 6 and sufficiently large n ≥ n0(k, `), every edge coloring of
Qn with k colors contains a monochromatic cycle of length 2`.

Proof. Given a coloring χ : E(Qn) → [k], consider only edges with support of size |S| = 2k + 1.
Just like in the proof of Theorem 2.1, encode edges by their support and prefix sum (S, p), and define
a coloring c(S) = (χ(S, 0), . . ., χ(S, 2k)) of the complete (2k + 1)-uniform hypergraph on [n] using
k2k+1 colors. By Ramsey’s theorem, for sufficiently large n ≥ n0(k, `), there is a subset T ⊂ [n]
of size 2k + ` − 2 such that c(S) = c∗ for all S ⊂ T, |S| = 2k + 1. By the pigeonhole principle,
there are three elements p1, p2, p3 ∈ {0, 1, . . . , 2k} such that c∗p1

= c∗p2
= c∗p3

, i.e. all edges (S, pi) for
S ⊂ T, |S| = 2k + 1 and i = 1, 2, 3 have the same color.

Now we take the cycle C provided by Lemma 3.1 and embed it in the monochromatic subgraph that
we found in Qn. The `-bit representation of C consists of three blocks defined by the parameters
1 < a < b < `. As Lemma 3.1 guarantees, the prefix sum of each edge is either 0, 1 or 2, depending on
the block in which the flip-bit of the edge appears. We insert strings of 1’s between these blocks, in
order to convert the prefix sums to p1, p2 and p3: α = 1p1 in front of the first bit, β = 1p2−p1−1 after
the first a bits, γ = 1p3−p2−1 after b bits and δ = 12k−p3 at the end. We obtain a cycle embedded in
Q2k+`−2 where the prefix sum for each edge is p1, p2 or p3. Finally, we embed this subcube Q2k+`−2

in Qn by laying its (2k + ` − 2)-bit representation on the subset of coordinates T ⊂ [n]; all other
coordinates are fixed to be zero. The edges of C thus embedded in Qn have their support in T and
prefix sums equal to p1, p2 or p3; therefore the cycle is monochromatic. 2

4 Ramsey subgraphs of the hypercube

4.1 A full characterization

In this section we consider more generally the question of finding monochromatic subgraphs in large
edge-colored hypercubes. Call a graph H k-Ramsey if every k-edge coloring of a sufficiently large
hypercube contains a monochromatic copy of H. Call H Ramsey, if it is k-Ramsey for every k.
Therefore, Theorem 1.1 asserts that every even cycle of length at least 10 is Ramsey. Our technique
here provides a characterization of all subgraphs of the hypercube which are Ramsey. This is stated
in the following theorem.
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Theorem 4.1 Let H be a fixed subgraph of a hypercube. Then H is Ramsey if and only if there
exists an embedding of H between two levels of a hypercube such that in this embedding all edges
e ∈ E(H) with the same flip-bit have the same prefix sum p(e).

Sketch of proof. Assume there is an embedding as above, between levels t and t+1 of a hypercube
Qm. Then given a k-edge coloring of a large Qn, we apply Ramsey’s Theorem for hypergraphs, as
in the proof of Theorems 2.1 and 3.2, to obtain a sufficiently large subcube Qs in which the color of
each edge e with support of size w is determined by the value of p(e) ∈ {0, 1, . . . , w}. We choose w

large enough so that it is possible to find M ⊂ {0, 1, . . . , w}, |M | = m, such that any two elements
i, j ∈ M are at least t apart, and the edges whose prefix sums are in M all get the same color. Then
we can take our embedding of H and add suitable blocks of 1’s between the bits so that all the prefix
sums fall in M . Finally, we add a block of 0’s to embed H in Qs so that the color of each edge is
determined by p(e) ∈ M and consequently this copy of H is monochromatic.

Conversely, assume that for every embedding of H between two levels there are two edges with the
same flip bit and different prefix sums. Consider the coloring χ(e) = (w(e) mod 2, p(e) mod dd/2e)
where d denotes the diameter of H. Then a copy of H could be possibly monochromatic only if it
lies between two levels, but then there are two edges e1, e2 with the same flip bit and different prefix
sums. The prefix sums cannot differ by a multiple of dd/2e because then the suffix sums would differ
by the same amount and together with the flip-bit we would get two vertices at distance more than
d. Therefore these two edges have different colors. 2

We remark that although the above result characterizes all Ramsey subgraphs of the hypercube, this
characterization is not very efficient. Still, it can be checked in time that depends only on the size
of the small graph H. This is because it suffices to check embeddings of H in a hypercube Qm, with
m being the number of edges of H.

4.2 The number of necessary colors

Considering our characterization of Ramsey subgraphs in the hypercube, we can ask what is the
number of colors necessary to avoid a monochromatic H, given that H is not Ramsey. We have
seen that C4 is not Ramsey, and a monochromatic C4 can be avoided using only 2 colors. C6 is not
Ramsey either, but in fact it is 2-Ramsey and we need 3 colors to avoid a monochromatic C6. Note
that the number of colors needed in both cases is equal to the diameter of the subgraph in question.
The proof of Theorem 4.1 shows that for any H of diameter d which is not Ramsey, we can also say
that H is not k-Ramsey for any k > d.

Here, we show that for any k, there exists a graph Hm,k which is k-Ramsey but not (k + 1)-Ramsey.
The diameter of Hm,k is O(k) which means that the number of colors required to avoid a monochro-
matic subgraph of diameter d can be indeed Ω(d).

Construction. For k > 0,m > k, let Qm,k denote the subgraph of Qm which contains all vertices
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on levels k and k + 1 and all edges between them whose prefix sum is p(e) = 0 or k. We represent
vertices by their support, i.e. the subset of coordinates equal to 1. We define Hm,k as the subgraph
of Qm,k induced by all vertices at distance at most 2k + 1 (in Qm,k) from the vertex represented by
K = {1, 2, . . . , k}.

The structure of Qm,k is the following: every vertex on the upper level k + 1 has degree 2. If this
vertex is given by a (k +1)-subset A = {a1 < a2 < . . . < ak+1}, then its two neighbors on level k are
given by A1 = {a1, a2, . . . , ak} and A2 = {a2, a3, . . . , ak+1}. On the other hand, vertices on the lower
level have a larger degree and their neighbors are obtained by adding any element which is smaller or
larger than everything in the subset. Thus edges in terms of subsets correspond to adding/removing
a minimum or maximum element.

The Ramsey properties that we prove hold equally for Qm,k and Hm,k. However, note that Qm,k

is not a connected graph (for example, {1, 2, . . ., k − 1,m} represents an isolated vertex). Hm,k is
connected and by definition, its diameter is O(k).

Lemma 4.2 For any m > k, Hm,k is k−Ramsey, i.e. for any k-edge-coloring of a sufficiently large
hypercube, there is a monochromatic copy of Hm,k.

Proof. We prove in fact that Qm,k is k−Ramsey. First, we show that for any t ∈ {1, 2, . . . , k},
there is r(t) such that Qm,k can be embedded in Qr(t),t. That is, we would like to have prefix
sums 0 and t instead of 0 and k. For that purpose, consider all (k − t + 1)-subsets of [m] and
index them lexicographically. The indices go from 1 up to r(t) =

(
m

k−t+1

)
and the index of a subset

A ⊆ [m], |A| = k− t + 1 is denoted by φ(A). Define a mapping from the k-th level of Qm to the t-th
level of Qr(t) as follows. For each subset A = {a1 < a2 < . . . < ak} ⊂ [m], let A1 = {a1, . . . , ak−t+1},
A2 = {a2, . . . , ak−t+2}, . . . , At = {at, . . . , ak}. We map the subset A to

f(A) = {φ(A1), φ(A2), . . . , φ(At)}.

Similarly, we define a mapping from the (k+1)-th level of Qm to the (t+1)-th level of Qr(t). We cover
B = {b1 < b2 < . . . < bk+1} by t + 1 subsets B1, B2, . . . , Bt+1 where Bi = {bi, . . . , bk−t+i} and we
set f(B) = {φ(B1), φ(B2), . . . , φ(Bt+1)}. The edges of Qm,k incident with this vertex are obtained
by removing either b1 or bk+1 which produces two neighbors on the lower level. Observe that the
two neighbors map to f(B \ {b1}) = {φ(B2), . . . , φ(Bt+1)} and f(B \ {bk+1}) = {φ(B1), . . . , φ(Bt)},
which are neighbors of f(B) in Qr(t). Moreover, the lexicographic ordering ensures that φ(B1) <

φ(B2) < . . . < φ(Bt+1) and the prefix sums of these two edges are 0 and t. Thus the edges of Qm,k

map to edges of Qr(t),t.

Now consider any k-edge-coloring of Qn. We choose n ≥ n0(m, k) large enough so that applying
Ramsey’s theorem (as in the proof of Theorems 2.1 and 3.2), we obtain a subcube Qs, s = 2m, where
the coloring of edges between levels k and k + 1 depends only on the prefix sum. Since the available
prefix sums are 0, 1, . . . , k, there must be two prefix sums p1 < p2 which get the same color. Let
t = p2 − p1 and construct an embedding of Qm,k in Qr(t),t. Recall that this embedding is between
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levels t and t + 1 so that all the prefix sums are 0 or t. Since r(t) � s, we still have enough space to
add a block of 1p1 in front of the bit representation of Qr(t), a block of 1k−p2 at the end, and another
block of 0’s at the end, so that we get an embedding of Qr(t),t (and thus also of Qm,k) between levels
k and k + 1 of Qs such that the prefix sums of all edges are p1 or p2. This gives a monochromatic
copy Qm,k and since Hm,k ⊂ Qm,k it gives a a monochromatic copy of Hm,k as well. 2

Thus at least k +1 colors are necessary to avoid a monochromatic copy of Hm,k. We show that k +1
colors are also sufficient, and the right coloring is the natural choice of (p(e) mod k + 1). However,
first we note a simple property of Hm,k which will be useful in the proof.

Lemma 4.3 Hm,k contains all the vertices represented by subset A ⊆ {k + 1, k + 2, . . . , m} of size
|A| = k or k + 1 and the distance between K = {1, 2, . . . , k} and A in Hm,k is k + |A|.

Proof. Recall that Hm,k contains the vertex represented by K = {1, 2, . . . , k} together with each
vertex whose distance from K in Qm,k is at most 2k + 1. Consider a subset A ⊆ {k + 1, k + 2,
. . . , m}, of size k or k + 1. We can transform K into A by adding elements of A and removing
elements of K alternately, starting from the smallest and ending with the largest. Since we always
remove the minimum element and add the maximum element, this corresponds to a path in Qm,k of
length |K|+ |A| ≤ 2k + 1. Therefore A also represents a vertex of Hm,k. 2

Lemma 4.4 For m sufficiently large, Hm,k is not (k +1)-Ramsey. In particular, for any n, there is
no monochromatic copy of Hm,k in the hypercube Qn in which edge e is colored by (p(e) mod k + 1).

Proof. Consider any embedding of Hm,k in Qn, represented by a function g : 2[m] → 2[n]. We
consider m very large, so that we can use Ramsey’s theorem repeatedly to select a subgraph of
Hm,k with specific properties. In the first step, consider the subset of the lower vertices of Hm,k,
represented by k-subsets of X = {k + 1, . . . ,m} (see Lemma 4.3). Since in Hm,k, all these vertices
are within distance 2k from K = {1, 2, . . . , k}, this must also be the case in the new embedding.
The images of these vertices can occupy at most 2k + 1 different levels of Qn. Define the color of
A ∈

(
X
k

)
by |g(A)| which can take at most 2k + 1 different values. By Ramsey’s theorem, there is a

large subset X ′ ⊆ X such that
(
X′

k

)
maps to one level, i.e. |g(A)| is constant for all A ∈

(
X′

k

)
.

Choose a fixed subset L ⊂ X ′ by taking the k smallest elements of X ′ and denote by Y = X ′ \L the
remaining elements in X ′. Again, all vertices represented by A ∈

(
Y
k

)
are at distance at most 2k from

L and therefore the same holds in the new embedding. Now, |g(A)| = |g(L)| for all A ∈
(
Y
k

)
and due

to the distance condition, we have |g(L) \ g(A)| = |g(A) \ g(L)| ≤ k. We set g0(A) = g(L) \ g(A)
and g1(A) = g(A) \ g(L). By Ramsey’s theorem, we can find a large subset Y ′ ⊆ Y such that
|g0(A)| = |g1(A)| = k′ for all A ∈

(
Y ′

k

)
, where 1 ≤ k′ ≤ k.

Consider the upper vertices represented by (k + 1)-subsets of Y ′. For B = {b1 < b2 < . . . < bk+1} ⊂
Y ′, set A1 = {b1, . . . , bk} and A2 = {b2, . . . , bk+1} to be its two neighbors in Hm,k. A1 and A2

represent lower vertices at distance 2 in Hm,k, so likewise, g(A2) can be obtained from g(A1) by
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swapping one element for another. Since |g0(A1)| = |g0(A2)| = |g1(A1)| = |g1(A2)|, this means that
either |g0(A1)4g0(A2)| = 2 and |g1(A1)4g1(A2)| = 0, or vice versa. Denote by q ∈ {0, 1} which of
these cases occurs; i.e., assume gq(A2) = gq(A1) ∪ {x2} \ {x1}, while g1−q(A1) = g1−q(A2). Also,
it could be the case that either g(B) = g(A1) ∪ g(A2) or g(B) = g(A1) ∩ g(A2). Defining g0(B) =
g(L)\g(B) and g1(B) = g(B)\g(L), we get either gq(B) = gq(A1)∪gq(A2) or gq(B) = gq(A1)∩gq(A2)
(while g1−q(B) = g1−q(A1) = g1−q(A2)). We denote by r = 0, 1 which of these cases occurs. Finally,
denote by p1, p2 the relative locations of x1, x2, i.e. the number of elements preceding them, in
gq(A1)∪gq(A2). We assign the color (p1, p2, q, r) to the subset B ∈

(
Y ′

k+1

)
. We have 0 ≤ p1 6= p2 ≤ k′,

and the number of colors is at most 4k′(k′ + 1) ≤ 4k(k + 1). By Ramsey’s theorem, we find a subset
Z ⊂ Y ′ of size 2k + 1 such that

(
Z

k+1

)
is monochromatic. This means that for any B ∈

(
Z

k+1

)
and its

two neighbors A1, A2 in Hm,k, we have |gq(A1)4gq(A2)| = 2 for the same q ∈ {0, 1}, gq(B) is always
either the union or the intersection of gq(A1) and gq(A2), and the relative locations of the swapped
elements x1, x2 in gq(A1) ∪ gq(A2) are always the same p1, p2.

Denote the elements of Z by z0 < z1 < z2 < . . . < z2k and consider a path in Hm,k containing
vertices A0 = {z0, . . . , zk−1}, B0 = {z0, . . . , zk}, A1 = {z1, . . . , zk}, B1 = {z1, . . . , zk+1}, . . . , Ak+1 =
{zk+1, . . . , z2k}. By the properties of Z, it holds that |gq(Ai)4gq(Ai+1)| = 2 for i = 0, . . . , k. Also,
we have g1−q(A0) = g1−q(A1) = . . . = g1−q(Ak+1). Since g(Ai) = g(L) ∪ g1(Ai) \ g0(Ai), the
changes in g(Ai) are determined by changes in gq(Ai), and the prefix sums of edges along the path
are determined by the locations of elements being swapped between gq(Ai) and gq(Ai+1). In the
sequence (gq(A0), . . . , gq(Ak+1)), the next subset is always obtained by swapping one element for a
new element; this happens k + 1 times, and the size of each set is k′ ≤ k. Therefore, scanning the
sequence from left to right, there must be an element x∗ that appears and then again disappears
from the subsets. When x∗ appears in gq(Ai+1) \ gq(Ai), its location in gq(Ai)∪ gq(Ai+1) is p2; when
x∗ ∈ gq(Ai′) \ gq(Ai′+1), its location in gq(Ai′) ∪ gq(Ai′+1) is p1.

We have to be careful since the prefix sums of the two corresponding edges are not simply p1 and
p2. First, there is a contribution from g(L) and g1−q(Ai) = g1−q(Ai+1), which is always constant
and does not influence differences between prefix sums for the same flip-bit. In addition, we have
the non-constant contribution from gq(Ai) and gq(Ai+1) which depends on r ∈ {0, 1}, i.e. whether
the intermediate vertex is obtained by taking gq(Bi) = gq(Ai) ∪ gq(Ai+1) or gq(Ai) ∩ gq(Ai+1). Due
to our Ramsey argument, we know that the same case occurs everywhere along the path. In the first
case, the prefix sums are indeed given by p1 and p2, modulo the constant contribution from g(L)
and g1−q(Ai). Then they differ by exactly |p2 − p1| ≤ k. In the second case, when the intermediate
vertices are given by intersections, the prefix sums differ only by |p2 − p1| − 1, due to the fact that
there is another element missing in gq(Ai) ∪ gq(Ai+1) when x∗ is added/removed. This affects the
prefix sum for one of the two edges, whichever is the larger of p1, p2. However, in this case we cannot
have |p2 − p1| = 1, since this would correspond to a situation where the intermediate vertex g(Bi) is
always the same; in other words, the path would be embedded as a star. Therefore, in either case,
the prefix sums differ by a number between 1 and k and so these two edges have different colors
under our (k + 1)-coloring. 2
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5 Concluding remarks

We have proved that for any fixed ` ≥ 5, every edge coloring of a sufficiently large hypercube with a
fixed number of colors contains a monochromatic cycle of length 2`. For odd `, this answers an open
question of Chung. For even ` ≥ 4, in fact, she proved a stronger result, namely that any C2`-free
subgraph of Qn has only an o(1)-fraction of the edges of Qn. It still remains open whether this is
also the case for cycles of length 2` for odd ` ≥ 5.

Finally, we note that the cycle of length 10 in Section 2 is not chordless; vertices [11000] and [11100]
are connected. Curiously, there exists a 4-edge coloring of Qn that avoids monochromatic chordless
cycles of length 10: the coloring ν defined by ν(e) = (w(e) mod 2, p(e) mod 2) works. This is proved
by a somewhat tedious case analysis, which is omitted. It is interesting to note that for C2`, with
` ≥ 6, the cycles provided by Lemma 3.1 are chordless. Therefore, for each such `, any k-edge
coloring of a sufficiently large hypercube contains a monochromatic induced cycle of length 2`.
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