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Abstract

A new technique, based on the pseudo-random properties of certain graphs, known

as expanders, is used to obtain new simple explicit constructions of asymptotically good

codes. In one of the constructions, the expanders are used to enhance Justesen codes by

replicating, shuffling and then regrouping the code coordinates. For any fixed (small)

rate, and for sufficiently large alphabet, the codes thus obtained lie above the Zyablov

bound. Using these codes as outer codes in a concatenated scheme, a second asymptotic

good construction is obtained which applies to small alphabets (say, GF (2)) as well.

Although these concatenated codes lie below Zyablov bound, they are still superior to

previously-known explicit constructions in the zero-rate neighborhood.
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1. Introduction

An infinite sequence of codes S = {Ci}∞i=1 over an alphabet Σ of q elements is called asymp-

totically good if the lengths ni, sizes Mi and minimum distances di of the Ci’s satisfy the

following: (i) limi→∞ ni = ∞; and (ii) both the rate of the sequence R
∆
= lim infi→∞

logqMi

ni
,

and its relative minimum distance δ
∆
= lim infi→∞

di
ni

, are strictly greater than zero.

By the Gilbert-Varshamov bound, for any δ ∈
[
0, 1− 1

q

)
there exists a good sequence of

codes over Σ of relative minimum distance δ and of rate R ≥ RGV(δ), where

RGV(δ)
∆
= 1−Hq(δ) , (1)

and Hq(x)
∆
= −x · logq x− (1− x) · logq(1− x) + x · logq(q− 1), 0 ≤ x ≤ 1− 1

q
. Furthermore,

the seminal works of Tsfasman et al. [10, 13, 25] show the existence of good code sequences

beyond the Gilbert-Varshamov bound for q ≥ 46.

A code sequence S = {Ci}∞i=1 over an alphabet Σ is called constructive if there exists an

algorithm that computes any codeword of Ci in time complexity which is polynomial in the

length of Ci. In particular, if the codes Ci are linear, then S is constructive if and only if

the generator matrices of the Ci can be computed in polynomial-time.

A parametric family of sequences over an alphabet Σ, |Σ| = q, is a set of code sequences

S = {S(δ)}0≤δ≤1− 1
q

where each S(δ) is a code sequence of relative minimum distance ≥ δ

over Σ. For each family of code sequences we associate a function R(δ) which stands for the

rate of S(δ).

A parametric family S is called uniformly constructive if (i) there exists a constant c,

independent of δ, such that the encoding of a codeword of any code in S(δ) of length n can

be carried out in nc steps; and (ii) R(δ) > 0 whenever δ < 1 − 1
q
. Note that RGV(δ) > 0

for δ < 1 − 1
q
, whereas by the Plotkin bound we must have R(δ) = 0 for δ ≥ 1 − 1

q
. Such

a uniformity definition is aimed to characterize good low-rate code sequences which can be

efficiently constructed, no matter how close the rate is to zero.

By using a concatenated code construction, with a Reed-Solomon code as the outer code

and a code which attains the Gilbert-Varshamov bound as the inner code, one can obtain

a family of constructive sequences whose rate function R(δ) satisfies the Zyablov bound
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R(δ) ≥ RZyablov(δ) [29], where

RZyablov(δ)
∆
= max

δ≤µ≤1− 1
q

(
1−Hq(µ)

)(
1− δ

µ

)
. (2)

However, searching for the inner code by any known algorithm requires time complexity

which is exponential in the inner code length. Hence, constructing the generator matrix

of such a concatenated code of length n and relative minimum distance δ will require the

order of nc(δ) operations, where limδ→1− 1
q
c(δ) = ∞. Hence, such a code sequence family is

non-uniformly constructive.

The exponential search is avoided in Justesen codes [9] and in constructions derived

thereof [22, 23, 24, 27], where the inner codes exhaust all members of Wozencraft’s ensemble

of randomly shifted codes. Justesen’s construction is also “explicit” in the sense that once the

rates of the inner and outer codes have been computed, the entries of the generator matrices

of the codes can be written as closed formulas, and no searching is required. However, the

rate function RJus(δ), associated with Justesen’s construction, vanishes for all δ > H−1
q (1

2
),

and H−1
q (1

2
) can be readily verified to be strictly smaller than 1 − 1

q
. Therefore, Justesen

codes do not comply with requirement (ii) of uniform constructiveness. The same holds also

for some other known improvements on Justesen codes [23, 28].

Uniformly constructive families of codes over GF (q) were obtained by Weldon [27] and

Sugiyama et al. [22, 24], where the outer Reed-Solomon codes were replaced by much longer

codes over GF (qm), at the expense of not attaining the Singleton bound. The rate RSKHN(δ)

of the construction obtained in [24] satisfies

RSKHN(δ) ≥ max
δ≤µ≤1− 1

q

(
1−Hq(µ)

)(
1− δ

µ

(
1 + ln

µ

δ

))
. (3)

Katsman, Tsfasman and Vlădut [10] found a construction of algebraic-geometric codes

which, when concatenated with specific inner codes, yield a uniformly constructive family

that lies above the Zyablov bound. However, since the time complexity of finding the gener-

ator matrices of these codes is proportional to n32 [5], they can hardly be called constructive

from any practical perspective. Apart from this construction, (3) yields the best uniformly

constructive family for sufficiently low rates (i.e., when δ is close to 1 − 1
q
), to the best

knowledge of the authors.
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In this paper we introduce new simple uniformly constructive (in fact, explicit) families

of asymptotically good codes, by applying a novel technique based on the pseudo-random

characteristics of graphs known as expanders. More specifically, we make use of explicit

constructions of families of ∆-regular undirected graphs G = (V,E) with the following

property: Fix some real number δ0 ∈ (0, 1]; then for any subset of vertices B ⊆ V of size

≥ δ0 |V |, the fraction of vertices in V which have at least one neighbor in B approaches

unity “fast” as ∆→∞. A precise definition of the expanders used, and their properties, are

presented in Section 2.

Given such a graph with n = |V | vertices and a finite field Φ, we then show how to

define a so-called expander mapping (or expander code) Cexp : Φn →
(
Φ∆

)n
, such that every

input n-tuple over Φ of Hamming weight ≥ δ0n is mapped into an output n-tuple over Φ∆

whose Hamming weight (measured over Φ∆) is “close” to n. The notion of code amplification

through expanders has been inspired by recent applications of expanders to deterministic

simulation of randomized algorithms [1, 3, 6, 8, 11, 17]. In a way, the application of expanders

presented in this paper can be viewed as an improvement on the method introduced in [17],

in the sense that the codes that may be obtained are better.

These expander codes will serve as building blocks in our new asymptotically good con-

structions. The first construction, referred to as Construction C1, is obtained by taking the

codewords of any good code sequence over a finite field Φ (say, Justesen codes), and then

applying the expander code Cexp, resulting in a code over the alphabet Φ∆ whose rate is

proportional to 1/∆. The choice of ∆ and the field Φ will depend on the prescribed size q

of the underlying alphabet and the relative minimum distance δ. As we show in Section 3,

the rate RC1(δ, q) of Construction C1 satisfies

RC1(δ, q) ≥ γ0(1− δ) − γ1

log2 q
(4)

for some positive constants γ0 and γ1. Note that, for sufficiently large q, (4) resembles the

Singleton bound (or the rate attainable by the so-called modular code construction described

in [10]), except for the multiplier γ0 (which is approximately 0.021).

Construction C1 satisfies criterion (i) of the uniformity definition. As for criterion (ii),

the δ-interval for which RC1(δ, q) = 0 shrinks to zero length when q → ∞; hence, C1 is

‘nearly-uniformly’ constructive, and this fact will be exploited in our second construction.
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However, the significance of Construction C1 is manifest in the fact that, as a fairly simple

construction, it exceeds the Zyablov bound for the zero-rate neighborhood and for sufficiently

large alphabet sizes q.

When the size of the underlying alphabet is fixed (say, q = 2), Construction C1 fails

to improve on previously-known constructions. However, we can use Construction C1 to

introduce good code sequences over specific fields F = GF (q) by means of concatenation.

The new codes will be referred to as Construction C2 and will be discussed in Section 4.

Construction C2 is obtained by using Construction C1 over Σ =
(
GF (qm)

)∆
as the outer

code, with each output symbol (over Σ) undergoing a second level of encoding by codes of

dimension m∆ over F . Such a scheme yields a uniformly constructive family of linear codes

over F which satisfies the inequality

RC2(δ) ≥ max
δ≤µ≤1− 1

q

γ0

(
1−Hq(µ)

)(
1− δ

µ

)
. (5)

The bound (5) resembles the Zyablov bound (2), except for the multiplier γ0, due to which (5)

lies beneath the curve (2). However, when the relative minimum distance δ is close enough to

1− 1
q
, the right-hand side of (5) becomes larger than the right-hand side of (3). For instance,

in the binary case (q = 2), the lower bound (5) exceeds the bound (3) for 0.45 ≤ δ ≤ 0.5,

which corresponds to the low-rate range R ≤ 2.5× 10−6.

The significance of Construction C2 can be better illustrated if we express the rate R in

terms of ε
∆
= 1 − 1

q
− δ. We take the binary case as a typical (and the most important)

example. In this case, ε = 1
2
− δ, and, when ε is small, (5) becomes

RC2(1
2
− ε) ≥ 16

27 ln 2
γ0 ε

3 −O(ε4) .

The same bound is obtained by (2) if we replace γ0 by 1. Hence, the attainable rates in

both the Zyablov bound and Construction C2 are of the same order i.e., proportional to ε3.

Repeating the calculation for (3), however, yields a lower bound which is proportional to ε4.

For comparison, it is worthwhile noting that, in terms of ε, the Gilbert-Varshamov bound

for q = 2 takes the form

RGV(1
2
− ε) = 2

ln 2
ε2 −O(ε4) ,

whereas the McEliece-Rodemich-Rumsey-Welch upper bound [15, p. 559] yields

RMRRW(1
2
− ε) = 2 ε2 log2(1/ε) +O(ε2) .
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Like in previous constructions [9, 22, 27], the inner code in Construction C2 is taken as

Wozencraft’s ensemble. It thus turns out that for any fixed q, the frequency of occurrence

of each element of GF (q) in any nonzero codeword of C2 approaches 1/q as δ → 1− 1
q

(and

the code length tends to infinity). In Section 5 we present an application of this property to

the so-called t-independent set problem, that is, finding a small set of vectors in {0, 1}m such

that the subvectors obtained by extracting any t coordinates exhaust all 2t binary t-tuples.

Using a technique introduced in [17], we construct such a set of size c t 23t logm for any fixed

t and for sufficiently large m, where c is an absolute constant (independent of t). For related

work see [4, 12, 21].

2. Pseudo-random graphs

Expanders are graphs which behave in many ways like sparse random graphs. Expanders,

which are the subject of extensive literature, are, roughly, graphs in which every set of at

most half of the vertices has many neighbors outside the set. As shown in [2], the expanding

properties of a graph are closely related to the eigenvalues of its adjacency matrix. Since the

property we need here is proved by using the eigenvalues, we do not mention the common

definition of an expander, and only define the graphs we need in terms of their eigenvalues.

Let G = (V,E) be a ∆-regular graph with n vertices and let A = AG = [auv]u,v∈V be its

adjacency matrix given by auv = 1 if uv ∈ E and auv = 0 otherwise. Since G is ∆-regular

the largest eigenvalue of A is ∆, corresponding to the all-one eigenvector. Let λ1, . . . , λn be

all the eigenvalues of G, (with multiplicities), where ∆ = |λ1| ≥ |λ2| ≥ . . . ≥ |λn|. Define

λ(G) = |λ2|. As we show below, if λ(G) is much smaller than ∆, then G has a strong

pseudo-random property.

Theorem 1. Let G = (V,E) be a ∆-regular graph with n = |V | and λ = λ(G). For a

vertex v ∈ V and a subset B of V denote by N(v) the set of all neighbors of v in G, and

let NB(v) = N(v)∩B denote the set of all neighbors of v in B. Then, for every subset B of

cardinality bn of V , ∑
v∈V

(
|NB(v)| − b∆

)2
≤ λ2b(1− b)n .
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Observe that in a random ∆-regular graph each vertex v would tend to have about b∆

neighbors in each set of size bn. The above theorem shows that if λ is much smaller than ∆

then for most vertices v, NB(v) is not too far from b∆.

Proof. Let A be the adjacency matrix of G and define a vector f : V 7→ R by f(v) = 1−b
for v ∈ B and f(v) = −b for v 6∈ B. Clearly

∑
v∈V f(v) = 0 i.e., f is orthogonal to the

eigenvector of the largest eigenvalue of A. Therefore

〈Af,Af〉 ≤ λ2〈f, f〉

(〈·, ·〉 standing for scalar product of vectors). The right-hand side of the last inequality is

λ2
(
bn(1− b)2 + (1− b)nb2

)
= λ2b(1− b)n. The left-hand side is

∑
v∈V

(
(1− b) |NB(v)| − b(∆− |NB(v)|)

)2
=
∑
v∈V

(
|NB(v)| − b∆

)2
.

The desired result follows.

Corollary 1. Let G = (V,E) be a ∆-regular graph with n = |V | and λ = λ(G), and

let B be a subset of cardinality bn of V . Let t = |{v ∈ V : NB(v) = ∅}| be the number of

vertices of G that have no neighbors in B. Then

t ≤ λ2(1− b)n
b∆2

.

In particular, if λ ≤ 2
√

∆− 1 then

t ≤ 4(∆− 1)(1− b)n
b∆2

≤ 4n

b∆
.

Proof. Define T = {v ∈ V : NB(v) = ∅}. For each vertex v ∈ T , |NB(v)| = 0. Therefore,

by Theorem 1

tb2∆2 =
∑
v∈T

(
|NB(v)| − b∆

)2

≤
∑
v∈V

(
|NB(v)| − b∆

)2
≤ λ2b(1− b)n .

This completes the proof.

In view of the last two results it is natural to ask how far from ∆ the value of λ(G)

can be. It is known [2, 18] that the second largest eigenvalue of any ∆-regular graph with
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diameter k is at least 2
√

∆− 1
(
1− O(1/k)

)
. Therefore, in any infinite family of ∆-regular

graphs {Gi = (Vi, Ei)}|Vi|→∞,

lim sup
i→∞

λ(Gi) ≥ 2
√

∆− 1 . (6)

Lubotzky, Phillips and Sarnak [14], and independently, Margulis [16], gave, for every ∆ =

p + 1 where p is a prime congruent to 1 modulo 4, explicit constructions of infinite families

of ∆-regular graphs Gi with second largest eigenvalues λ(Gi) ≤ 2
√

∆− 1. For the sake of

completeness we next describe these graphs.

For an integer m, denote by Zm the ring of integers modulo m. Let p and π be unequal

primes, both congruent to 1 modulo 4, such that p is a quadratic residue modulo π. Let

P = PSL(2, Zπ) denote the factor group of the group of all 2 × 2 matrices over Zπ with

determinant 1 modulo its normal subgroup consisting of the identity I and its (additive)

inverse −I. The elements of P are thus simply 2 × 2 matrices over Zπ of determinant 1,

where both matrices A and −A are regarded as the same element ±A.

The graphs we describe are Cayley graphs of P i.e., their vertices are all π(π2 − 1)/2

elements of P and two such elements A and B are adjacent if and only if AB−1 belongs to

a prescribed set Q of elements of P which we define next.

A well known theorem of Jacobi asserts that the number of ways of representing a positive

integer n as a sum of four squares is precisely eight times the sum of the divisors of n which are

not divisible by 4. This easily implies that there are precisely p+1 vectors a = [a0, a1, a2, a3],

where a0 is an odd positive integer, a1, a2, a3 are even integers, and a2
0 + a2

1 + a2
2 + a2

3 = p.

Associate each such vector a with the member

Ma
∆
= ± 1
√
p

 a0 + ıa1 a2 + ıa3

−a2 + ıa3 a0 − ıa1

 (7)

of P , where ı is an integer satisfying ı2 ≡ −1 (modπ) (note that the determinant of Ma is 1

and that the square root of p modulo π does exist). Let Q be the set of the p + 1 matrices

defined above, and denote by G(p, π) the Cayley graph of P with respect to this set Q.

Thus G(p, π) is a (p + 1)-regular graph with π(π2 − 1)/2 vertices. It is shown in [14] that

λ(G(p, π)) ≤ 2
√
p for every π. This upper bound is obtained by applying results of Eichler

and Igusa concerning the Ramanujan conjecture. Eichler’s proof relies on Weil’s famous

theorem known as the Riemann hypothesis for curves over finite fields [26]. Therefore, for
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every fixed π, the family {G(p, π)}p is an optimal set of pseudo-random graphs as it attains

the bound (6).

Although the construction given in [14] and [16] is proved only for primes π, a similar

argument [20] shows that the analogous graphs defined for powers of π have the same prop-

erties. If π is a prime congruent to 1 modulo 4, p is a quadratic residue modulo π, and l is

an integer, denote by Pl the factor group of the group of all 2× 2 matrices with determinant

1 over Zπl , modulo its normal subgroup consisting of the identity I and its (additive) inverse

−I. It is not too difficult to check that Pl has 1
2
(π3l − π3l−2) elements.

The graph G(p, π, l) is defined as the Cayley graph of Pl with respect to the p + 1

generators Ma given by (7), except that now the square root ı of −1, and that of p, are taken

modulo πl. Note that since p is a quadratic residue in Zπ, it is also a quadratic residue in

Zπl for every l ≥ 1. Moreover, an easy (though somewhat tedious) computation shows that

if α2 = bπ + p for some integers α and b (i.e., α is a square root of p modulo π), then a

square root β of p modulo πl is obtained by

β = α−
l−1∑
j=1

djπ
j , (8)

where

dj ≡
cj−1b

j

(2α)2j−1
(modπl) , (9)

and cj is the jth Catalan number given by

cj =
1

j + 1

(
2j

j

)
(10)

(these numbers appear frequently in Combinatorics, and their generating function c(x) =∑∞
j=0 cjx

j satisfies the relation c(x) = 1 + xc2(x); see [19, p. 82]).

Equations (8)–(10) enable us to compute the required square roots of p and −1 modulo

πl (needed for the computation of Ma) from the easy calculations of these roots in Zπ. This

implies that the graphs G(p, π, l) can be generated very efficiently. As is the case for l = 1,

it can be shown that λ(G(p, π, l)) ≤ 2
√
p for all admissible π and l, making these graphs

suitable for constructing the codes Cexp.
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3. Good codes over large alphabets

We start by describing the details of Construction C1 of designed relative minimum distance

δ < 1 over an alphabet Σ, |Σ| = q. Let ρ be a power of a prime (say, ρ = 2) and δ0 be a

positive real number smaller than 1
2
. The values of ρ and δ0 are assumed to be fixed i.e.,

independent of δ and q.

Let ∆ be the smallest integer which satisfies the inequality

∆ ≥ 4(1/δ0 − 1)

1− δ
(11)

and such that ∆− 1 is a prime congruent to 1 modulo 4. The code C1 involves two encoding

levels. The first one is an [n, r0n, δ0n] Justesen code CJus over the field Φ = GF (ρm), where

the values of m and r0 are given by

m =

⌊
logρ q

∆

⌋
(12)

and

r0 =
1

2

(
1− δ0

H−1
ρm(1

2
)

)
. (13)

Since limz→∞Hz(δ0) = δ0 < 1
2
, for sufficiently large m we have Hρm(δ0) < 1

2
, in which

case r0 > 0 in (13) (in fact, when δ0 < H−1
2 (1

2
) ≈ 0.11, Hρm(δ0) ≤ H2(δ0) < 1

2
for every

m ≥ 1). Hence, for sufficiently large m, the code CJus of the above parameters is, indeed,

realizable, with Wozencraft’s ensemble as inner codes of rate 1
2

and the outer Reed-Solomon

code having rate 2r0 [9]. The constant γ1 in (4) will be adjusted so that the right-hand side

of (4) be non-positive whenever m in (12) is too small to let CJus be realized. We also assume

that the length of CJus takes the values n = 1
2
(π3l − π3l−2) for some fixed prime π and for

arbitrarily large l. Note that such lengths can always be attained for sufficiently large l by

properly choosing the length of the outer Reed-Solomon code (possibly with appending a

small number of zero coordinates to CJus).

The codewords of CJus then undergo a second coding level by the expander code Cexp,

which maps n-tuples over Φ into n-tuples over Σ̂
∆
= Φ∆ ∼= GF (ρm∆). Since the overall

code C1 will not be linear over Σ (though it will be over Φ), we may as well assume that

Σ̂ ⊆ Σ. Let Gexp = G(∆ − 1, π, l) be a pseudo-random graph with n = 1
2
(π3l − π3l−2)

vertices and degree ∆, as defined in Section 2. For each vertex i, 1 ≤ i ≤ n, in Gexp,
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let `1(i), `2(i), . . . , `∆(i) denote the set of vertices in Gexp which are adjacent to i, indexed

according to some pre-specified ordering. The encoding rule of Cexp is defined as follows:

every input vector u = [u1 u2 . . . un] ∈ Φn is mapped into a codeword c = [c1 c2 . . . cn] ∈ Σ̂n,

with ci
∆
= [u`1(i) u`2(i) . . . u`∆(i)], 1 ≤ i ≤ n.

The code Cexp can be summarized explicitly in the following manner: Using the notations

of Section 2, let Pl = {±A1,±A2, . . . ,±An} denote the set (of size n = 1
2
(π3l − π3l−2)) of all

2×2 matrix inverse pairs ±Ai with determinant 1 over Zπl , and associate the ith coordinate

of u with the matrix inverse pair ±Ai. Let aj = [aj,0, aj,1, aj,2, aj,3], 1 ≤ j ≤ ∆, exhaust all

possible vectors such that aj,0 is an odd positive integer, aj,1, aj,2, aj,3 are even integers, and

a2
j,0 + a2

j,1 + a2
j,2 + a2

j,3 = ∆ − 1. The code Cexp then maps each coordinate ui of u into a

∆-tuple ci = [u`1(i) u`2(i) . . . u`∆(i)], where the indices `j(i) are defined by ±A`j(i) = ±AiMaj ,

and the Maj are given by (7). Recall that both square roots, ı =
√
−1 and

√
p, are taken

modulo πl and can be computed efficiently by (8)–(10). Furthermore, the only searches

required to construct Cexp are those of finding the smallest ∆ which satisfies (11), and then

computing all admissible vectors aj; these searches, in turn, require time complexity which

is polynomial in ∆. Note also that Cexp is an additive group over Σ̂ and, therefore, the

Hamming distance between any two codewords c1, c2 ∈ Cexp equals the Hamming weight of

c1 − c2, measured over Σ̂.

The resulting overall code C1 is, therefore, of length n and rate r0/∆ over Σ̂, which

translates into rate (r0/∆) · logq
ˆ|Σ| over Σ. Observe that Cexp, as a code over Σ̂, or Φ, is

quite a bad one, since it just replicates and shuffles the input coordinates. However, the

input to Cexp is not arbitrary, but rather codewords of CJus, the minimum distance of which

is at least δ0n. This accounts for the bound (4), which is re-stated in the next lemma.

Lemma 1. There exist constants γ0 > 0, γ1 and δmin < 1 such that for every δ ≥ δmin

RC1(δ, q) ≥ γ0(1− δ) − γ1

log2 q
. (14)

Proof. Let c be a codeword of Cexp over Σ̂, corresponding to a nonzero input vector

u ∈ CJus, and let B be the set of vertices of Gexp associated with the nonzero coordinates

in u. The number of vertices in Gexp which have at least one neighbor in B is exactly the

Hamming weight of c, measured over Σ̂. Therefore, by Corollary 1, the minimum distance
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d of C1, which is also the minimum Hamming weight of any nonzero codeword of C1, readily

satisfies

n− d ≤ 4(∆− 1)(1− δ0)n

δ0∆2
≤ 4

∆

(
1

δ0

− 1
)
n

(11)

≤ (1− δ)n .

Hence, the relative minimum distance of C1 is at least δ.

We now express the rate of C1 in terms of δ and q. Let m0 be the smallest positive integer

greater than 4 for which Hρm0 (δ0) < 1
2
, and assume that m ≥ m0; in this case we have r0 > 0

in (13). The rate of C1 is given by

RC1(δ, q) =
r0

∆
· logq

ˆ|Σ| =
r0

∆
· m∆

logρ q
(15)

(12)
>

r0

∆
·
(

1− ∆

logρ q

)
(13)
=

(
1

2
− δ0

2H−1
ρm(1

2
)

)(
1

∆
− 1

logρ q

)
. (16)

Now, it is easy to verify that Hρm(x) ≤ x + 1
m log2 ρ

and, hence, 2H−1
ρm(1

2
) ≥ 1 − 2

m log2 ρ
.

Also, since m ≥ m0 > 4, we have

2

m log2 ρ
≤ 4

(m+ 1) log2 ρ

(12)
<

4∆

log2 q

(12)

≤ 4

m log2 ρ
≤ 4

5
< 1 .

Therefore,
1

2H−1
ρm(1

2
)
≤ 1

1− (4∆/ log2 q)
≤ 1 + O

(
∆

log2 q

)
. (17)

Substituting (17) into (16) we obtain

RC1(δ, q) ≥
(

1

2
− δ0 −O

(
∆

log2 q

))(
1

∆
− 1

logρ q

)

=
1
2
− δ0

∆
− O

(
1

log2 q

)
+O

(
∆

log2
2 q

)
,

where we have absorbed the constant multipliers which depend on δ0 and ρ in the O(·)
expressions. Therefore, in terms of ∆ and q, RC1(δ, q) satisfies

RC1(δ, q) ≥
1
2
− δ0

∆
− O

(
1

log2 q

)
. (18)

Now, by the Prime Number Theorem for arithmetic progressions [7, Ch. 7], the smallest ∆

for which (11) holds also satisfies

1

∆
≥ 1− δ

4(1/δ0 − 1)

(
1− θ(δ)

)
, (19)

11



where limδ→1 θ(δ) = 0. Plugging (19) into (18) we obtain

RC1(δ, q) ≥
(

1
2
− δ0

4(1/δ0 − 1)

)
︸ ︷︷ ︸

constant

(
1− θ(δ)

)
·
(
1− δ

)
− O

(
1

log2 q

)
. (20)

Define

α0
∆
=

1
2
− δ0

4(1/δ0 − 1)
. (21)

Assuming that m ≥ m0, we conclude that for every constant γ0 > α0 there exists a real

number δmin < 1 (which depends on γ0 and δ0) such that

RC1(δ, q) ≥ γ0(1− δ) − O

(
1

log2 q

)

whenever δ ≥ δmin.

Finally, we consider the case m < m0, which corresponds to ∆ > (logρ q)/m0. By (19)

we have
1− δ

4(1/δ0 − 1)

(
1− θ(δ)

)
≤ 1

∆
<

m0 log2 ρ

log2 q
= O

(
1

log2 q

)
.

Therefore, we may choose γ1 to be large enough so that the right-hand side of (14) be

non-positive whenever m < m0.

Remark 1. Referring to the notations of the last proof, the maximum value of α0 in (21)

is attained at

δ0 = δmax
∆
= 1− 1√

2
≈ 0.29 , (22)

in which case

α0 = αmax
∆
=

1

24 + 16
√

2
≈ 0.021 . (23)

Remark 2. The term θ(δ) in (20) is identically zero if δ is taken from the infinite

sequence

δp = 1− 4

p+ 1

(
1

δ0

− 1
)
,

where p ranges over all primes congruent to 1 modulo 4. In such cases we can therefore take

γ0 = α0. If, in addition, Σ is taken as GF (ρm(p+1)), then (16) becomes

RC1(δp, ρ
m(p+1)) =

1− δ0/H
−1
ρm(1

2
)

2(p+ 1)
=

(
1− δ0/H

−1
ρm(1

2
)

8(1/δ0 − 1)

)
· (1− δp)

∆
= α0(ρ, δ0,m)(1− δp) .

12



Clearly, for δ0 = δmax we have

lim
m→∞

α0(ρ, δmax,m) = αmax .

Furthermore, for every finite m ≥ 5 we also have α0(ρ, δmax,m) > 0.

Comparing (14) with (2), we first note that, due to the Singleton bound, 1 − Hq(x) is

bounded from above by 1− x and, therefore,

RZyablov(δ) ≤ max
µ≥0

(1− µ)(1− δ/µ) ≤
(
1−
√
δ
)2

.

This implies that for relative minimum distances in the range
(

1−γ0

1+γ0

)2
< δ < 1, the function

δ 7→ γ0(1− δ) lies strictly above the curve δ 7→ RZyablov(δ). Hence, for values of δ close to 1,

and for sufficiently large q, Construction C1 lies above the Zyablov bound.

Finally, as for the explicitness of Construction C1, we have already pointed out that the

only required searches are those of finding the minimum ∆ which satisfies (11), and then

finding all expressions for ∆− 1 of the form of sums of four integer squares. However, since

∆ is proportional to 1/RC1(δ, q), all the above searches can be carried out in time complexity

which is polynomial in the inverse of the code rate (rather than polynomial in the code

length). Once having the additive factorization of ∆ − 1, we can write explicit expressions

for the entries of the generator matrix of Cexp over Φ.

We remark that finding a polynomial-time decoding algorithm for C1 for correcting up

to (δn− 1)/2 errors remains still an open problem.

4. Good codes over specific alphabets

We now use Construction C1 as an outer code in a concatenation scheme, obtaining a new

code family over any finite field F = GF (q). Referring to the notations of Section 3, we fix

δ0 to some real positive number < 1
2

(say, to δmax as in (22)). For any η ∈ [0, 1) let ∆(η)

denote the smallest integer satisfying

∆(η) ≥ 4(1/δ0 − 1)

1− η

13



and such that ∆(η)− 1 is a prime congruent to 1 modulo 4 (see (11)).

Construction C2 over F = GF (q) is obtained as follows. As an outer code, we take

Construction C1 of length n and relative minimum distance η over the alphabet Σ =(
GF (qm)

)∆(η) ∼= Fm∆(η). The inner code will be taken as a linear code over GF (q) of

rate r, dimension m∆(η) and relative minimum distance µ. The overall code is therefore a

linear code over GF (q) of rate R = r · RC1
(
η, qm∆(η)

)
, relative minimum distance δ = µ · η,

and length N = (nm/r)∆(η).

Since n is arbitrarily large, we may take Wozencraft’s ensemble as the inner code, in

which case we have r ≥ 1−Hq(µ) and, therefore,

RC2(µ · η) ≥
(
1−Hq(µ)

)
·RC1

(
η, qm∆(η)

)
. (24)

Note that (24) holds also for fixed values of m, in which case the parameters of the inner

codes do not tend to infinity as n→∞. Theoretically, this would enable us to choose specific

inner codes instead of Wozencraft’s ensemble; however, for the low rates we are interested

in there aren’t any known specific constructions which are above the Gilbert-Varshamov

bound. In that case, we might as well let m go to infinity, and (24) then becomes

RC2(δ) ≥
(
1−Hq(µ)

)
·RC1(δ/µ,∞)

(4)

≥ γ0

(
1−Hq(µ)

)(
1− δ

µ

)
. (25)

The bound (5) is obtained by maximizing the right-hand side of (25) with respect to µ in

the range δ ≤ µ ≤ 1− 1
q
.

As for the value of the constant γ0 in (25), we note that when δ is close enough to 1− 1
q
,

δ/µ must be close to 1. Hence, in the zero-rate neighborhood, γ0 can be any constant greater

than αmax (as in (23)).

The multiplier γ0 in (25) can be slightly improved if we replace the CJus component in

Construction C1 by a linear code CRS over Φ = GF (qm) which consists of a concatenation

of two Reed-Solomon codes. The code CRS was used as the outer code by Sugiyama et al.

in [22], where it was also shown that for a prescribed relative minimum distance δ0, the rate

RRS(δ0) and length NRS(δ0) of CRS satisfy

RRS(δ0) ≥
(

1−
√
δ0

)2

14



and

NRS(δ0) ≥ qmq
m
√
RRS(δ0) .

Although CRS is not asymptotically good over the (fixed) field Φ (in the sense that NRS(δ0)

cannot take arbitrarily large values), NRS(·) is large enough to let the whole Wozencraft’s

ensemble be concatenated to our modified Construction C1 (the proof of this assertion follows

along the lines of that in [22]). We can now substitute r0 =
(
1−
√
δ0

)2
in (15) and repeat

the derivations of Lemma 1, ending by replacing the expression for α0 in (21) by

α0 =

(
1−
√
δ0

)2

4(1/δ0 − 1)
. (26)

The maximum of (26) is attained at δmax =
√

5−1
2
≈ 0.62, and the corresponding value of α0

is given by

αmax =
1

10
√

5 + 22
≈ 0.023 .

5. Application to t-independent sets

In this section we show how Construction C2 can be applied to obtain small t-independent

sets. To this end, we first show that the frequency of occurrence of each element of GF (q)

in every nonzero codeword in these codes approaches 1/q as the length of the code tends to

infinity.

Let C be an [n, k] instance of Construction C2 over GF (q) for a prescribed relative

minimum distance δ
∆
= 1 − 1

q
− ε, where ε > 0. Denote by n′ the length of the inner

(Wozencraft’s ensemble) code in C, and let c = [c1 c2 . . . cn/n′ ] be a nonzero codeword of

C, where each ci stands for an inner codeword. Let µ be the value which maximizes the

right-hand side of (5); note that, since ε > 0, µ is strictly greater than δ. As the typical

minimum distance of the inner Wozencraft’s ensemble codes is n′µ, for sufficiently large n

(and n′), all but a negligible fraction of the nonzero ci have Hamming weight ≥ n′δ; that is,

virtually all of the nonzero ci contain at most n′(1 − δ) zeros. A similar argument implies

that in all but a negligible fraction of the nonzero ci, any element of GF (q) appears at

most n′(1− δ) times. Therefore, when n→∞, the frequency of occurrence of each nonzero

element of GF (q) in any nonzero codeword of C becomes at most 1−δ = 1
q
+ε. Furthermore,

15



since the relative minimum distance of C is δ, the same upper bound holds for the frequency

of occurrence of the zero element as well. This, in turn, implies that the frequency of each

element of GF (q) in any nonzero codeword of C must as well be at least 1
q
− (q − 1)ε. In

particular, when q = 2, for every ε′ > ε, the nonzero weights in such a code C are confined

to the range n (1
2
± ε′) for sufficiently large n.

From now on we concentrate on the binary case. For fixed t, let G be a k × n generator

matrix of the above code C where we set ε = 2−t−1. Also, let H be a k ×m parity-check

matrix of an [m,m − k, t + 1] linear code over F = GF (2). Since every t columns in H

are linearly independent, for any nonzero vector y ∈ F n of weight ≤ t we have Hy 6= 0.

Now, define the m × n matrix A
∆
= HTG, where (·)T stands for transposition. Consider a

t × n matrix B consisting of t arbitrary distinct rows of A. It is easy to see that for every

u ∈ F t − {0} we have uB ∈ C − {0}. We now claim that every binary t-tuple appears as a

column in B.

For every x ∈ F t, denote by nx the number of occurrences of x as a column in B. It can

be readily verified that for any u ∈ F t,

n− 2 wt(uB) =
∑

x∈F t
(−1)〈u,x〉nx , (27)

where wt(uB) stands for the Hamming weight of uB and 〈·, ·〉 denotes scalar product of

vectors (over F ). Let s be the vector whose entries are given by sx = nx/n, x ∈ F t;

similarly, let w be the vector whose entries are wu = wt(uB)/n, u ∈ F t. By (27) we have

1− 2 w = Hts ,

where Ht stands for the Sylvester-type 2t× 2t Hadamard matrix [15, Ch. 2, §3], and 1 is the

all-one vector. Noting that H−1
t = 2−tHt, we obtain

2t s = Ht(1− 2w) .

Now, let ε′ be in the range 2−t−1 (= ε) < ε′ < 1/(2t+1− 2). Since uB is a codeword of C, for

sufficiently large n we have |1− 2wu| ≤ 2ε′ for any u 6= 0. Therefore, for every x ∈ F t,

2t · sx =
∑

u∈F t
(1− 2wu)(−1)〈u,x〉

= 1 +
∑
u6=0

(1− 2wu)(−1)〈u,x〉
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≥ 1 −
∑
u6=0

|1− 2wu|

≥ 1 − (2t − 1) · 2ε′

> 0 .

Hence, given t, for sufficiently large n we have sx > 0 for all x ∈ F t, thus proving that every

vector x ∈ F t appears as a column in B. Now, since B is an arbitrary t×n submatrix of A,

the columns of the latter form a t-independent set over {0, 1}m of size n.

Now, set H as a parity-check matrix of a (possibly punctured) binary BCH code of length

m and designed minimum distance t + 1. In this case we have k ≤ dt/2e · dlog2(m + 1)e.
Also, since C is an instance of Construction C2,

n ≤ c1 · k/ε3 = c2 · 23t k

for some absolute constants c1 and c2, independent of t. Hence, there exists an absolute

constant c such that for every fixed t and for sufficiently large m, the above t-independent

construction is of size ≤ c t 23t logm, thus improving on previously-known constructions.

For comparison we note that the best known lower bound on the size of t-independent

sets is Ω(2t logm), whereas counting arguments provide the non-constructive upper bound

O(t 2t logm) [12, 21].

The above construction method for t-independent sets is based upon the technique intro-

duced in [17] for obtaining so-called ε-bias probability spaces. For the sake of completeness,

however, we reformulated the derivation for the special case of t-independent sets. The im-

provement over [17] in the size of the resulting t-independent set is due to the fact that the

code C used here is better than the one used in [17].
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