
A Linear Time Erasure-Resilient Code
With Nearly Optimal Recovery

Noga Alon ∗ Michael Luby †

Abstract

We develop an efficient scheme that produces an encoding of a
given message such that the message can be decoded from any por-
tion of the encoding that is approximately equal to the length of the
message. More precisely, an (n, c, `, r)-erasure-resilient code consists
of an encoding algorithm and a decoding algorithm with the following
properties. The encoding algorithm produces a set of `-bit packets of
total length cn from an n-bit message. The decoding algorithm is able
to recover the message from any set of packets whose total length is
r, i.e., from any set of r/` packets. We describe erasure-resilient codes
where both the encoding and decoding algorithms run in linear time
and where r is only slightly larger than n.

1 Introduction

Most existing and proposed networks are packet based, where a packet is
fixed length indivisible unit of information that either arrives intact upon
transmission or is completely lost. This model accurately reflects properties
of Internet and ATM-based networks, where local error correcting codes can
be used (and often are used) on individual packets to protect against possible
∗Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel Aviv University, Tel Aviv, Israel and Institute for Advanced Study, Princeton, NJ
08540, USA. Email: noga@math.tau.ac.il. Research supported in part by the Fund for
Basic Research administered by the Israel Academy of Sciences and by a USA-Israeli BSF
grant.
†International Computer Science Institute, Berkeley, California, 94704, and Com-

puter Science Division, UC Berkeley. Berkeley, California, 94720. Email:
luby@icsi.berkeley.edu. Research supported in part by National Science Foundation op-
erating grant CCR-9304722 and NCR-9416101, United States-Israel Binational Science
Foundation grant No. 92-00226, and ESPRIT BR Grant EC-US 030.

1

errors as the packet traverses the network. However, the timely arrival
of individual packets sent long distances over a variety of heterogeneous
networks is a global property that seems to be harder to control on a local
basis. Thus, it makes sense to protect real-time traffic sent through such
networks against losses by adding a moderate level of redundancy using
erasure-resilient codes.

Algorithms based on this approach have been developed for applica-
tions such as multicasting real-time high-volume video information over lossy
packet based networks [3, 2, 9] and other high volume real-time applications
[14]. The two most important properties of erasure-resilient codes in these
applications are the running times of the encoding and decoding algorithms
and the amount of encoding sufficient to recover the message. An erasure-
resilient code where any portion of the encoding equal to the length of the
message is sufficient to recover the message is called a maximal distance sep-
arable (MDS) code in the literature. An ideal erasure-resilient code would be
an MDS code equipped with linear time encoding and decoding algorithms,
but so far no such code is known.

Standard Reed-Solomon codes can be used to implement quadratic time
MDS codes. These methods have been customized to run in real-time for
medium quality video transmission on existing workstations [3, 2], i.e., at
the rate of a few megabits per second, but high quality video sent at the
rate of hundreds of megabits per second will require either better algorithms
or custom designed hardware. Theoretically more efficient (but not linear
time) MDS codes can be constructed based on evaluating and interpolating
polynomials over specially chosen finite fields using Discrete Fourier Trans-
form, but these methods are not competitive in practice with the simpler
quadratic methods except for extremely large messages, and even then, their
time complexity is at least Ω(n log n), see, e.g., [10], Chapter 11.7 and [13],
p. 369. Thus, the design of highly efficient algorithms for implementing
erasure-resilient codes is interesting theoretically and important for practi-
cal applications.

Our scheme has the property that the code can be constructed for any
message length n and encoded message length cn, where c > 1. We call
such a code an (n, c)-code. In applications, c is relatively small (it typically
varies between 1 and 2, but can be as large as 5). Thus, when stating
running times, we ignore the dependence on c.

A natural relaxation of an MDS code is to allow slightly more of the
encoding than the optimal amount in order to recover the message: We say
an (n, c)-code is (1+ε)-MDS if the message can be recovered from any (1+ε)n

2

of the encoding. For example, if ε = .05 then only 5% more of the encoding
than the optimal amount is sufficient to recover the message. A further
relaxation of an MDS code is to allow both the encoding and decoding
algorithms to be probabilistic (using the same set of random bits for both
encoding and decoding): We say an (n, c)-code is probabilistic (1 + ε)-MDS
if the message can be recovered from any (1 + ε)n of the encoding with high
probability. For probabilistic codes, the network is assumed to drop packets
independent of their contents.

Of secondary importance, but still important, is the length ` of the
packets. Ideally, the length of the packets should be as short as possible,
e.g., ` = 1, because an erasure-resilient code using longer packets can always
be constructed by concatenating several packets from an erasure-resilient
code using shorter packets, but the reverse is not necessarily true. Internet
packets for sending video are typically moderate sized, e.g., 1000 bytes, but
ATM cells are rather short, i.e., 48 bytes, and here the payload size is more
of a constraint. We try to minimize the value of ` as much as possible, but
in general ignore this parameter when stating results.

We assume that each packet contains a unique index. From this index,
the portion of the encoding carried by each received packet can be deter-
mined. We do not count the space for the index as part of the packet size.
In practice, the space for this index is small compared to the size of the
payload of the packet, and packet based protocols typically include a unique
index for each packet within the packet in any case.

This paper describes a new erasure-resilient code obtained by a deter-
ministic scheme. A preliminary description of this scheme, together with
descriptions of probabilistic schemes that are more efficient based on this
scheme can be found in [4]. The scheme has the property that, on inputs n,
c, and ε, the run time of the (n, c)-code is O(n/ε4), it is (1 + ε)-MDS, and
the packet size is O((1/ε4) log(1/ε)). Note that for constant ε this scheme
runs in linear time. Although this is an interesting theoretical result, it is
not clear if it can be made practical for values of ε that are reasonable, e.g.,
ε = .10, because the (1/ε4) factor is rather large both in terms of the running
time and the packet size.

The scheme we describe produces a systematic code, which means that
the message itself is part of the encoding. This property is good especially
in the case when only a small number of the packets are lost, because the
time to decode the message from the encoding is proportional only to the
amount of the message that is missing.

Our scheme is based on the properties of expanders which are explicit

3

graphs with pseudo-random properties. The relevance of these graphs to
error correcting codes has been observed in [5], and indeed we apply some
of the ideas of that paper.

Erasure-resilient codes are related to error correcting codes, and are typ-
ically easier to design. For example, an error correcting code with encoding
length cn that can correct up to bn bit flips can be used as an erasure-resilient
code that can recover the message from any (c − b)n of the encoding: For
packets not received, set the missing bits to zero and then use the error
correcting code to recover the message. This can be improved to nearly
(c− 2b)n by setting the missing bits randomly, noting that on average half
of them will be correctly set. Moreover, if the corresponding error correct-
ing code has efficient encoding and decoding algorithms, then so does the
resulting erasure-resilient code.

The recent breakthrough result of Spielman [16] on error correcting codes
is directly relevant to our scheme. Spielman applies the techniques in [15]
and [8], and constructs linear time error correcting codes with linear rate
and linear minimum distance. This error correcting code stretches an n-
bit message to a cn-bit message and can recover the message when up to
bn of the encoding bits are flipped. Here, b << 1 and c ≈ 4 are absolute
constants. A direct application of [16] to the design of an erasure-resilient
code yields a linear time code that at best is (4−2b)-MDS. Thus, [16] cannot
be used directly to yield an (1 + ε)-MDS code for an arbitrary value of ε.
Nevertheless, [16] is a crucial ingredient in our construction.

2 Overview

The input parameters for the encoding and decoding algorithms are (n, c, ε),
where n is the number of letters in the message to be encoded (q = O(log(1/ε))
is sufficient for the length of a letter). The encoding algorithm accepts as
input an n letter message and produces a cn letter encoding partitioned into
packets containing c′` letters each, where c′ and ` are described below. The
decoding algorithm is able to reconstruct the entire message from any set
of the packets that in total contain (1 + ε)n letters, i.e., from any set of
(1 + ε)n/c′` of the packets. Both the encoding and decoding algorithms run
in time O(n/ε4), where this time is measured in terms of basic operations
on letters of length q.

Here is a general overview of the steps of our construction. We first define
appropriate parameters γ, γ′ which depend linearly on ε, and β which de-

4

pends quadratically on ε. Given a message of n letters M1, . . . ,Mn, we first
show how to construct additional letters S1, . . . , Sγ′n so that the entire mes-
sage can be recovered from any n−βn portion of M1, . . . ,Mn, given all of the
letters S1, . . . , Sγ′n. This is done using expander graphs, as described in the
next section. Next we apply the construction of [16] to stretch S1, . . . , Sγ′n
to S1, . . . , Sγn, in a way that enables one to recover all of S1, . . . , Sγ′n from
any γn − βn portion of S1, . . . , Sγn. Thus, the overall property of the first
two stages is that the message can be recovered when up to a βn portion of
M1, . . . ,Mn, S1, . . . , Sγn is missing.

In the final step we stretch the encoding produced as described above
by a factor of c′ = c/(1 + γ). Let ` = O(1/ε4). This is done by partitioning
M1, . . . ,Mn, S1, . . . , Sγn into n(1 + γ)/` blocks of length ` each, and then
using a standard MDS code to stretch each block separately into an encoded
block containing c′` letters each. Then, all of the letters of the encoded
blocks are mapped using the edges of an appropriate expander into a total
of n(1 + γ)/` packets containing c′` letters each. These packets have the
property that one is able to decode a 1 − β fraction of the original blocks
from any portion of the packets which contain in total at least (1 + ε)n
letters.

The details require some careful analysis, and are described in details in
the next sections.

3 Recovering All from Almost All

We assume that ε < 1. Let γ = ε/3, γ′ = γ/4, β = γ′2/8, and let q =
4 log(1/ε) + log(c) + 16. Throughout, our basic unit of length is a letter,
which is a bit string of length q. We assume operations on letters, such as
the XOR or AND of two letters, can be performed in constant time. The
value of q has been chosen large enough so that all of the MDS codes we use
in our constructions can be implemented over the finite field GF[2q].

Let M1, . . . ,Mn be the message consisting of n letters. The first step of
our scheme constructs an encoding M1, . . . ,Mn, S1, . . . , Sγn with the prop-
erty that the message can be recovered from any fraction 1 − β of this
encoding.

The first step proceeds in two stages. The first stage uses expander
graphs to construct S1, . . . , Sγ′n from the message. The property of the first
stage is that the entire message can be recovered from any n − βn portion
of the message given all of S1, . . . , Sγ′n. The second stage directly uses the

5

constructions of Spielman [16] to stretch S1, . . . , Sγ′n to S1, . . . , Sγn. This
stage has the property that all of S1, . . . , Sγ′n can be recovered from any
γn − βn portion of S1, . . . , Sγn. Thus, the overall property of the first two
stages is that the message can be recovered when up to a βn portion of
M1, . . . ,Mn, S1, . . . , Sγn is missing.

3.1 Stage 1: Restricted erasures

The main result of this subsection is the following.

Lemma 1 There is a scheme for generating, for any given message of n
letters M1, . . . ,Mn, a sequence of γ′n additional letters S1, . . . , Sγ′n with the
following properties.

(i) The encoding time is O(n/ε).

(ii) If S1, . . . , Sγ′n are known, and at most a fraction β of M1, . . . ,Mn are
missing, then all of M1, . . . ,Mn can be recovered in time O(n/ε2).

The construction used in the proof of the above is similar to the one in
[15], and is based on properties of expanders.

Definition (Expanders): A graph is called a (d, λ)-expander if it is d-
regular and the absolute value of each of its nontrivial eigenvalues is at most
λ.

Let us call an infinite increasing sequence of integers dense if the ra-
tio between consecutive elements of the sequence tends to 1. The known
constructions of expanders supply, for every admissible degree of regularity,
infinite families of graphs on sets of nodes whose cardinalities form a dense
sequence. To simplify the presentation we assume here that there are suffi-
ciently many expanders in these families whose number of nodes is divisible
by any desired constant. It is not difficult to show that this assumption can
be omitted.

By [11], [12] the sequence of integers m for which there is a (d, 2
√
d− 1)-

expander on m nodes is a dense sequence. We need the following from [6].

Proposition 1 [6] The number of edges induced by any set of x nodes in a
(d, λ)-graph on m nodes does not exceed

1
2
x(d

x

m
+ λ(1− x

m
)).

6

Proof of Lemma 1: Fix an integer d, where 64
γ′2 < d ≤ 128

γ′2 , and let
λ = 2

√
d− 1. Let G = (V,E) be a (d, λ)-expander on m = 2n/d nodes.

Given a sequence {Me : e ∈ E} of n letters we define the corresponding
sequence S1, . . . , Sγ′n by assigning each node v of G a set of γ′d/2 letters
Sv,1, . . . , Sv,γ′d/2 as described below. Note that the total number of letters
Sv,j is mγ′d/2 = γ′n, as needed. Let v be a node of G and let e1, . . . , ed
be the edges incident with it. Use a quadratic time MDS code to map the
message Me1 , . . . ,Med to an encoding Me1 , . . . ,Med , Sv,1, . . . , Sv,γ′d/2. Such
a code can be implemented so that the encoding time is proportional to
d · γ′d/2 = O(d/ε) and the decoding time is proportional to d2, plus an
additive O(d) for each missing message letter. Note that the letter length q
is sufficient to implement such a code.

We claim that this scheme satisfies the two properties required in the
proposition. The validity of (i) is clear, as the total encoding time is
O(md/ε) = O(n/ε).

Since we assume we are missing at most βn message letters, and since
the time for recover of each missing message letter is O(d2), and since βd2 =
O(1/ε2), it follows that the decoding time is at most O(n/ε2).

We now prove that the entire message can be recovered if we are given
all the letters associated with the nodes and at most βn = γ′2n/8 of the
original message letters are missing. The decoding algorithm works as fol-
lows. Suppose there is some node v in the graph where at most γ′d/2 of
the message letters associated with the edges incident with v are missing.
Then, because Sv,1, . . . , Sv,γ′d/2 are also known, we know a total of at least
d letters of the MDS code associated with v. Thus, by the properties of the
MDS code, we can recover all the missing message letters associated with
edges incident to v. Repeating this process as long as there are such nodes
v, we either recover the entire message, or we are left with a nonempty set
of edges corresponding to the missing message letters that form a subgraph
of minimum degree greater than γ′d/2 in G.

We now show that Proposition 1 implies that if the subgraph is non-
empty then it must contain more than βn edges, and from the assumption
that we started with at most βn such edges it will follow that the subgraph
must be empty, i.e., the entire message is recovered. Let x denote the number
of nodes incident with edges of this subgraph. Then, since each such node
has degree at least γ′d/2 in the subgraph, the total number of edges of the
subgraph exceeds xγ′d/4. Thus, by Proposition 1,

xγ′d/4 ≤ 1
2
x(dx/m+ λ(1− x/m)).

7

Therefore,
γ′d

2
≤ dx

m
+ λ(1− x

m
) ≤ dx

m
+ λ.

Since λ = 2
√
d− 1 < 2

√
d, and d > 64/γ′2, the inequality γ′d/2−λ ≥ γ′d/4

holds and hence
dx/m ≥ γ′d/2− λ ≥ γ′d/4,

implying that the number of edges corresponding to missing letters exceeds

xγ′d/4 ≥ γ′2md

16
=
γ′2

8
n = βn,

contradicting the assumption. This completes the proof.

3.2 Stage 2: A Spielman-like Construction

We need the following result, which is an easy consequence of the main result
of Spielman described in Theorem 12 in [16].

Proposition 2 [16] There is an absolute positive constant b so that for all
m there is an explicit construction that maps messages of m letters into 4m
letters so that:

(i) The encoding time is O(m).

(ii) If at most bm letters are missing then the original m letters can be
recovered in time O(m).

We note that since we are interested here only in erasure-resilient codes,
whereas the construction of Spielman supplies error correcting ones, it is
possible to improve the constant b that follows from his construction consid-
erably, but since we are not optimizing the constants here we do not include
the details. For simplicity hereafter, we assume b ≥ γ′/8, which implies that
bγ′ ≥ β.

The second stage of the construction uses the construction of Proposi-
tion 2 to stretch S1, . . . , Sγ′n to S1, . . . , Sγn. The next lemma follows directly
from Lemma 1 and Proposition 2.

Lemma 2

(i) The encoding M1, . . . ,Mn, S1, . . . , Sγn can be computed in O(n/ε) time
from the message M1, . . . ,Mn.

8

(ii) The message can be decoded in time O(n/ε2) when at most βn letters
of the encoding are missing.

4 Recovering Almost All

Let c′ = c/(1 + γ), N = (1 + γ)n, and ` = 8/(γ2β). The final goal is
to stretch the encoding produced by the first step by a factor of c′. The
second step partitions M1, . . . ,Mn, S1, . . . , Sγn produced from the first step
into blocks B1, . . . , BN/` of ` letters each and then uses a standard MDS
erasure-resilient codes to produce, for each i ∈ {1, . . . , N/`}, an encoding
Ei based on Bi consisting of c′` letters. Note that the letter length q is
sufficient to implement such a code. The properties of the second step are
the following.

Lemma 3

(i) If, for at least a fraction 1 − β of the N/` encodings E1, . . . , EN/`, at
least ` letters of the encoding are recovered, then the entire message
M1, . . . ,Mn can be recovered.

(ii) Both the encoding and decoding times are O(n`).

Proof of Lemma 3: By properties of MDS codes, for each i where at least
` letters of Ei are recovered, the corresponding block of Bi can be completely
recovered. From Lemma 2 and the conditions of the lemma, it follows that
the message can be completely recovered. The time for both encoding and
decoding using a quadratic time MDS code is (N/`) · `2 = N`.

The third step of the scheme is to use a c′`-regular expander graph with
N/` nodes to deterministically simulate a “random mapping” of the letters
of the encodings E1, . . . , EN/` into N/` packets P1, . . . , PN/` containing c′`
letters each.

Lemma 4 There is a scheme for mapping the letters of E1, . . . , EN/` into
packets P1, . . . , PN/` containing c′` letters each such that:

(i) The time for both the mapping and the inverse mapping is O(n).

(ii) Every set I ⊆ {1, . . . , N/`} with |I| ≥ (1+ε)n
c′` has the following property:

For at least a fraction 1 − β of i ∈ {1, . . . , N/`}, at least ` letters of
Ei are contained in the set of packets indexed by I.

9

Proof of Lemma 4: Let λ = 2
√
c′`− 1. Let G = (V,A) be a (c′`, λ)-

expander with V = {1, . . . , N/`}. The mapping of the letters of E1, . . . , EN/`
into packets P1, . . . , PN/` is defined as follows: For each i ∈ V , let

(i, w1), . . . , (i, wc′`)

be the edges incident to i in G. Then, the jth letter of the encoding Ei is
placed into packet Pwj .

Let I be any subset of V with |I| = (1+ε)n
c′` . For each i ∈ V , let di

denote the number of letters of Ei that are in the packets indexed by I. By
a lemma in [6] (see also [7], page 122),∑

i∈V
(di − |I|c′`2/N)2 ≤ λ2|I|(1− |I|`/N) ≤ 4c′`|I| ≤ 8n. (1)

Note that
|I|c′`2

N
=

(1 + ε)n`
N

=
(1 + ε)`
1 + γ

≥ (1 + γ)`. (2)

Let M be the set of i ∈ V for which the packets indexed by I contain less
than ` letter of Ei. From Equation (2) it follows that, for each i ∈M ,

(di − |I|c′`2/N)2 ≥ (γ`)2,

and thus the left-hand side of Inequality (1) is at least |M | · (γ`)2. This and
Inequality (1) implies that |M | ≤ 8n

(γ`)2 . Recalling that ` = 8
γ2β

, this implies
that |M | ≤ βn/` ≤ βN/` as desired.

We now state and prove the main theorem.

Theorem 1 There is a scheme that, on input n, c and ε, has the following
properties:

(i) A message of n letters is encoded into packets containing a total of cn
letters, where each packet contains O(1/ε4) letters.

(ii) The message can be decoded from any set of packets containing in total
at least (1 + ε)n letters.

(iii) The run time for both the encode and decode algorithms is O(n/ε4).

Proof of Theorem 1: The encoding consists of applying the constructions
described in steps 1, 2, and 3, in sequence. The decoding guarantee and the
run time follow from combining Lemma 4 with Lemma 3.

10

5 Concluding remarks and open problems

It would be interesting to obtain a construction similar to the one in Theo-
rem 1 in which the packet size is smaller. It is not difficult to prove, using
the Plotkin bound, that the minimum possible packet size in any erasure-
resilient code with the parameters in the theorem (without any assump-
tion on the efficiency of its encoding and decoding procedures) is at least
Ω(log((c − 1)/ε)) for all ε ≥ 1/n, and the algebraic geometry codes show
that this is essentially tight. Our construction supplies much bigger packet
sizes, but has the advantage of linear encoding and decoding time.

It is possible to construct a scheme that has a theoretical run time that
is polylogarithmic in 1/ε and linear in n, using Discrete Fourier Transform
methods in place of quadratic time methods for MDS codes. However, it
is unlikely that using these methods in places where we use quadratic time
MDS codes will be as efficient in practice.

The construction in Section 4 can be improved by using walks in ex-
panders instead of edges, using the methods of [1]. The relevance of this
method to the case of expander based error correcting codes has been ob-
served by us (cf. [15]), and a similar remark holds here also.

Combining our technique here with the methods of Spielman in [16] we
can obtain explicit, linear time encodable and decodable error correcting
codes over a large alphabet, whose rate and minimum distance in the range
close to the MDS bound are close to optimal. This is done by essentially the
same construction described here, with an appropriate choice of the param-
eters. Since the last stage increases the size of the alphabet considerably,
these methods cannot be useful in the binary case.

References

[1] M. Ajtai, J. Komlós, E. Szemerédi, “Deterministic Simulation in
Logspace”, Proc. of the 19th ACM Symp. on the Theory of Comput-
ing, 1987, pp. 132-140.

[2] A. Albanese, J. Blömer, J. Edmonds, M. Luby, M. Sudan, “Priority
Encoding Transmission”, Proc. of the 35th Annual Symp. on Founda-
tions of Computer Science, 1994, 604-612, final version submitted to
this issue.

11

[3] A. Albanese, J. Blömer, J. Edmonds, M. Luby, “Priority Encoding
Transmission”, ICSI Technical Report No. TR-94-039, August 1994.

[4] N. Alon, J. Edmonds, M. Luby, “Linear Time Erasure Codes With
Nearly Optimal Recovery”, Proc. of the 36th Annual Symp. on Foun-
dations of Computer Science, 1995, pp. 512-519.

[5] N. Alon, J. Bruck, J. Naor, M. Naor, R. Roth, “Construction of asymp-
totically good, low-rate error-correcting codes through pseudo-random
graphs”, IEEE Transactions on Information Theory, Vol. 38, 1992, pp.
509-516.

[6] N. Alon, F. R. K. Chung, “Explicit construction of linear sized tolerant
networks”, Discrete Math., Vol. 72, 1988, pp. 15-19; (Proc. of the First
Japan Conference on Graph Theory and Applications, Hakone, Japan,
1986.)

[7] N. Alon, J. H. Spencer, The Probabilistic Method, Wiley, 1991.

[8] L. A. Bassalygo, V. V. Zyablov, M. S. Pinsker, “Problems in complexity
in the theory of correcting codes”, Problems of information transmis-
sion, 13, Vol. 3, 1977, pp. 166-175.

[9] E. Biersack, “Performance evaluation of forward error correction in
ATM networks”, Proc. of SIGCOMM ’92, Baltimore, 1992.

[10] R. E. Blahut, Theory and Practice of Error Control Codes, Ad-
dison Wesley, Reading, MA, 1983.

[11] A. Lubotzky, R. Phillips, P. Sarnak, “Explicit expanders and the Ra-
manujan conjectures”, Proc. of the 18th ACM Symp. on the Theory of
Computing, 1986, pp. 240-246; (See also: A. Lubotzky, R. Phillips, P.
Sarnak, “Ramanujan graphs”, Combinatorica, Vol. 8, 1988, pp. 261-
277).

[12] G. A. Margulis, “Explicit group-theoretical constructions of combina-
torial schemes and their application to the design of expanders and su-
perconcentrators” Problemy Peredachi Informatsii, Vol. 24, 1988, pp.
51-60 (in Russian). (English translation in Problems of Information
Transmission, Vol. 24, 1988, pp. 39-46).

[13] F. J. Macwilliams and N. J. A. Sloane, The Theory of Error-
Correcting Codes, North Holland, Amsterdam, 1977.

12

[14] M. Rabin, “Efficient Dispersal of Information for Security, Load Bal-
ancing, and Fault Tolerance”, J. ACM, Vol. 36, No. 2, April 1989, pp.
335-348.

[15] M. Sipser and D. Spielman, “Expander codes”, Proc. of the 35th Annual
Symp. on Foundations of Computer Science, 1994, 566-576.

[16] D. Spielman, “Linear-Time Encodable and Decodable Error-Correcting
Codes” Proc. of the 27th ACM Symp. on the Theory of Computing 1995,
ACM Press, 388-397.

13

