
Long cycles in critical graphs

Noga Alon ∗ Michael Krivelevich † Paul Seymour ‡

Abstract

It is shown that any k-critical graph with n vertices contains a cycle of length at least
2
√

log(n− 1)/ log(k − 2), improving a previous estimate of Kelly and Kelly obtained in 1954.

1 Introduction

A graph is k-critical if its chromatic number is k but the chromatic number of any proper subgraph
of it is at most k − 1. For a graph G, let L(G) denote the maximum length of a cycle in G, and
define Lk(n) = min L(G) where the minimum is taken over all k-critical graphs G with at least n
vertices. Answering a problem of Dirac, Kelly and Kelly [3] proved that for every fixed k > 2 the
function Lk(n) tends to infinity as n tends to infinity. They also showed that L4(n) ≤ O(log2 n), and
after several improvements by Dirac and Read, Gallai [2] proved that for every fixed k ≥ 4 there are
infinitely many values of n for which

Lk(n) ≤ 2(k − 1)
log(k − 2)

log n.

This is the best known upper bound for Lk(n). The best known lower bound, proved in [3], is that
for every fixed k ≥ 4 there is some n0(k) such that for all n > n0(k)

Lk(n) ≥ (
(2 + o(1)) log log n

log log log n
)1/2, (1)

where the o(1) term tends to 0 as n tends to infinity.
Note that the gap between the upper and lower bounds given above is exponential for fixed k,

and the problem of determining the asymptotic behaviour of Lk(n) more accurately is still open; see
also [1], Problem 5.11 for some additional relevant references.
∗School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, and Raymond and Beverly Sackler

Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Email: noga@math.tau.ac.il. Research supported in

part by a Sloan Foundation grant 96-6-2 and by a State of New Jersey grant.
†DIMACS Center, Rutgers University, Piscataway, NJ 08854, USA. Email: mkrivele@dimacs.rutgers.edu. Research

supported by a DIMACS Postdoctoral Fellowship.
‡Department of Mathematics, Princeton University, Princeton, NJ 08544. Email:pds@math.princeton.edu. Research

supported in part by ONR grant N00014-97-1-0512.

1



In the present note we improve the lower bound given in (1) and show that in fact Lk(n) ≥
Ω(
√

log n/ log(k − 1)) for every n and k ≥ 4. (Note that trivially L3(n) = n.) The precise result we
prove is the following.

Theorem 1 Let G be a k-critical graph on n vertices, and let t denote the length of the longest path
in it. Then

n ≤ 1 +
t−1∑
j=0

s(j, k) (2)

where
s(j, k) = j! for j ≤ k − 3 and s(j, k) = (k − 2)!(k − 2)j−k+2 for j ≥ k − 2. (3)

Therefore, any k-critical graph on n vertices contains a path of length at least log(n− 1)/ log(k − 2)
and a cycle of length at least 2

√
log(n− 1)/ log(k − 2).

We note that the construction of Gallai shows that there are infinitely many values of n for which
there is a k-critical graph on n vertices with no path of length greater than 2(k−1)

log(k−2) log n, showing
that the statement of the above theorem for paths is nearly tight for fixed k.

2 The Proof

Suppose k ≥ 4, and let G = (V,E) be a k-critical graph on n vertices. It is easy and well known that
G is 2-connected. Fix v0 ∈ V , and let T be a depth first search (= DFS) spanning tree of G rooted
at v0. Denote the depth of T , (that is, the maximum length of a path from v0 to a leaf) by r, and
recall that all non-tree edges of G are backward edges, that is, they connect a vertex of T with some
ancestor of it in the tree. Call an edge uv of T , where u is the parent of v, an edge of type j, if the
unique path in T from v0 to u has length j. Note that the type of each edge is an integer between 0
and r − 1.
Claim: The number of edges of type j in T is at most s(j, k), where s(j, k) is given in (3).
Proof: Assign to each edge e = uv of type j in T , where u is the parent of v, a word Se of length
j + 1 over the alphabet K = {0, 1, 2, . . . , k − 2} as follows. Let v0, v1, . . . , vj = u be the unique path
in T from the root v0 to u. Let Fe be a proper coloring of G− e by the k − 1 colors in K such that
Fe(vi) ≤ i for all i ≤ k − 2. Then Se = (Fe(v0), Fe(v1), . . . , Fe(vj)). The crucial observation is the
fact that if e and e′ are distinct tree edges of type j, then Se 6= Se′ . Indeed, let e = uv be as above
and suppose e′ = u′v′ is another edge of type j, where u′ is the parent of v′. Let w be the lowest
common ancestor of u and u′ (which may be u itself, if u = u′), and suppose Se = Se′ . Then the
two colorings Fe and Fe′ coincide on the tree path from v0 to w. Let y be the vertex following w on
the tree-path from v0 to v and let Ty be the subtree of T rooted at y. Define a coloring H of G as
follows; for each vertex z of G, H(z) = Fe(z) if z 6∈ Ty, and H(z) = Fe′(z) if z ∈ Ty. It is easy to
check that since the only edges of G connecting Ty with the rest of the graph lead from Ty to the
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path from v0 to w, the coloring H is a proper coloring of G with k − 1 colors. This contradicts the
assumption that the chromatic number of G is k, and hence proves the required fact. Since every
word Se corresponds to a proper coloring of a path of length j+1 in which the color of vertex number
i is at most i (for all 0 ≤ i ≤ j ), the number of possible distinct words is at most j! for j ≤ k − 3,
and at most (k − 2)!(k − 2)j−k+2 if j ≥ k − 2. This completes the proof of the Claim.

By the above claim, the total number, n− 1, of edges of T satisfies n− 1 ≤
∑r−1
j=0 s(j, k). Since r

is the depth of the tree, G contains a path of length r, showing that t ≥ r and hence implying (2).
As k ≥ 4, the right-hand-side of (2) is easily checked to be at most 1 + (k − 2)t−1, implying that
the maximum length of a path in G is at least log(n− 1)/ log(k − 2). Since, as mentioned before, G
is 2-connected, it follows, by a theorem of Dirac (cf., e.g., [4]), that it contains a cycle of length at
least 2

√
t, completing the proof. 2

Remark 1. It is easy to check that the above theorem implies that if k ≥ 4 then any k-critical
graph G on n vertices contains an odd cycle of length at least

√
log(n− 1)/ log(k − 2). Indeed, let

C be a longest cycle in G. If it is odd, the desired result follows, by Theorem 1. Otherwise, let A
be an odd cycle in G. If A and C are vertex disjoint, there are, by the 2-connectivity of G, two
internally disjoint paths from A to C providing an odd cycle containing at least half of C. A similar
argument gives the same conclusion if A and C share only one common vertex. If they have more
common vertices, split the edges of A not in C into paths that intersect C only in their ends. Then,
there is such a path whose union with C is not 2-colorable (as otherwise the union of A and C would
have been 2-colorable). Thus, in this case too we obtain an odd cycle containing at least half of C,
and the required result follows from Theorem 1. Note that this shows that any large k-critical graph
contains a large 3-critical subgraph. The problem of deciding if every large k-critical graph contains
a large s critical graph for other values of k > s ≥ 3, which is mentioned in [1], Problem 5.6, remains
open.
Remark 2. A very simple proof of the fact that any 2-connected graph G containing a path P of
length at least 2s2 contains a cycle of length at least 2s is as follows. If the distance in G between
the two ends x and y of the path is at least s, then the union of two internally disjoint paths between
x and y forms a cycle of length at least 2s. Otherwise, consider a shortest path between x and y,
and list its intersection points with the path P . Then the distance along P between some two such
consecutive intersection points must be at least 2s2/s = 2s, providing, again, the required cycle.
Although the proof in [4] gives a slightly better constant, the above argument is much simpler.
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