Long cycles in critical graphs

Noga Alon * Michael Krivelevich † Paul Seymour ‡

Abstract

It is shown that any k-critical graph with n vertices contains a cycle of length at least $2\sqrt{\log(n-1)/\log(k-2)}$, improving a previous estimate of Kelly and Kelly obtained in 1954.

1 Introduction

A graph is k-critical if its chromatic number is k but the chromatic number of any proper subgraph of it is at most k - 1. For a graph G, let L(G) denote the maximum length of a cycle in G, and define $L_k(n) = \min L(G)$ where the minimum is taken over all k-critical graphs G with at least n vertices. Answering a problem of Dirac, Kelly and Kelly [3] proved that for every fixed k > 2 the function $L_k(n)$ tends to infinity as n tends to infinity. They also showed that $L_4(n) \leq O(\log^2 n)$, and after several improvements by Dirac and Read, Gallai [2] proved that for every fixed $k \geq 4$ there are infinitely many values of n for which

$$L_k(n) \le \frac{2(k-1)}{\log(k-2)}\log n.$$

This is the best known upper bound for $L_k(n)$. The best known lower bound, proved in [3], is that for every fixed $k \ge 4$ there is some $n_0(k)$ such that for all $n > n_0(k)$

$$L_k(n) \ge \left(\frac{(2+o(1))\log\log n}{\log\log\log n}\right)^{1/2},$$
(1)

where the o(1) term tends to 0 as n tends to infinity.

Note that the gap between the upper and lower bounds given above is exponential for fixed k, and the problem of determining the asymptotic behaviour of $L_k(n)$ more accurately is still open; see also [1], Problem 5.11 for some additional relevant references.

^{*}School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, and Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Email: noga@math.tau.ac.il. Research supported in part by a Sloan Foundation grant 96-6-2 and by a State of New Jersey grant.

[†]DIMACS Center, Rutgers University, Piscataway, NJ 08854, USA. Email: mkrivele@dimacs.rutgers.edu. Research supported by a DIMACS Postdoctoral Fellowship.

[‡]Department of Mathematics, Princeton University, Princeton, NJ 08544. Email:pds@math.princeton.edu. Research supported in part by ONR grant N00014-97-1-0512.

In the present note we improve the lower bound given in (1) and show that in fact $L_k(n) \ge \Omega(\sqrt{\log n/\log(k-1)})$ for every n and $k \ge 4$. (Note that trivially $L_3(n) = n$.) The precise result we prove is the following.

Theorem 1 Let G be a k-critical graph on n vertices, and let t denote the length of the longest path in it. Then

$$n \le 1 + \sum_{j=0}^{t-1} s(j,k) \tag{2}$$

where

$$s(j,k) = j!$$
 for $j \le k-3$ and $s(j,k) = (k-2)!(k-2)^{j-k+2}$ for $j \ge k-2$. (3)

Therefore, any k-critical graph on n vertices contains a path of length at least $\log(n-1)/\log(k-2)$ and a cycle of length at least $2\sqrt{\log(n-1)/\log(k-2)}$.

We note that the construction of Gallai shows that there are infinitely many values of n for which there is a k-critical graph on n vertices with no path of length greater than $\frac{2(k-1)}{\log(k-2)}\log n$, showing that the statement of the above theorem for paths is nearly tight for fixed k.

2 The Proof

Suppose $k \ge 4$, and let G = (V, E) be a k-critical graph on n vertices. It is easy and well known that G is 2-connected. Fix $v_0 \in V$, and let T be a depth first search (= DFS) spanning tree of G rooted at v_0 . Denote the *depth* of T, (that is, the maximum length of a path from v_0 to a leaf) by r, and recall that all non-tree edges of G are backward edges, that is, they connect a vertex of T with some ancestor of it in the tree. Call an edge uv of T, where u is the parent of v, an edge of type j, if the unique path in T from v_0 to u has length j. Note that the type of each edge is an integer between 0 and r - 1.

Claim: The number of edges of type j in T is at most s(j,k), where s(j,k) is given in (3).

Proof: Assign to each edge e = uv of type j in T, where u is the parent of v, a word S_e of length j + 1 over the alphabet $K = \{0, 1, 2, \ldots, k - 2\}$ as follows. Let $v_0, v_1, \ldots, v_j = u$ be the unique path in T from the root v_0 to u. Let F_e be a proper coloring of G - e by the k - 1 colors in K such that $F_e(v_i) \leq i$ for all $i \leq k - 2$. Then $S_e = (F_e(v_0), F_e(v_1), \ldots, F_e(v_j))$. The crucial observation is the fact that if e and e' are distinct tree edges of type j, then $S_e \neq S_{e'}$. Indeed, let e = uv be as above and suppose e' = u'v' is another edge of type j, where u' is the parent of v'. Let w be the lowest common ancestor of u and u' (which may be u itself, if u = u'), and suppose $S_e = S_{e'}$. Then the two colorings F_e and $F_{e'}$ coincide on the tree path from v_0 to w. Let y be the vertex following w on the tree-path from v_0 to v and let T_y be the subtree of T rooted at y. Define a coloring H of G as follows; for each vertex z of G, $H(z) = F_e(z)$ if $z \notin T_y$, and $H(z) = F_{e'}(z)$ if $z \in T_y$. It is easy to check that since the only edges of G connecting T_y with the rest of the graph lead from T_y to the

path from v_0 to w, the coloring H is a proper coloring of G with k-1 colors. This contradicts the assumption that the chromatic number of G is k, and hence proves the required fact. Since every word S_e corresponds to a proper coloring of a path of length j+1 in which the color of vertex number i is at most i (for all $0 \le i \le j$), the number of possible distinct words is at most j! for $j \le k-3$, and at most $(k-2)!(k-2)^{j-k+2}$ if $j \ge k-2$. This completes the proof of the Claim.

By the above claim, the total number, n-1, of edges of T satisfies $n-1 \leq \sum_{j=0}^{r-1} s(j,k)$. Since r is the depth of the tree, G contains a path of length r, showing that $t \geq r$ and hence implying (2). As $k \geq 4$, the right-hand-side of (2) is easily checked to be at most $1 + (k-2)^{t-1}$, implying that the maximum length of a path in G is at least $\log(n-1)/\log(k-2)$. Since, as mentioned before, G is 2-connected, it follows, by a theorem of Dirac (cf., e.g., [4]), that it contains a cycle of length at least $2\sqrt{t}$, completing the proof. \Box

Remark 1. It is easy to check that the above theorem implies that if $k \ge 4$ then any k-critical graph G on n vertices contains an odd cycle of length at least $\sqrt{\log(n-1)/\log(k-2)}$. Indeed, let C be a longest cycle in G. If it is odd, the desired result follows, by Theorem 1. Otherwise, let A be an odd cycle in G. If A and C are vertex disjoint, there are, by the 2-connectivity of G, two internally disjoint paths from A to C providing an odd cycle containing at least half of C. A similar argument gives the same conclusion if A and C share only one common vertex. If they have more common vertices, split the edges of A not in C into paths that intersect C only in their ends. Then, there is such a path whose union with C is not 2-colorable (as otherwise the union of A and C would have been 2-colorable). Thus, in this case too we obtain an odd cycle containing at least half of C, and the required result follows from Theorem 1. Note that this shows that any large k-critical graph contains a large 3-critical subgraph. The problem of deciding if every large k-critical graph contains a large s critical graph for other values of $k > s \ge 3$, which is mentioned in [1], Problem 5.6, remains open.

Remark 2. A very simple proof of the fact that any 2-connected graph G containing a path P of length at least $2s^2$ contains a cycle of length at least 2s is as follows. If the distance in G between the two ends x and y of the path is at least s, then the union of two internally disjoint paths between x and y forms a cycle of length at least 2s. Otherwise, consider a shortest path between x and y, and list its intersection points with the path P. Then the distance along P between some two such consecutive intersection points must be at least $2s^2/s = 2s$, providing, again, the required cycle. Although the proof in [4] gives a slightly better constant, the above argument is much simpler.

References

- [1] T. Jensen and B. Toft, Graph Coloring Problems, Wiley, New York, 1995.
- [2] T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 165-192.

- [3] J. B. Kelly and L. M. Kelly, Paths and circuits in critical graphs, Amer. J. Math. 76 (1954), 786-792.
- [4] L. Lovász, Combinatorial Problems and Exercises, North Holland, Amsterdam, 1979, Problem 10.29.