Acyclic Edge Colorings of Graphs

Noga Alon * Benny Sudakov [†] Ayal Zaks [‡]

Abstract

A proper coloring of the edges of a graph G is called *acyclic* if there is no 2-colored cycle in G. The *acyclic edge chromatic number* of G, denoted by a'(G), is the least number of colors in an acyclic edge coloring of G. For certain graphs G, $a'(G) \ge \Delta(G) + 2$ where $\Delta(G)$ is the maximum degree in G. It is known that $a'(G) \le 16\Delta(G)$ for any graph G (see [2],[10]). We prove that there exists a constant c such that $a'(G) \le \Delta(G) + 2$ for any graph G whose girth is at least $c\Delta(G) \log \Delta(G)$, and conjecture that this upper bound for a'(G) holds for all graphs G. We also show that $a'(G) \le \Delta + 2$ for almost all Δ -regular graphs.

1 Introduction

All graphs considered here are finite and simple. A coloring of the vertices of a graph is proper if no pair of adjacent vertices are colored with the same color. Similarly, an edge-coloring of a graph is proper if no pair of incident edges are colored with the same color. A proper coloring of the vertices or edges of a graph G is called *acyclic* if there is no 2-colored cycle in G. In other words, if the union of any two color classes induces a subgraph of G which is a forest. The *acyclic chromatic number* of G introduced in [7] (see also [8, problem 4.11]), denoted by a(G), is the least number of colors in an acyclic vertex coloring of G. The *acyclic edge chromatic number* of G, denoted by a'(G), is the least number of colors in an acyclic edge coloring of G.

1.1 Lower and Upper Bounds

For a graph G, let $\Delta = \Delta(G)$ denote the maximum degree of a vertex in G. Any proper edge coloring of G obviously requires at least Δ colors, and according to Vizing [12] there exists a proper edge

^{*}Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Email address: noga@math.tau.ac.il. Research supported in part by a USA Israeli BSF grant, by a grant from the Israel Science Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.

[†]Department of Mathematics, Princeton University, Princeton, NJ 08540, USA, and Institute for Advanced Study, Princeton, NJ 08540, USA. Email address: bsudakov@math.princeton.edu.

[†]Department of Statistics and Operations Research, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Email address: ayalz@math.tau.ac.il.

coloring with $\Delta + 1$ colors. It is easy to see that any acyclic edge coloring of a Δ -regular graph uses at least $\Delta + 1$ colors. There are cases where more than $\Delta + 1$ colors are needed for coloring the edges acyclically:

$$a'(K_{2n} \setminus F) \ge 2n + 1 = \Delta(K_{2n} \setminus F) + 2, \tag{1}$$

where K_{2n} is the complete graph on 2n vertices and $F \subset E(K_{2n})$ such that $|F| \leq n-2$. This is because at most one color class can contain n edges (a perfect matching), and all other color classes can contain at most n-1 edges each.

Alon et al. [2] proved that $a'(G) \leq 64\Delta$, and remarked that the constant 64 can be reduced. Molloy and Reed [10] showed that $a'(G) \leq 16\Delta$ using the same proof. The constant 16 can, in fact, be further improved. We conjecture that the lower bound in (1) is an upper bound for all graphs, that is:

Conjecture 1 $a'(G) \leq \Delta(G) + 2$ for all graphs G.

Conjecture 1 is interesting for graphs G with $\Delta(G) \geq 3$. Burnstein [6] showed that $a(G) \leq 5$ if $\Delta(G) = 4$. Since any acyclic vertex coloring of the line graph L(G) is an acyclic edge coloring of G and vice-versa, this implies that $a'(G) = a(L(G)) \leq 5$ if $\Delta(G) = 3$. Hence conjecture 1 is true for $\Delta = 3$. We have found another proof for this case, which also yields a polynomial algorithm for acyclically coloring the edges of a graph of maximum degree 3 using 5 colors.

The only graphs G for which we know that $a'(G) > \Delta(G) + 1$ are the subgraphs of K_{2n} that have at least $2n^2 - 2n + 2$ edges (see (1)). Therefore it might even be true that if G is a Δ -regular graph¹ then

$$a'(G) = \begin{cases} \Delta + 2 & \text{for } G = K_{2n} \\ \Delta + 1 & \text{otherwise.} \end{cases}$$

1.2 Complete Graphs

A conjecture closely related to the problem of determining a'(G) for complete graphs $G = K_n$ is the *perfect 1-factorization conjecture* (see [9],[13],[14]):

Conjecture 2 (perfect 1-factorization [9]) For any $n \ge 2$, K_{2n} can be decomposed into 2n - 1 perfect matchings such that the union of any two matchings forms a Hamiltonian cycle of K_{2n} .

Apart from proving that the conjecture holds for certain values of n, for instance if n is prime [9] (see [13] for a summary of the known cases), this conjecture of Kotzig [9] and others is still open. If such a decomposition of K_{2n+2} (called a *perfect one-factorization*) exists, then by coloring every perfect matching using a different color and removing one vertex we obtain an acyclic-edge-coloring of K_{2n+1} with $2n + 1 = \Delta(K_{2n+1}) + 1$ colors. Such a coloring is best possible for K_{2n+1} since it is 2n-regular.

¹There always is a Δ -regular graph G' which satisfies $a'(G') = \max\{a'(G) : \Delta(G) = \Delta\}$.

A decomposition of K_{2n+1} into 2n + 1 matchings each having *n* edges, such that the union of any two matchings forms a Hamiltonian path of K_{2n+1} is called a *perfect near-1-factorization*. As shown above, if K_{2n+2} has a perfect 1-factorization then K_{2n+1} has a perfect near-1-factorization, which in turn implies that $a'(K_{2n+1}) = 2n + 1$. It is easy to see that the converse is also true: if K_{2n+1} has an acyclic edge coloring with 2n + 1 colors then this coloring corresponds to a perfect near-1-factorization of K_{2n+1} which implies that K_{2n+2} has a perfect 1-factorization. Therefore the following holds:

Proposition 3 The following statements are equivalent:

- 1. K_{2n+2} has a perfect 1-factorization.
- 2. K_{2n+1} has a perfect near-1-factorization.
- 3. $a'(K_{2n+1}) = 2n + 1$.

By removing another vertex from the above colored K_{2n+1} we obtain an acyclic-edge-coloring of K_{2n} with $2n + 1 = \Delta(K_{2n}) + 2$ colors, which is best possible for K_{2n} . Thus, if the perfect onefactorization conjecture is true, then $a'(K_{2n}) = a'(K_{2n+1}) = 2n + 1$ for every n. It may be possible to show the converse, i.e. that if $a'(K_{2n}) = 2n + 1$ then K_{2n+2} has a perfect 1-factorization. It may even be true that any acyclic edge coloring of K_{2n} with 2n+1 colors can be completed into an acyclic edge coloring of K_{2n+1} without introducing new colors.

The authors of [2] observed that $a'(K_p) = a'(K_{p-1,p-1}) = p$, where p > 2 is prime. The fact that $a'(K_p) = p$ corresponds to the known construction proving that K_p has a perfect near-1-factorization [9]. Note that even finding the exact values of $a'(K_n)$ for every n seems hard, in view of proposition 3 and conjecture 2.

1.3 High Girth and Random Graphs

Using probabilistic arguments (the Lovász Local Lemma) we can show that conjecture 1 holds for graphs having sufficiently high girth in terms of their maximum degree, and for "almost all" *d*-regular graphs. Recall that the girth g(G) of a graph G is the minimum length of a cycle in G. Let G be a graph of maximum degree $\Delta = \Delta(G)$.

Theorem 4 There exists c > 0 such that if $g(G) \ge c\Delta \log \Delta$ then $a'(G) \le \Delta + 2$.

Let $G_{n,d}$ denote the probability space of all d regular simple graphs on n labelled vertices (dn is even), where all graphs have the same probability. We consider d fixed and $n \to \infty$ and say that some event in this space occurs almost surely (a.s.) if the probability of this event tends to one when n tends to infinity. Using known properties of random graphs we can prove the following.

Theorem 5 Let $G \in G_{n,d}$ be the random d-regular graph on n labelled vertices. Then a.s. $a'(G) \leq d+1$ for even n and $a'(G) \leq d+2$ for odd n.

In section 2 we present the proof of theorem 4, and in section 3 we present the proof of theorem 5. Section 4 contains some concluding remarks.

2 Proof of Theorem 4

Let G be a graph with maximum degree d. We do not attempt to optimize the constants here and in what follows. In this section we show that if $g(G) \ge 2000d \log d$ where g(G) is the girth of G (the minimum length of a cycle in G) then there exists an acyclic edge coloring of G with d + 2 colors.

The proof is probabilistic, and consists of two steps. The edges of G are first colored properly using d+1 colors (by Vizing [12]). Let $c: E \mapsto \{1, \ldots, d+1\}$ denote the coloring. Next, each edge is recolored with a new color d+2 randomly and independently with probability 1/(32d). It remains to show that with positive probability

- (A) the coloring remains proper no pair of incident edges are colored d+2, and
- (B) the coloring becomes acyclic every cycle of G contains at least three different colors.

This is proved using the Lovász local lemma. Before continuing with the proof, we state the asymmetric form of the Lovász local lemma we use (cf., e.g. [3]).

The Lovász local lemma. Let A_1, \ldots, A_n be events in a probability space Ω , and let G = (V, E) be a graph on V = [1, n] such that for all i, the event A_i is mutually independent of $\{A_j : (i, j) \notin E\}$. Suppose that there exist x_1, \ldots, x_n , $0 < x_i < 1$, so that, for all i, $Prob[A_i] < x_i \prod_{(i,j) \in E} (1 - x_j)$. Then $Prob[\wedge \overline{A_i}] > 0$.

The following three types of "bad" events are defined in order to satisfy (A) and (B) above:

- **Type I:** For each pair of incident edges $B = \{e_1, e_2\}$ let E_B be the event that both e_1 and e_2 are recolored with color d + 2.
- **Type II:** For each cycle C which was bichromatic by the first coloring c, let E_C be the event that no edge of C was recolored with color d + 2.

A simple cycle D having an even number of edges is called *half-monochromatic* if half its edges (every other edge) are colored the same by the first coloring c. Note that this includes cycles which are bichromatic by the first coloring.

Type III: For each half-monochromatic cycle D let E_D denote the event that half the edges of D are recolored with color d + 2 (all "other" edges) such that D becomes (or stays) bichromatic.

Now suppose that no event of type I, II or III holds. We claim that both (A) and (B) are satisfied. Clearly (A) is satisfied if no event of type I holds. Now suppose that (B) is not satisfied, i.e. there exists a cycle C which is bichromatic after the recoloring. If C does not contain edges of color d + 2 then the event E_C of type II holds, otherwise C is a half-monochromatic cycle and event E_C of type III holds. Therefore, if none of these events hold, both (A) and (B) are satisfied.

It remains to show that with positive probability none of these events happen. To prove this we apply the local lemma. Let us construct a graph H whose nodes are all the events of the three types, in which two nodes E_X and E_Y (where each of X, Y is either a pair of incident edges, a bichromatic cycle or a half-monochromatic cycle) are adjacent if and only if X and Y contain a common edge. Since the occurance of each event E_X depends only on the edges of X, H is a dependency graph for our events. In order to apply the local lemma we need estimates for the probability of each event and for the number of nodes of each type in H which are adjacent to any given node. These estimates are given in the two lemmas below, whose proofs are straightforward and thus omitted (except for a proof of lemma 7, part 3).

Lemma 6

- 1. For each event E_B of type I, $Prob[E_B] = \frac{1}{1024d^2}$.
- 2. For each event E_C of type II, where C is of length x, $Prob[E_C] = (1 \frac{1}{32d})^x \le e^{-x/32d}$.
- 3. For each event E_D of type III, where D is of length 2x, $Prob[E_D] \leq \frac{2}{(32d)^x}$.

Lemma 7 The following is true for any given edge e.

- 1. Less than 2d edges are incident to e.
- 2. Less than d bichromatic cycles contain e.
- 3. At most $2d^{k-1}$ half-monochromatic cycles of length 2k contain e.

To prove part 3 of lemma 7, note that every half-monochromatic cycle of length 2k that contains edge $e = (v_0, v_1)$ can be constructed as follows. First, select a vertex v_2 which is adjacent to v_1 (dpossibilities). Next, decide if e or $f = (v_1, v_2)$ belong to the "monochromatic edges" (2 possibilities). Suppose e was chosen. Let vertex v_3 be the vertex adjacent to v_2 such that $c((v_2, v_3)) = c(e)$, if one exists. There is at most one such vertex v_3 since the coloring c is proper. If such a vertex does not exist, the number of cycles is smaller than the bound presented in the lemma. Now continue with $i = 2, \ldots, k - 1$: choose v_{2i} to be any vertex adjacent to v_{2i-1} (d possibilities), and let v_{2i+1} be the vertex adjacent to v_{2i} such that $c((v_{2i}, v_{2i+1})) = c(e)$. This completes the construction of the desired cycle. The case where f belongs to the "monochromatic edges" is treated exactly the same after swapping v_0 with v_2 . Therefore the number of half-monochromatic cycles of length 2k that contain edge e is at most $2d^{k-1}$. It follows from lemma 7 that each event E_X where X contains x edges is adjacent (in the dependency graph H) to at most 2xd events of type I, at most xd events of type II and at most $2xd^{k-1}$ events E_D of type III, where D is of length 2k, for all $k \ge 2$.

The last ingredient required for applying the Lovász local lemma are the real constants x_i . Let $1/(512d^2)$, $1/(128d^2)$ and $1/(2d)^k$ be the constants associated with events of type I, events of type II and events E_D of type III, where D is of length 2k, respectively. We conclude that with positive probability no event of type I, II or III occurs, provided that:

$$\frac{1}{1024d^2} \leq \frac{1}{512d^2} \left(1 - \frac{1}{512d^2}\right)^{4d} \left(1 - \frac{1}{128d^2}\right)^{2d} \prod_k \left(1 - \frac{1}{(2d)^k}\right)^{4d^{k-1}},\tag{2}$$

$$e^{-\frac{x}{32d}} \leq \frac{1}{128d^2} \left(1 - \frac{1}{512d^2}\right)^{2xd} \left(1 - \frac{1}{128d^2}\right)^{xd} \prod_k \left(1 - \frac{1}{(2d)^k}\right)^{2xd^{k-1}} \text{ for all } x \geq 4, \quad (3)$$

$$\frac{2}{(32d)^x} \leq \left(\frac{1}{(2d)^x}\right) \left(1 - \frac{1}{512d^2}\right)^{4xd} \left(1 - \frac{1}{128d^2}\right)^{2xd} \prod_k \left(1 - \frac{1}{(2d)^k}\right)^{4xd^{k-1}} \text{ for all } x \geq 2.$$
(4)

Now since $(1-\frac{1}{z})^z \ge \frac{1}{4}$ for all real $z \ge 2$, the following holds for all $x, d \ge 2$:

$$\prod_{k} \left(1 - \frac{1}{(2d)^{k}} \right)^{2xd^{k-1}} \ge \prod_{k} \left(\frac{1}{4} \right)^{\frac{x}{d2^{k-1}}} = \left(\frac{1}{4} \right)^{\frac{x}{d}\sum_{k} \frac{1}{2^{k-1}}} \ge \left(\frac{1}{4} \right)^{\frac{x}{256d}}$$
(5)

where the last inequality uses the fact that $2k \ge g(G) \ge 2000d \log d \ge 20$, and similarly

$$\left(1 - \frac{1}{512d^2}\right)^{2xd} \geq \left(\frac{1}{4}\right)^{\frac{x}{256d}},$$
 (6)

$$\left(1 - \frac{1}{128d^2}\right)^{xd} \geq \left(\frac{1}{4}\right)^{\frac{x}{128d}}.$$
 (7)

Combining (5), (6) and (7) we conclude that

$$\left(1 - \frac{1}{512d^2}\right)^{2xd} \left(1 - \frac{1}{128d^2}\right)^{xd} \prod_k \left(1 - \frac{1}{(2d)^k}\right)^{2xd^{k-1}} \ge \left(\frac{1}{2}\right)^{\frac{x}{32d}}$$

Thus inequality (2) holds since $2^{(1-1/16d)} \ge 1$, and inequality (4) holds since $2^{(1-5x+x+x/(16d))} \le 1$ for all $x \ge 1$. To prove inequality (3) it suffices to show that

$$e^{-\frac{x}{32d}} \le \frac{1}{128d^2} \left(\frac{1}{2}\right)^{\frac{x}{32d}}$$

which holds for all $x \ge 2000d \log d \ge 32d \frac{\log(128d^2)}{\log(e/2)}$ and d > 2, thereby completing the proof. \Box

3 Random Regular Graphs

In this section we prove theorem 5 which shows that conjecture 1 is true for almost all *d*-regular graphs. We use $G_{n,d}$ to denote the probability space of all *d* regular simple graphs on *n* labelled

vertices (dn is even), where each such graph is picked uniformly at random. We consider d fixed and $n \to \infty$ and say that some event in this space occurs almost surely (a.s.) if the probability of this event tends to one when n tends to infinity.

Random d-regular graphs can be generated using the following model given in [5, pp. 48-52]. Let $W = \bigcup_{j=1}^{n} W_j$ be a fixed set of 2m = dn labeled vertices, where $|W_j| = d$ for each j. A configuration F is a partition of W into m pairs of vertices, called edges of F (i.e. a perfect matching). Let $\mathcal{F}_{n,d}$ be a probability space where all configurations are equiprobable. For $F \in \mathcal{F}_{n,d}$, let $\phi(F)$ be the graph on vertex set $\{1, 2, \ldots, n\}$ in which ij is an edge iff F has an edge joining W_i to W_j . Clearly $\phi(F)$ is a graph with maximum degree at most d. More importantly, the probability that $\phi(F)$ is a d-regular simple graph is bounded away from 0 as $n \to \infty$, and all such d-regular graphs are obtained in this model with the same probability. Thus in order to study properties of random d-regular graphs that hold almost surely we can consider the space of configurations.

By estimating the expected number of subgraphs of a given type in $\mathcal{F}_{n,d}$ it can be easily proved (as shown implicitly in [5]) that for every fixed c random d-regular graphs a.s. contain no subgraph on c vertices with more edges than vertices. This implies the following lemma.

Lemma 8 Let d, s and t be fixed positive integers. Then almost surely a random d-regular graph has no two cycles of length at most s connected by a path of length at most t. \Box

We shall also need the following result about the edge chromatic number of random *d*-regular graphs, obtained by Robinson and Wormald [11].

Lemma 9 For $d \ge 3$ and even n the edge chromatic number of $G \in G_{n,d}$ is almost surely equal to d. \Box

Using the above two lemmas and ideas from the proof of theorem 4 we can deduce theorem 5, which states that $a'(G) \leq d+1$ almost surely for $G \in G_{n,d}$ where n is even, and $a'(G) \leq d+2$ a.s. for $G \in G_{n,d}$ where n is odd.

Proof of Theorem 5. Let G be random d-regular graph. We consider the case when n is even, the case of odd n can be treated similarly using Vizing's theorem [12] instead of lemma 9. The proof is probabilistic and consists of two steps. First, the edges of G are properly colored using d colors. By lemma 9 this is almost surely possible. Let $c : E \mapsto \{1, \ldots, d\}$ denote the coloring. Next, an edge is selected from each bichromatic cycle and colored with a new color d + 1. It remains to show that with positive probability the coloring remains proper and becomes acyclic. This is proved using the symmetric form of the Lovász local lemma, which is stated below (cf., e.g. [3]).

The Lovász local lemma (symmetric case). Let A_1, \ldots, A_n be events in a probability space Ω . Suppose that each event A_i is mutually independent of a set of all the other events A_j but at most d, and that $Prob[A_i] \leq p$ for all i. If $ep(d+1) \leq 1$, then $Prob[\wedge \overline{A_i}] > 0$. Call a cycle in G short if it has less than $800d^3$ edges, and long otherwise. This threshold is required later in the proof. Let $\{C_1, C_2, \ldots C_k\}$ be the set of all short bichromatic cycles in G. From each short cycle C_j pick an arbitrary edge e_j and color it with a new color d + 1. By lemma 8 the distances between these edges are a.s. at least, say, $2d^2 + 2$, since a.s. there are no two short cycles connected by a path of length at most $2d^2 + 2$. Call an edge of G bad if it is within distance at most one from some edge e_j $(1 \le j \le k)$, otherwise call it good. We claim that every long cycle X having |X| edges contains at least |X|/2 good edges. To establish this claim observe that there are at most $2d^2$ bad edges within distance at most one from any particular edge e_j . Therefore if X contains more than |X|/2 bad edges then there is a pair of bad edges in X within distance at most $2d^2$ from each other such that one is within distance at most one from e_i and the other within distance at most one from e_j , where $1 \le i \ne j \le k$. This implies the existence of a path of length at most $2d^2 + 2$ from e_i to e_j , a.s. a contradiction according to lemma 8.

Let $\{D_1, D_2, \ldots, D_m\}$ be the set of all long bichromatic cycles in G. From each long cycle D_j we restrict our attention to a path p_j of at most $800d^3$ edges which contains $400d^3$ good edges. Such a path exists since at least half the edges of D_j are good, and the length of D_j is at least $800d^3$. Now we randomly pick a good edge (f_j) from each path p_j and recolor it with color d + 1. Let $E_{i,j}$ be the "bad" event that edges f_i, f_j are at distance at most 1 from each other $(1 \le i, j \le m)$. Notice that if no event $E_{i,j}$ happens then the distance between any pair of edges recolored with color d + 1is more than 1, and therefore the recoloring is proper and acyclic.

The probability of each event $E_{i,j}$ can be bounded using the following observations. First notice that any two cycles D_i, D_j can intersect and share a vertex or an edge, but they cannot share a path of length greater than one because they are both bichromatic. At any intersection of D_i, D_j (a common vertex or edge) or edge (u, v) connecting D_i and D_j (where $u \in D_i$ and $v \in D_j$), there are at most 16 pairs of edges one from D_i and the other from D_j with distance at most 1 from each other. If two paths p_i, p_j have more than two intersections or connecting edges, then there exists a subgraph of G on at most $1600d^3 + 2$ vertices with more edges than vertices, which according to lemma 8 almost surely does not happen. Therefore the probability of each event $E_{i,j}$ is almost surely at most $\frac{32}{(400d^3)^2} = \frac{32}{16000d^6}$.

It is easy to see that there are less than $2d^3$ bichromatic (long) cycles at distance at most 1 from any given edge. Since each event $E_{i,j}$ is independent of all events $E_{p,q}$ such that $\{i, j\} \cap \{p, q\} = \emptyset$, it follows that each event is independent of all events but at most $2 \cdot 400d^3(2d^3 - 1) < 1600d^6$ events. Now the local lemma can be applied since $\frac{32e}{16000d^6} 1600d^6 \leq 1$, implying that with positive probability a.s. no event $E_{i,j}$ holds, thereby completing the proof.

4 Concluding Remarks

1. The following weaker version of theorem 4 can be proved in a similar but simpler way using the symmetric Lovász local lemma;

Proposition 10 There exists a constant c > 0 such that $a(G) \leq \Delta(G) + 2$ if $g(G) > c\Delta(G)^3$.

This can be achieved by recoloring one edge from each bichromatic cycle using one additional color, while avoiding recoloring any pair of edges which are incident or at distance 1 from each other (similar to the proof of theorem 5).

2. By increasing the number of colors we are able to reduce the condition on the girth as follows.

Theorem 11 If $g(G) \ge (1 + o(1)) \log \Delta$ then $a'(G) \le 2\Delta + 2$.

This can be achieved by first coloring the edges properly using $\Delta + 1$ colors $1, \ldots, \Delta + 1$, and then assigning a negative sign to the color of each edge with probability 1/2.

3. For graphs G of class 1 Vizing (that is: graphs whose edges can be properly colored using $\Delta(G)$ colors), the bound for a(G) presented in theorem 4 can be slightly improved. Indeed the proof of this theorem shows that for graphs G of class 1 there exist a constant c such

 $a'(G) \le \Delta(G) + 1$ if $g(G) \ge c\Delta \log \Delta$.

Note that this shows that $a'(G) = \Delta + 1$ for any Δ -regular graph G of class 1 whose girth is sufficiently large as a function of Δ .

4. Molloy and Reed [10] presented, for every fixed Δ, a polynomial-time algorithm that produces an acyclic coloring with 20Δ colors for any given input graph with maximum degree Δ. The known results about the algorithmic version of the local lemma, initiated by Beck ([4], see also [1],[10]), can be combined with our method here to design, for every fixed Δ, a polynomial algorithm that produces an acyclic Δ + 2 coloring for any given input graph with maximum degree Δ whose girth is sufficiently large as a function of Δ.

References

- N. Alon, A Parallel algorithmic version of the Local Lemma, Random Structures and Algorithms 2 (1991), 367–378.
- [2] N. Alon, C.J.H. McDiarmid and B.A. Reed, Acyclic coloring of graphs, Random Structures and Algorithms 2 (1991), 277–288.
- [3] N. Alon and J. H. Spencer, The Probabilistic Method, Wiley, 1992.
- [4] J. Beck, An algorithmic approach to the Lovász Local Lemma, Random Structures and Algorithms 2 (1991), 343–365.
- [5] B. Bollobas, Random Graphs, Academic Press, London, 1985.

- [6] M.I. Burnstein, Every 4-valent graph has an acyclic 5-coloring(in Russian), Soobšč. Akad. Nauk Gruzin. SSR 93, 21–24, 1979 (Georgian and English summaries).
- [7] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973), 390–408.
- [8] T. Jensen and B. Toft, Graph Coloring Problems, John Wiley and Sons Inc., New York, 1995.
- [9] A. Kotzig, Hamilton Graphs and Hamilton Circuits, Theory of Graphs and Its Applications (Proc. Sympos. Smolenice 1963), Nakl. ČSAV, Praha (1964) 62–82.
- [10] M. Molloy and B. Reed, Further Algorithmic Aspects of the Local Lemma, Proceedings of the 30th Annual ACM Symposium on Theory of Computing, May 1998, 524–529.
- [11] R.W. Robinson and N.C. Wormald, Almost all regular graphs are hamiltonian, Random Structures and Algorithms 5 (1994), 363-374.
- [12] V. G. Vizing, On an estimate of the chromatic class of a p-graph (in Russian), Metody Diskret. Analiz. 3, 25–30, 1964.
- [13] D. G. Wagner, On the Perfect One-Factorization Conjecture, Discrete Mathematics, 104 (1992), 211–215.
- [14] W. D. Wallis, One-Factorizations, Kluwer Academic Publisher, 1997