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Abstract

A proper k-coloring of a graph is acyclic if every 2-chromatic subgraph is
acyclic. Borodin showed that every planar graph has an acyclic 5-coloring. This
paper shows that the acyclic chromatic number of the projective plane is at most
7. The acyclic chromatic number of an arbitrary surface with Euler characteristic
χ = −γ is at most O(γ4/7). This is nearly tight; for every γ > 0 there are
graphs embeddable on surfaces of Euler characteristic−γ whose acyclic chromatic
number is at least Ω(γ4/7/(log γ)1/7). Therefore, the conjecture of Borodin that
the acyclic chromatic number of any surface but the plane is the same as its
chromatic number is false for all surfaces with large γ (and may very well be
false for all surfaces).

1. Introduction

A coloring of a (simple) graph G is a function from the vertices of the graph to
the natural numbers (the colors). A k-chromatic subgraph of a graph with a
coloring is a subgraph whose vertices receive at most k distinct colors. A coloring
of G is proper if each 1-chromatic subgraph of G is edgeless. A coloring of G
is acyclic if it is proper, and if each 2-chromatic subgraph of G is acyclic. A
cycle C of a graph G is induced if there is no edge in G between two vertices of
C which is not also an edge of C. The following alternate definition is useful: a
coloring of G is acyclic if it is proper, and if it contains no 2-chromatic induced
cycle.

Grünbaum [9] conjectured that planar graphs have acyclic 5-colorings, men-
tioning that this would imply several known results in point-arboricity. In the
same paper, he showed that every planar graph has an acyclic 9-coloring. This
result was steadily improved. Mitchem [12] proved planar graphs have acyclic
8-colorings, Albertson and Berman [2] acyclic 7-colorings, Kostochka [10] acyclic
6-colorings. Borodin [6] finally proved the conjecture, stated as Lemma 1 below.

Lemma 1 (Borodin). Every planar graph has an acyclic 5-coloring.

This bound is best possible. Grünbaum [9] demonstrated an infinite family of
planar graphs which have no acyclic 4-coloring. These are the double wheels with
at least six vertices, the simplest of which is the octahedron. Wegner [15] even
showed a planar graph in which in every proper 4-coloring, every maximal 2-
chromatic subgraph has a cycle. Grötzsch’s theorem [8] says that a planar graph
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with no triangles has a 3-coloring. This condition does not help with acyclic
colorings; Kostochka and Melnikov [11] showed a bipartite planar graph with no
acyclic 4-coloring.

The acyclic chromatic number of G, denoted by A(G), is the minimum
number of colors in an acyclic coloring of G. Given a surface, the chromatic

number (acyclic chromatic number) of that surface is the smallest number k
such that every graph that can be embedded on that surface has a proper (acyclic)
k-coloring. The Map Color Theorem (see [13]) shows that the chromatic number
of an arbitrary surface with Euler characteristic χ = −γ is Θ(γ1/2). For surfaces
other than the plane, Borodin [14] conjectured that the acyclic chromatic number
equals the chromatic number. Albertson and Berman [3] proved that the acyclic
chromatic number of the orientable surface of genus g is at most 4g + 4. In this
paper their bound is improved by showing that the acyclic chromatic number
of an arbitrary surface with Euler characteristic χ = −γ is at most O(γ4/7)
(Theorem 3). This is nearly tight; for every γ > 0 there are graphs embeddable
on surfaces of Euler characteristic −γ whose acyclic chromatic number is at least
Ω(γ4/7/(log γ)1/7) (Theorem 4). Therefore, the conjecture of Borodin is false for
all surfaces with large γ (and may very well be false for all surfaces).

2. Connectivity

This section will show that graphs with certain separations do not need to
be considered when dealing with acyclic colorings of graphs on surfaces. Let a
cycle C of a graph G embedded in a surface S be contractible if S \ C has
one component whose complement is a closed disk D which is bounded by C;
in this case let GC be the planar graph consisting of all vertices and edges of G
which are embedded in D, and let IC , the set of interior vertices, be defined by
IC := V (GC) \ V (C). Otherwise, the cycle is essential.

Lemma 2. Given an integer k ≥ 7 and a minimal triangulation G of a surface S
which has no acyclic k-coloring, if C is a contractible cycle of G with |V (C)| ≤ 4
and |IC | > 0, then |V (C)| = 4 and |IC | = 1.

Proof:

Let k,G, S, C be as in the statement of the theorem. Let the vertices of C, in
its cyclic order, be v1, . . . , vj . Clearly j ≥ 3.
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If j = 3, then G−IC is also a triangulation of S. Since G was minimal, G−IC
has an acyclic k-coloring. Also, GC has an acyclic 5-coloring by Lemma 1. These
colorings can be permuted so that vi is colored i for i = 1, 2, 3. The union of
the colorings is then an acyclic k-coloring of G, since every induced cycle in G is
either a cycle in G−IC or GC . Similarly, G has no separating essential triangles.
For the remainder, assume that G has no separating triangles.

If j = 4, then the lemma is true unless |IC | > 1, thus assume so. In this case,
without loss of generality through symmetry of rotation, there is no vertex of IC
adjacent to both v1 and v3. Note that G − IC + v2v4 is a simple triangulation
of S (since G has no separating triangles) with fewer vertices than the minimal
G. Thus it has an acyclic k-coloring. Permute these colors so that v1, v2, v4 are
colored 6, 7, 1 respectively, while v3 is either colored 2 or 6. Give GC an acyclic
5-coloring by Lemma 1, permuting the colors so that v3 is colored 2 and v4 is
colored 1. Color G with k colors as follows: First color the vertices of G−IC+v2v4

the colors they received previously. Then color the vertices of IC the colors they
received in the coloring of GC . Since colors 6 and 7 do not appear in IC , this
coloring is a proper coloring. Further, this coloring is acyclic, as follows: If D
is an induced cycle of G which is not a cycle of G − IC + v2v4 or GC , then D

contains vertices of IC , vertices of G− IC − C, and either contains both v1 and
v3 or contains both v2 and v4. If it contains both v1 and v3, then it contains a
vertex colored 6, as well as two adjacent vertices of IC , neither of which is colored
6. If it contains both v2 and v4, then it contains vertices colored 1 and 7, as well
as a vertex of IC adjacent to v4, which cannot be colored either 1 or 7. Thus D
has vertices of at least three different colors.

For an alternate proof of Lemma 2, see [2].

3. Projective Plane Graphs

This section presents a 7-color theorem for projective planar graphs. This
result may not be best possible.

Let the representativity of a graph G (in symbols rep(G)) embedded in a
surface other than the sphere be the minimum number of times an essential closed
curve in the surface intersects G. For a triangulation G, the representativity is
equal to the number of vertices of the shortest essential cycle in G. Also note that
any graph G embedded with rep(G) ≥ 3 can be triangulated without introducing
multiple edges.
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Theorem 1. Every projective planar graph has an acyclic 7-coloring.

Proof:
Let G be a minimal (with respect to number of vertices) projective plane graph

with no acyclic 7-coloring. If G is embedded with rep(G) ≤ 3, then let C be a
shortest essential closed curve of the projective plane which intersects G in at
most the vertices x, y, and z. The graph G− x− y is a planar graph, and thus
has an acyclic 5-coloring by Lemma 1. If x and y are colored with colors 6 and
7, respectively, this clearly gives an acyclic 7-coloring of G. Thus G is embedded
with rep(G) ≥ 4.

Without loss of generality, then, G is a triangulation. Let C be a shortest
essential cycle of G. Note from Lemma 2 that G has no vertices of degree at
most 3, and no two adjacent vertices of degree 4. For each vertex x of C with
deg(x) = 4, delete x from C and replace it by one of its neighbors not previously
in C. This new graph, D, will also be a shortest essential cycle of G. Note that
no vertex of D has degree 4.

Note that H = G\D is a plane graph with one face (the exterior face) contain-
ing in its boundary all the neighbors of the vertices of D. Let z be a vertex not
in H, and let K be the plane graph formed from H by adding z to the exterior
face, and adding edges from z to each vertex in the boundary of the exterior face.
Give K an acyclic 5-coloring by Lemma 2, such that z is colored 1.

First consider the case where rep(G) > 4. Now, give G an acyclic 7-coloring
as follows: Color V (H) with the colors they received in the coloring of K. Then
choose a starting point, and color the first four vertices 1, 6, 7, 1, and then alter-
nately color the remaining vertices of D with 6 and 7. Clearly this is a proper
coloring of G; the claim is that this is an acyclic coloring of G. Assume there
is a 2-chromatic subgraph J of G which is an induced cycle. Since K had an
acyclic 5-coloring, J must contain a vertex of D. Also note that, since D is a
shortest essential cycle, if J has a vertex x adjacent to two vertices of D, then
these two vertices are exactly distance two apart in D; also, x is not colored 1
since K had a proper coloring. If J contained two consecutive vertices of D, then,
without loss of generality, it would be colored with 1 and 6. ¿From the previous
statement, it would be of length four and contain three consecutive vertices of D,
colored 6,1,6. But the previous statement says that the vertex of J off D cannot
be colored 1, a contradiction. Since K received an acyclic coloring, exactly half
of its vertices are on D. Together with the choice of the coloring of D, this shows
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that K cannot be essential, because it is shorter than D. If J were a contractible
cycle, it must then be of length four. ¿From the assumption that D contains no
vertices of degree four, this contradicts Lemma 2.

The final case is when rep(G) = 4. Label D with v1, . . . , v4 so that v1, v3 are
not adjacent. Note that, since D is a shortest essential cycle, no vertex of G is
adjacent to each of v1, . . . , v4. It follows that if there is an essential cycle av1bv3

such that {a, b} ∩ {v1, . . . , v4} = ∅, then there is no essential cycle cv2dv4 such
that {c, d}∩{v1, . . . , v4} = ∅. Thus without loss of generality, by Lemma 2, there
are no x, y such that both x and y are adjacent to both v1 and v3, but not to
each other. Color v1 and v3 with 1, v2 with 6, and v4 with 7. This is an acyclic
7-coloring of G.

4. Klein Bottle Graphs

In the introduction this conjecture of Borodin was mentioned, that for every
surface other than the plane, the acyclic chromatic number equals the chromatic
number. This section presents a counterexample in the case of the Klein bottle.
Franklin [7] showed that the chromatic number of the Klein bottle is six. This
section shows, by means of a Klein bottle graph which has no acyclic 6-coloring,
that the acyclic chromatic number of the Klein bottle is not six.

Theorem 2. The acyclic chromatic number of the Klein bottle is at least seven.

Proof:
Consider the graph G := K8 \ (2K1,2 +K2), which is embeddable on the Klein

bottle (for an embedding, see Figure 1). Let G be given an acyclic 6-coloring.
First note that for each triple of vertices, one pair of them is joined by an edge.
Thus G has at most two vertices using each color. There must be two colors,
each having two vertices of that color. But note that in G, if x is not adjacent to
y, then either x and y are adjacent to every vertex of V (G) \ {x, y} or there is a
vertex z such that x, y, and z are each adjacent to every vertex of V (G)\{x, y, z}.
This is a contradiction.

5. Graphs on General Surfaces

This section shows that Borodin’s conjecture [14] is false for all surfaces with
sufficiently large genus. Moreover, it determines the correct magnitude of the
acyclic chromatic number of an arbitrary surface.
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It is difficult to obtain a good upper bound on the acyclic chromatic number
for a general surface. Albertson and Berman [3] showed that the sphere with
g handles has acyclic chromatic number at most 4g + 4. This section gives an
improvement to this, as well as an extension to non-orientable surfaces. The
proof uses the following result from [4].

Lemma 3 (Alon, McDiarmid, Reed). For every graph G with maximum
degree d, A(G) ≤ d50d4/3e.

The following theorem is proved without any attempt to improve the constants:

Theorem 3. If G is a (simple) graph embeddable on a surface of Euler charac-
teristic −χ ≤ 0, then A(G) ≤ 100γ4/7 + 10000.

Proof:
Assume the theorem is false for a surface S with Euler characteristic −γ ≤ 0,

and let G be a graph embeddable on it, with a minimum number of vertices,
that violates the assertion of the theorem. Let H be G with (possibly multiple)
edges added to triangulate S. Clearly degG(v) ≤ degH(v) for every vertex v of
G. Suppose V (G) = V (H) = {v1, . . . , vn}, where degH(v1) ≤ degH(v2) ≤ · · · ≤
degH(vn). If γ = 0, define h1 = 0 and h2 = 0. Otherwise, define h1 := dcγ4/7e
and h2 = b6γ/h1c (≤ 6γ3/7/c), where c is an absolute constant, to be chosen
later. Let d := degH(vn−h1). The proof will split on the size of d.

Case 1: d ≤ (4/3)h2 + 9.

In this case, the induced subgraph of G on {v1, . . . , vn−h1} has maximum
degree at most d, and thus has an acyclic coloring with at most d50d4/3e colors,
by Lemma 3. Coloring the remaining vertices of G with h1 new colors that have
not been used before gives an acyclic coloring of G with at most

d50((4/3)h2 + 9)4/3e+ h1 ≤ 50(8γ3/7/c+ 9)4/3 + 1 + cγ4/7 + 1

colors. An appropriate choice of c shows that this is smaller than 100γ4/7+10000,
implying that in this case G cannot be a counterexample.

Case 2: d ≥ (4/3)h2 + 28/3.

Define charge(vi) = 6 − degH(vi), and observe that Σni=1charge(vi) = −6χ
is true by Euler’s formula. Since degH(vi) ≥ d for all i ≥ n − h1, it follows
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that Σni=n−h1+1(charge(vi) + degH(vi)/4) ≤ h1(6 − (3/4)((4/3)h2 + 28/3)) =
−h1(h2 + 1) < −6χ. Therefore,

n−h1∑
i=1

charge(vi) +
n∑

i=n−h1+1

−degH(vi)/4 > 0.

Define charge′(vi) as follows: for 1 ≤ i ≤ n − h1, charge′(vi) := charge(vi).
For n− h1 + 1 ≤ i ≤ n, charge′(vi) := −degH(vi)/4. Finally, define new charges,
charge′′(vi) to be the charges obtained from the charges charge′(vi) by the fol-
lowing discharge rules. Send a charge of 1/2 from each vertex of degree four to
each of its neighbors of degree at least eight. Send a charge of 1/4 from each
vertex of degree five to each of its neighbors of degree at least seven. (All degrees
are the degrees in H.) By the above discussion, Σni=1charge′′(vi) > 0. Thus there
is a j such that charge′′(vj) > 0.

If degH(vj) ≤ 3, so is degG(vj), and one can delete vj from G and add edges
to make all its neighbors pairwise connected. By induction, there is an acyclic
coloring of the resulting graph with the allowed number of colors, and this coloring
gives a coloring of G by coloring vj with a color that differs from that of all its
neighbors.

If degH(vj) = 4, then charge′(vj) = 2, and thus vj must have a neighbor vk
in H with degH(vk) ≤ 7. Let K be G with vj deleted, and edges added so that
the neighbors of vj in G except (possibly) vk are pairwise adjacent. Give K an
acyclic coloring by induction. If vj is colored a different color from each of its
neighbors as well as the neighbors of vk, G will have an acyclic coloring with the
right amount of colors.

If deg(vj) = 5, charge′(vj) = 1. Thus vj must have two neighbors vk, vm in H

such that degH(vk) ≤ 6 and degH(vm) ≤ 6. Let K be G with vj deleted, and
edges added so that the neighbors of vj in G except (possibly) vk, vm are pairwise
adjacent. Give K an acyclic coloring by induction. If vj is colored a different
color from each of its neighbors, as well as the neighbors of vk and vm, then G

will have an acyclic coloring with the right amount of colors.
Clearly deg(vj) 6= 6, since in this case charge′(vj) = charge′′(vj) = 0.
If deg(vj) = 7, charge′(vj) = −1, and thus vj either has at least one neighbor

in H of degree four, or at least five neighbors in H of degree five. Each of these
yields a previous case.

If deg(vj) ≥ 8, then charge′(vj) ≤ −deg(vj)/4. Thus vj must have neighbors
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vk, vm in H such that degH(vk) = 4, degH(vm) ≤ 5, and vk is adjacent to vm in
H. This is also handled in a previous case, and thus completes the proof.

The following result is used in the proof of Theorem 4 below, which shows that
the bound of Theorem 3 is almost tight.

Lemma 4. Let G = Gn be the random graph on a set V = {1, 2, . . . , n} of n
labelled vertices in which each pair of distinct vertices is chosen to be an edge,
randomly and independently, with probability p = 3((log n)/n)1/4. Then, almost
surely (that is, with probability that tends to 1 as n tends to infinity), G has at
most 2n7/4(log n)1/4 edges and its acyclic chromatic number exceeds n/2.

Lemma 4 can be derived from the proof in [4, pages 282–283]. Since the proof
is not difficult, it is sketched here for the sake of completeness. For convenience,
let n be divisible by 4. The fact that G has at most 2n7/4(log n)1/4 edges almost
surely, follows trivially from the standard estimates for binomial distributions
(cf., e.g., [5, Appendix A]).

The following suffices to prove that A(G) > n/2 almost surely. Observe, first,
that for every fixed partition of V into r ≤ n/2 disjoint color classes V1, . . . , Vr,
on can omit a vertex from each Vi of odd cardinality and partition the remainder
of each such Vi into pairs, thus obtaining at least k = n/4 pairwise disjoint
subsets U1, . . . , Uk of V , each of cardinality 2, and each a subset of some color
class in the original given partition. Therefore, if, for some 1 ≤ i < j ≤ k, the
four edges between Ui and Uj are all in G, then the coloring is not acyclic. The
probability that these four edges are not in G is 1−p4, and, crucially, all the

(
n/4
2

)
events of this type corresponding to all possible choices of i and j are mutually
independent. It follows that the probability that the given, fixed, partition is an
acyclic coloring of G is at most

(1− p4)(
n/4

2 ) ≤ exp(−81
(
n/4
2

)
(log n)/n) < n−2n

for all sufficiently large n. Since there are less than nn partitions of V into at
most n/2 color classes, it follows that the probability that there is an acyclic
coloring with at most n/2 colors is at most n−n, which tends to 0 as n tends to
infinity.
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Theorem 4. For every large γ ≥ 0, there is a graph G embeddable on an
(orientable) surface with Euler characteristic χ = −γ that satisfies A(G) ≥
(1/3)γ4/7/(log γ)1/7.

Proof:

Let G satisfy the assertion of Lemma 4. Let G be embedded in a surface
Σ′ of the maximum Euler characteristic χ′ such that G embeds in Σ′. Euler’s
formula gives n − e + f = χ′, where e := |E(G)| and f := |F (G)|. By Lemma
4, e ≤ 2n7/4(log n)1/4. Trivially n ≥ 0 and f ≥ 0. Thus χ′ ≥ −2n7/4(log n)1/4.
Clearly G embeds in the orientable surface Σ of Euler characteristic χ equal to
the greatest even number less than −2n7/4(log n)1/4. If γ := −χ, then γ >

n7/4, and log γ > (7/4) logn. Substituting, γ < 2n7/4((4/7) log γ)1/4, or n >

(7/64)1/7γ4/7/(log γ)1/7. By Lemma 4, A(G) > n/2, and Theorem 4 follows.

Acknowledgement Special thanks go to Neil Robertson for helpful discus-
sion.
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