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Abstract

We consider a canonical Ramsey type problem. An edge-coloring of a graph is called m-good if

each color appears at most m times at each vertex. Fixing a graph G and a positive integer m, let

f(m,G) denote the smallest n such that every m-good edge-coloring of Kn yields a properly edge-

colored copy of G, and let g(m,G) denote the smallest n such that every m-good edge-coloring of

Kn yields a rainbow copy of G. We give bounds on f(m,G) and g(m,G). For complete graphs

G = Kt, we have c1mt2/ ln t ≤ f(m,Kt) ≤ c2mt
2, and c′1mt

3/ ln t ≤ g(m,Kt) ≤ c′2mt
3/ ln t,

where c1, c2, c
′
1, c
′
2 are absolute constants. We also give bounds on f(m,G) and g(m,G) for

general graphs G in terms of degrees in G. In particular, we show that for fixed m and d, and

all sufficiently large n compared to m and d, f(m,G) = n for all graphs G with n vertices and

maximum degree at most d.

1 Introduction

In Ramsey Theory we study, for fixed k, monochromatic subgraphs that are forced to appear in every
k-coloring of the edges of Kn. If we allow arbitrarily many colors to be used, we can still ask what
types of subgraphs are forced if we replace monochromatic by some other condition on the subgraph’s
coloring. Erdős and Rado [11] were among the first to study problems of this type. In 1950 they
proved a counterpart of Ramsey’s theorem on colorings of finite sets using arbitrarily many colors.
Their theorem is often known as the Canonical Ramsey Theorem. We paraphrase that theorem, in
terms of the following notation. When the end vertices x and y of an edge e are integers, we call
max(x, y) the higher endpoint and call min(x, y) the lower endpoint.
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Theorem A (Erdős-Rado [11]) Let p be a positive integer. Then there exists a least positive

integer N = er(p) such that if the edges of the complete graph KN with vertex set {1, · · · , N} are

colored using an arbitrary number of colors, then there exists a complete subgraph with p vertices on

which the coloring is of one of four canonical types.

1) monochromatic — all edges have the same color;

2) rainbow — no two edges have the same color;

3) upper lexical — two edges have the same color if and only if they have the same higher endpoint;

4) lower lexical — two edges have the same color if and only if they have the same lower endpoint.

The best known estimates of er(p) are due to Lefmann and Rödl [15] who showed that there exist
constants c, c′ such that for every positive integer p, 2 cp2 ≤ er(p) ≤ 2 c′p2 log p.

Motivated by the Canonical Ramsey Theorem, Jamison, Jiang and Ling [14], and independently,
Chen, Schelp and Wei [8], introduced the following notion. Given two graphs G and H, let R∗(G,H)
denote the smallest n such that every coloring of E(Kn) using an unlimited number of colors yields
either a monochromatic copy of G or a rainbow copy of H. It follows from the Canonical Ramsey
Theorem that R∗(G,H) exists iff either G is a star or H is acyclic.

This points toward two natural directions for study of R∗.
(1) Study R∗(G,H) when H is a fixed acyclic graph and G is any graph.
(2) Study R∗(G,H) when G is a fixed star and H is any graph.
In particular, along direction (1), consider the choice H = K1,k+1. Then R∗(G,H) is exactly the
smallest n such that every coloring of E(Kn) with at most k different colors appearing at each vertex
contains a a monochromatic copy of G. This was earlier introduced and studied (see [12, 13, 17, 19])
as the k-local Ramsey number of G, which can be considered a local version of the k-color Ramsey
number Rk(G).

The purpose of this paper is to study R∗(G,H) along direction (2). In this case, G = K1,m+1

for some positive integer m, and H is any specific graph. For convenience, we rephrase the problem
as follows. Given a positive integer m, we define an edge-coloring of a (host) graph to be m-good
if each color appears at most m times at each vertex. Given any graph H, let g(m,H) denote the
smallest n such that every m-good coloring of E(Kn) yields a rainbow copy of H. It is not hard to
see that R∗(K1,m+1,H) is exactly g(m,H). So, study of R∗ along direction (2) amounts to study
of the function g(m,H). In addition, we consider a related function f(m,H), defined to be the
smallest n such that every m-good coloring of E(Kn) yields a properly edge-colored copy of H. We
emphasize that the important definitions in this paragraph involve no upper limit on the number
of colors used in an edge-coloring. Since the colorings in this paper are never vertex-colorings and
are usually edge-colorings, the phrases coloring and proper coloring are to be understood to refer to
edge-colorings except where indicated otherwise.

One of our motivations in studying the function f comes from previous work by various authors
(see [4, 9, 18]) on the conjecture of Bollobás and Erdős [7] that every bn/2c-good edge-coloring of Kn

has a properly colored Hamiltonian cycle, which in terms of our notations says that f(m,Cn) = n if
m ≤ bn/2c. In section 4, we extend results in [4, 9, 18] from Hamiltonian cycles to sparse spanning
subgraphs. It is also worth noting that a key ingredient in Lefmann and Rödl’s proof [15] of their
upper bound on er(p) dealt with what amounts to an analysis of g(m,Kn). In fact, our bounds here
enable us to slightly improve their upper bound.

This paper is organized as follows. We first make some observations in Section 2. We give bounds
on f(m,Kt) in Sections 3. In Section 4 we study f(m,G) for graphs G with bounded maximum
degree. In Section 5 we derive bounds on g(m,Kt), and in Section 6 we bound g(m,G) for general
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graphs G in terms of degrees in G. Section 7 contains some concluding remarks. Throughout the
paper, we make no attempt to optimize the absolute constants involved.

For any notation or definition not given here, we follow West [20]. In particular, for a graph G
and a vertex subset S of V (G), we let G[S] denote the subgraph of G induced by S. As usual, E(X)
denotes the expectation of a random variable X (and although for a graph G we let E(G) denote its
set of edges, it will always be clear from the context if we refer to edges or expectations).

2 Preliminaries

In this section we give a couple of lemmas useful in deriving lower bounds on f(m,G) and g(m,G).
For a positive integer n, let [n] denote the set {1, 2, · · · , n}.

Lemma 2.1 Let n, p, s, t be positive integers. Suppose there exists a p-good coloring of E(Kn) con-

taining no properly colored Kt. Then there exists a ps-good coloring of Kns containing no properly

colored Kt. That is, we have

f(ps,Kt) > s[f(p,Kt)− 1].

Proof. Let x1, x2, · · · , xn denote the n vertices of K = Kn. By our assumption, there exists a p-good
coloring c of E(K) containing no properly colored Kt (i.e., n ≤ f(p,Kt)− 1). From this assumption,
note that t ≥ 3. We use the coloring c to obtain a ps-good edge-coloring c∗ of Kns that yields no
properly colored Kt, as follows.

Let N = ns and K∗ = KN . Partition V (K∗) into n subsets A1, A2, · · · , An, each of order s. We
define the coloring c∗ of E(K∗) as follows. For each pair i, j ∈ [n], i 6= j, assign color c(xixj) to all
the edges joining Ai and Aj . For the remaining edges, which are edges with both endpoints in the
same subset Ai, we assign them a new color α not used in c. Clearly, c∗ is a ps-good coloring of
E(K∗).

Consider a properly colored complete subgraph H∗ in c∗ of order p ≥ 3. It suffices to prove
that p ≤ t. It follows easily from our definition of c∗ and the fact that H∗ is properly colored that
|V (H∗) ∩ Ai| ≤ 1 for all i ∈ [n]. Let H be the subgraph of K induced by {xi : |V (H∗) ∩ Ai| = 1}.
Then H is a complete subgraph of K of order p which is properly colored under coloring c. By our
assumption about c, we have p ≤ t.

The proof of Lemma 2.1 can be easily modified to show the following.

Lemma 2.2 Let n, p, s, t be positive integers, where n, t ≥ 3. Suppose there exists a p-good coloring

of E(Kn) containing no rainbow Kt. Then there exists a ps-good coloring of Kns containing no

rainbow Kt. That is, we have

g(ps,Kt) > s[g(p,Kt)− 1].

Next we give some trivial lower bounds for f(m,G) and g(m,G).

Lemma 2.3 Let G be a graph with q edges, and maximum degree ∆. Then g(m,G) > m(q− 1) and

f(m,G) > m(∆− 1).

3



Proof. Based on its edge-chromatic number, Km(q−1) has a proper edge-coloring c using colors
from [m(q − 1)]. Define c′ by letting c′(e) = dc(e)/me for each edge e ∈ E(Km(q−1)). The resulting
c′ is clearly m-good, and it uses at most q − 1 colors, hence it has no rainbow copy of G. Thus,
g(m,G) > m(q − 1). A similar argument shows f(m,G) > m(∆− 1).

Toward developing Lemma 2.5, which is useful in establishing probabilistic lower bounds on
f(n,G) and g(n,G) for dense graphs G, first we need the following simple lemma. Given positive
integers n, j with n ≥ j, let [n]j = n(n− 1) · · · (n− j + 1).

Lemma 2.4 Let a, b, j be positive integers such that a ≥ b ≥ j. Then

[b]j
[a]j
≤
(
b− j−1

2

a− j−1
2

)j
.

Proof. For a = b this is trivial, hence assume a > b. Let f(x) = b−x
a−x , where x < b, and let

g(x) = ln f(x) = ln(b − x) − ln(a − x). It is easy to check that g′′(x) = 1
(a−x)2 − 1

(b−x)2 < 0. Hence

g(x) is concave down for x < b. So in particular we have ln Πj−1
i=0f(i) = Σj−1

i=0g(i) ≤ j · g( j−1
2 ) [by

convexity] = ln[f( j−1
2 )]j . Thus Πj−1

i=0f(j) ≤ [f( j−1
2 )]j , which is the same as the claim.

Let N,m, q be positive integers with N = mq. Given a set S of N elements, a coloring of the
elements of S is m-perfect if exactly q colors are used, and each color is used on exactly m elements.

Lemma 2.5 Let N,m, q be positive integers with N = mq. Let S be a set of N elements. Let C
denote the probability space consisting of all m-perfect colorings of S using colors from [q], with each

m-perfect coloring of S being equally likely. Let T be a fixed subset of S of size d, where d ≤ q. Let

c ∈ C be a randomly chosen m-perfect coloring of S. Let AT denote the event that c assigns distinct

colors to the elements of T . Then

Prob (AT ) ≤
[
exp(−m− 1

2N
)
]d(d−1)

.

Proof. The assertion trivially holds for d = 0, hence assume that d > 0. Since there are (mq)!/(m!)q

many m-perfect colorings of S in the space C, of which [q]d(qm − d)!/
(
[(m− 1)!]d(m!)q−d

)
assign

different colors to the d elements of T , we have

Prob (AT ) =
[q]d(mq − d)!/

(
[(m− 1)!]d(m!)q−d

)
(mq)!/(m!)q

= md · [q]d
[mq]d

≤ md

(
q − d−1

2

mq − d−1
2

)d

=

(
mq − m(d−1)

2

mq − d−1
2

)d
=

(
1−

(m−1)(d−1)
2

mq − d−1
2

)d

≤
(

1− (m− 1)(d− 1)
2mq

)d
=
(

1− (m− 1)(d− 1)
2N

)d
≤

[
exp(−(m− 1)(d− 1)

2N
)
]d

=
[
exp(−m− 1

2N
)
]d(d−1)

.
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3 Bounds on f(m,Kt)

In this section we determine f(m,G) to within a factor of ln t when G is a complete graph Kt. The
upper and lower bounds are both established by probabilistic arguments. A first step toward a lower
bound on f(m,Kt) is given in the following lemma, its proof relying on Lemma 2.5. Then we will use
the special case of m = 2, combined with Lemma 2.1, to obtain our final lower bound in Theorem
3.2 on f(m,Kt). Note concerning our bounds for f(m,Kt) and g(m,Kt) that we ignore the trivial
case t = 2, since f(m,K2) = 2.

Lemma 3.1 There exists an absolute constant c0 > 0 such that for all integers m ≥ 2 and t ≥ 3,

f(m,Kt) > c0mt
2/(ln t+ lnm).

Proof. We may assume that t ≥ 4 without loss of generality. For a choice of c0 to be determined
later, let q = d(1/2m)(c0mt

2/(ln t+ lnm)− 1)e, and n = 2mq + 1. We prove that for some c0 there
always exists an m-good edge-coloring of K = Kn containing no properly colored complete subgraph
of order t. It follows for that c0 that whenever N ≤ c0mt

2/(ln t + lnm), some m-good coloring of
K = KN contains no properly colored complete subgraph of order t, completing the proof.

First, we take an orientation D of K such that each vertex has outdegree exactly (n−1)/2 = mq.
(This is easily accomplished by numbering the vertices 1 through n, and joining each vertex to the
(n − 1)/2 vertices which follow it mod n in the ordering.) Let {αi,j : i ∈ [n], j ∈ [q]} be a fixed
set of qn distinct colors. For each i ∈ [n], let E+(vi) denote the set of out-edges at vi; we have
|E+(vi)| = mq.

Let C denote the set of all possible colorings of E(D) obtained by assigning for each i ∈ [n] an
m-perfect coloring to E+(vi), using each of the colors αi,1, · · · , αi,q on exactly m edges of E+(vi).
We make C into a probability space by letting the choices of c ∈ C be equally likely. We estimate the
probability that c yields a properly colored copy of Kt.

Let X = {x1, · · · , xt} be a fixed set of t vertices in D. Let A denote the event that K[X], the
complete subgraph of K induced by X, is properly colored. For j = 1, · · · , t, let Aj denote the event
that the edges in E+(xj) ∩ E(K[X]) are all colored differently. Clearly, the events A1, · · · , At are
mutually independent. Letting A = A1 ∧A2 · · · ∧At, we then have

Prob (A) = Πt
j=1 Prob (Aj).

For j = 1, · · · , t, let dj = |E+(xj) ∩ E(K[X])|. Note that Σt
j=1dj = |E(K[X])| =

(t
2

)
. For each

j = 1, · · · , t, we estimate Prob (Aj). First, assume dj > 0. Since we independently color each E+(vi)
for i ∈ [n], we see that Prob (Aj) equals the probability that a randomly chosen m-perfect coloring
of E+(xj) assigns different colors to the dj edges of E+(xj) ∩ E(K[X]). By Lemma 2.5 we have

Prob (Aj) ≤
[
exp(−m− 1

2mq
)
]dj(dj−1)

≤
[
exp(−m− 1

n
)
]dj(dj−1)

.

Note that Prob (Aj) ≤ [exp(−m−1
n )]dj(dj−1) still holds when dj = 0.

Therefore we have

Prob (A) = Πt
j=1 Prob (Aj)
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≤ Πt
j=1

[
exp(−m− 1

n
)
]dj(dj−1)

=
[
exp(−m− 1

n
)
]Σtj=1dj(dj−1)

≤
[
exp(−m− 1

n
)
]t( t−1

2
)2−(t2)

(by convexity of x2)

= exp

[
−m− 1

4n
t(t− 1)(t− 3)

]
.

Since there are
(n
t

)
t-subsets of V (K), we have

Prob (Some t-subset is properly colored)

≤
(
n

t

)
exp(−m− 1

4n
t(t− 1)(t− 3))

≤
(
ne

t

)t
exp(−m− 1

4n
t(t− 1)(t− 3)).

By choosing c0 > 0 sufficiently small, for our choice n = 1+2md(1/2m)(c0mt
2/(ln t+lnm)−1)e,

the expression above is less than 1, since the logarithm of the expression is negative. Thus we have

Prob (Some t-subset is properly colored) < 1.

Hence
Prob (no t-subset is properly colored) > 0.

Thus there exists a coloring c in C of Kn that yields no properly colored complete subgraph of order
t. Hence by definition, f(m,Kt) > n as required.

Theorem 3.2 There exists an absolute constant c1 > 0 such that for all positive integers m and t,

we have

f(m,Kt) ≥
c1mt

2

ln t
.

Proof. Applying Lemma 3.1 with m = 2, we have f(2,Kt) > 2c0t
2/(ln t+ ln 2) ≥ c0t

2/ln t for some
positive constant c0. By Lemma 2.1, f(m,Kt) ≥ f(2bm/2c,Kt) > bm/2c[f(2,Kt)− 1] ≥ c1mt

2/ln t,
where c1 is a positive constant appropriately chosen.

Next, we prove an upper bound on f(m,Kt) which differs from the lower bound by a factor of
ln t. Define a path subgraph L of length 2 in an edge colored graph to be a bad 2-claw if the two
edges of L have the same color.

Theorem 3.3 Given positive integers m, t, we have f(m,Kt) ≤ 4mt2.

Proof. Let n = 4mt2, and let c be an m-good coloring of the edges of K = Kn. We show that c
yields a properly colored complete subgraph of order at least t.

It is not hard to see by convexity of
(x

2

)
that each vertex is the middle point of at most (n/m)

(m
2

)
<

(1/2)mn bad 2-claws. So in particular there are at most (1/2)mn2 bad 2-claws in K.
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Let the set of all 2t-subsets of V (K) be the probability space. With equal probability, randomly
choose a 2t-subset T . For each bad 2-claw L, let AL denote the event that T contains all three
vertices of L. Clearly for any L,

Prob (AL) =

(n−3
2t−3

)(n
2t

) < (2t/n)3.

Let X denote the number of bad 2-claws in K contained in T . Then (where the summation is
over all bad 2-claws L in K)

E(X) = Σ Prob (AL)
≤ (1/2)mn2(2t/n)3

= 4mt3/n = t.

Thus, there exists a 2t-subset T in K that contains at most t bad 2-claws. Now by deleting t
vertices of K we can delete at least one vertex from each bad 2-claw in T to obtain a subset T ′ of size
at least t that contains no bad 2-claws. Clearly, T ′ induces a properly colored complete subgraph of
order at least t.

4 Bounds on f(m,G) for sparse graphs G

In this section, we give bounds on f(m,G) when G is sparse. Intuitively, when G is sparse and
n = n(G) is sufficiently large compared to m, it is expected that every m-good edge-coloring of Kn

yields a properly colored copy of G. Indeed when G is a cycle, this intuition is true even in the
stronger sense that n need not be very large at all relative to m, as indicated by the following result
of Alon and Gutin [4].

Theorem 4.1 [4] Given ε > 0, there exists a positive integer n0 such that for all n > n0 and

m ≤ (1 − 1/
√

2 − ε)n, every m-good edge-coloring of Kn has a properly colored Hamiltonian cycle,

i.e. f(m,Cn) = n.

This result is the best known result toward the following conjecture of Bollobás and Erdős.

Conjecture 4.2 [7] Every bn/2c-good edge-coloring of Kn has a properly colored Hamiltonian cycle.

In this section, we generalize Theorem 4.1 by showing that for all positive integers n,m, d, where
d is fixed and n is sufficiently large compared to m, f(m,G) = n holds for all graphs G on n vertices
of maximum degree at most d. Furthermore, for certain classes of graphs G, it suffices for n to grow
as slowly as a linear function in m to ensure f(m,G) = n(G). We emphasize that the results of this
section therefore represent a drastic departure from results in other sections of the paper, in that now
we make the extremal requirement that a SPANNING properly colored copy of G is sought within
an arbitrary m-good edge-coloring of Kn(G). Thus the issue is no longer about how large we must
take n to be as a function of m and |V (G)| in order to ensure the existence of a properly colored copy
of G in an m-good edge-coloring of Kn; we have instead constrained the choice of n to be exactly
|V (G)| = n(G), and we seek reasonable conditions on m and G for which f(m,G) must equal its
minimum conceivable value, namely n(G). Our first main result in this direction is the following.
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Theorem 4.3 Let G = (V,E) be a graph with n vertices, maximum degree at most d, and suppose

that n > 216(3m + 2d)7(d + 1)20m. Then every m-good coloring of Kn contains a properly colored

copy of G, i.e. f(m,G) = n(G).

Toward proving the above theorem, we start with a result which essentially says that f(m,G)
cannot be too much larger than n(G) for a graph G having bounded maximum degree.

Theorem 4.4 Suppose ε ∈ (0, 1), with d, n any positive integers. If G is a graph with n(G) <

(1− ε)n− (2d2
√
m/ε)

√
n−md2 and maximum degree at most d, then f(m,G) < n.

Proof. Let c be an m-good edge-coloring of K = Kn. We show that c has a properly colored
copy of G. Set x =

√
mn/ε. Define a pair u, v ∈ V (K) to be a bad pair if there are more than

x monochromatic (u, v)-paths of length 2. Using convexity, the number of monochromatic paths of
length 2 centered at any one vertex is at most (n/m)

(m
2

)
. Hence there are at most (n/m)

(m
2

)
(n) ≤

(1/2)mn2 monochromatic paths of length 2 in K, so there are at most (1/2)mn2/x bad pairs in K.
Let H be the graph with vertex set V (K) in which uv ∈ E(H) iff u, v is a bad pair in K. We have
e(H) ≤ (1/2)mn2/x, and thus d(H) ≤ mn/x, where d(H) denotes the average degree in H.

Let L = {u : dH(u) > (1/ε)(mn/x)}. Clearly we have |L| ≤ εn. Let F = H − L. Then
n(F ) ≥ (1 − ε)n, and ∆(F ) ≤ (1/ε)(mn/x). Let V = V (F ), and let K ′ = K[V ]. Note that
n(K ′) = n(F ) ≥ (1 − ε)n. Consider the coloring c restricted to K ′. Note that if u, v ∈ V and
uv /∈ E(F ), then u, v are connected by at most x monochromatic paths of length 2 in K ′.

We now embed G in K ′ greedily as follows. Let t = n(G) and denote the vertices of G by
v1, v2, · · · , vt. We embed them one by one in that order, eventually assigning each vertex vi ∈ V (G)
to some vertex in V (K ′). We say that this associated vertex plays the role of vi within V (K ′),
sometimes slightly abusing notation by referring to that associated vertex by the name vi (within
V (K ′)) once having settled on which vertex is associated with vi. For each i, let Gi denote the
subgraph of G induced by v1, · · · , vi. We insist that the following two conditions are met for all i:
(1) The embedded copy of Gi is properly colored, and
(2) If vj , vk ∈ Gi have a common neighbor in G then vjvk /∈ E(F ).
The embedding of G subject to these two conditions then guarantees that K ′ contains a properly
colored copy of G.

We show that all of v1, · · · , vt can be embedded satisfying (1) and (2). Suppose we have embedded
v1, · · · , vj−1 and are now to embed vj . In a graph G, for a vertex y (resp. a subset Y of V (G)) let
NG(y) (resp. NG(Y )) denote the set of neighbors of y (resp. the set of vertices having at least
one neighbor in Y ). Now let Nj = NG(vj) ∩ V (Gj−1) and N ′j = NG(NG(vj)) ∩ V (Gj−1). We have
|Nj | ≤ d and |N ′j | ≤ d(d− 1) ≤ d2. Among all vertices outside Gj−1, only the following three types
of vertices cannot play the role of vj .

Type 1. Vertices w for which there exists u ∈ N ′j such that uw ∈ E(F ). Note that such u,w
violate condition (2) above. Since there are at most d2 vertices in N ′j and each is incident to at most
∆(F ) ≤ (1/ε)(mn/x) edges of F , there are at most d2(1/ε)(mn/x) such vertices w.

Type 2. Vertices w for which there exist u, v ∈ Nj such that uw and vw have the same color.
Since u, v have a common neighbor in G and u, v ∈ V (Gj−1), by condition (2), uv /∈ E(F ). So there
are at most x monochromatic (u, v)-paths of length 2 in K ′. Thus there are at most

(d
2

)
x ≤ d2x such

w.
Type 3. Vertices w such that there exists u ∈ Nj for which uw has a color already used on an

edge of Gj−1 incident to u. There are at most dm(d− 1) ≤ md2 such w.
Clearly any vertex w not of one of the three types above can play the role of vj . Recalling that

x =
√
mn/ε, there are at most φ = (d2/ε)(mn/x) + d2x + md2 = 2d2

√
mn/ε + d2m vertices of
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those three types. So, if our assumed condition n(G) < (1 − ε)n − 2d2
√
mn/ε − d2m holds, then

n(K ′) ≥ (1 − ε)n > n(G) + φ, and one can always find a vertex w in K ′ to play the role of vj ,
completing the proof.

Remark 4.5 The proof of Theorem 4.4 can be slightly modified to yield an upper bound on g(m,G),

concerning rainbow copies ofG in anm-good edge-coloring ofKn. Namely, one defines Type 3 vertices

to be vertices w such that there exists u ∈ Nj for which uw has a color already used on any edge of

Gj−1. This observation, later called Lemma 6.4, will be used in Section 6.

Corollary 4.6 Let n,m, d be positive integers with n > 8md4. If G has maximum degree d and

n(G) ≤ n− 6d4/3m1/3n2/3, then f(m,G) ≤ n.

Proof. Apply Theorem 4.4 with ε = 2d4/3m1/3

n1/3 , and check that indeed ε < 1, that εn > 2d2
√
mn/ε,

and that εn > md2. Thus n(G) ≤ n− 6d4/3m1/3n2/3 = n− 3εn satisfies the assumptions in Theorem
4.4.

We are ready to prove the main result of the section.

Proof of Theorem 4.3:
Let G be as in the theorem. Let p = 3md + 2d2, D = p(d + 1) = (3md + 2d2)(d + 1), and

q = 6D4/3m1/3n2/3. Because n is sufficiently large, we can (as indicated below) select a set U of q
vertices, together with q pairwise disjoint subsets Vu in V (G)−U , one for each u ∈ U , satisfying the
following conditions.
(i) U is an independent set in G.
(ii) |Vu| = p for all u ∈ U .
(iii) For each u ∈ U , Vu contains all the neighbors of u and all their neighbors in G.
(iv) There are no edges of G with ends in two distinct sets Vu.

We construct the set U and the sets Vu for each u ∈ U iteratively as follows. To select the next
vertex u′ of U , we select any vertex not within distance 3 of any vertex of any Vu or any u previously
selected. Note that this ensures that each vertex v′ within distance 2 of u′ is nonadjacent with each
vertex of each previously selected Vu, so that by next including each such v′ in the set Vu′ we satisfy
condition (iv). It is then a simple matter to fill out the rest of the set Vu′ using any remaining vertices
that are not adjacent to any vertices of any {u}∪Vu previously selected. This construction approach
succeeds as follows. From the hypothesis n > 216(3m+2d)7(d+1)20m we have n > 216(3md+2d2 +
1)7(d+ 1)13m, so n1/3 > 6(3md+ 2d2 + 1)7/3(d+ 1)13/3m1/3 > 6(p(d+ 1))4/3m1/3(3md+ 2d2 + 1)d3,
so upon multiplying by n2/3 we have n > 6(p(d+ 1))4/3m1/3n2/3(3md+ 2d2 + 1)d3 = q(p+ 1)d3, i.e.
n > q(p+ 1)d3. But in selecting u′ there are at most q(p+ 1) previously selected vertices among all
the u and Vu vertices combined, each of them with at most d3 vertices within distance 3 of them
(since G has maximum degree at most d). Thus, a choice of u′ exists among the other n− q(p+ 1)d3

remaining vertices. Filling out the rest of the set Vu′ to size p, after including vertices within distance
2 of u′, is possible since n > q(p + 1)d3 ≥ p + q(p + 1)(d + 1). Hence, the set U and the Vu’s exist,
as desired.

For each u ∈ U , let Wu denote the set of vertices in V (G)−U−Vu adjacent to at least one vertex
in Vu. Note that condition (iv) above ensures that Wu is disjoint from

⋃
u∈U Vu.

9



Now, we obtain a graph H from G as follows. First, we delete all vertices of U from G. Then
for each u ∈ U we replace the subgraph of G induced by Vu by a complete graph on Vu and replace
the bipartite subgraph of G between Vu and Wu by a complete bipartite graph between Vu and Wu.
One can easily check that H has n(H) = n − |U | = n − q = n − 6D4/3m1/3n2/3 vertices, and has
maximum degree at most |Vu|(d+ 1) = D.

Given an m-good edge-coloring c of K = Kn, we show that there exists a properly colored copy
of G. First, by Corollary 4.6 we can find a properly colored copy H ′ of H in K. For each u ∈ U let
V ′u denote the copy of Vu in H ′. Let U ′ = V (K)−V (H ′); note that |U ′| = |U |. Consider an arbitrary
bijection from U to U ′, letting u′ ∈ U ′ be the image of any u ∈ U . Our aim now is to show that
by joining U ′ to H ′ using appropriate edges and deleting certain edges from H ′ if necessary, one can
find a properly colored copy of G.

For each u ∈ U , we first look for a set of du many vertices in V ′u to play the role of NG(u), where
du = |NG(u)| ≤ d. To achieve that, it suffices to find a subset S of V ′u with cardinality du such that
the complete subgraph induced by {u}∪S is properly colored. This can be accomplished as follows.
First, we obtain a subgraph F ′u of H ′[V ′u] by the following operation: for each x′ ∈ V ′u, if there exists
an edge in H ′[V ′u] incident to x′ having the same color as u′x′, we remove this edge. Note that since
H ′ is properly colored there exists at most one such edge for x′. Clearly F ′u obtained this way has
p = 3md + 2d2 vertices and at least

(p
2

)
− p edges. By Turán’s Theorem, F ′u contains a complete

subgraph L′u of order at least p/3 ≥ md. Note by our definition of F ′u and L′u that no color used
on an edge between u′ and L′u is used on an edge in L′u. Now, since n(L′u) > md ≥ mdu, and c
is m-good, it is easy to see that there exist du vertices in L′u that are connected to u′ by different
colors. Denote by S the set of these du vertices; S plays the role of NG(u).

To finish the embedding, we embed Vu − NG(u) into V ′u − S as follows. Let us now return to
the graph H ′[V ′u], setting aside the graph F ′u previously formed. First, for each x′ ∈ S, if there is
an edge incident to x′ in H ′[V ′u] having the same color as u′x′ then we remove this edge (note: this
repeats the operation of the above paragraph, this time restricted to edges incident on vertices x′

of S). Note that altogether at most |S| = du ≤ d edges are removed; let R′u denote the remaining
subgraph. Let T =

⋃
x∈NG(u)NG(x). Since G has maximum degree at most d, |T | ≤ d2. But R′u has

at least p − d vertices outside S, and at most d vertices of R′u are not adjacent to all of S. Thus
R′u has at least p − 2d = 3md + 2d2 − 2d ≥ d2 ≥ |T | vertices outside S which are adjacent to all
of S. Thus one can embed T . Finally we map the rest of Vu to the remaining vertices of V ′u by an
arbitrary bijection and let the rest of the vertices in H ′ keep their identities. It is straightforward to
check that the mapping described above provides a properly colored copy of G.

Roughly speaking, Theorem 4.3 asserts that if G is a graph on n vertices and maximum degree at
most d, and n is sufficiently large relative to m and d, then every m-good coloring of E(Kn) yields a
proper copy of G. However, for fixed d, we require n to be at least on the order of m8. Even though
it is not very hard to improve the exponent of m in Theorem 4.3 , we have been unable reduce it
down to 1 (although we suspect that a corresponding claim holds in which n grows linearly in m).
For special classes of graphs, however, we are able to improve the exponent of m to 1. Specifically,
we will lay out the proof for powers of cycles, although the same proof can be adapted for somewhat
larger classes of graphs.
We need some preparations. Mainly, we need a couple of splitting lemmas, which are modified from
the one used in [3]. We also use the Chernoff inequality and the Lovász Local Lemma in our proofs.
We cite here a somewhat conservative version of the Chernoff inequality which can be found, for
example, in [2] or [16].
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Lemma 4.7 (The Chernoff Inequality) Let Xi be independent, identically distributed random

variables, where Xi = 1 with probability p and Xi = 0 with probability 1 − p. Consider the random

variable X = Σn
i=1Xi. Then whenever 0 ≤ t ≤ np,

Prob (X − np > t) < exp(− t2

3np
).

Lemma 4.8 (The Local Lemma) Let A1, · · · , An be events in an arbitrary probability space. Sup-

pose each Ai is mutually independent of all but at most b other events Aj, and suppose the probability

of each Ai is at most p. If ep(b+ 1) < 1, then with positive probability none of the events Ai holds.

As with our notation G[A] for the subgraph of G induced by A, we also use the notation G[A,B] for
the subgraph of G with vertex set being the union of A and B, and with edge set {ab : a ∈ A, b ∈ B}.

Lemma 4.9 Let n,m be positive even integers, where m > 125(lnn)3. Let c be an m-good edge-

coloring of K = Kn. Then there exists a partition of V = V (K) into subsets A,B such that

|A| = |B| = n/2 and the colorings obtained from c by restricting it to K[A],K[B], and K[A,B] are

all (m/2 +m2/3)-good.

Proof. Let q = n/2. First, pair up the vertices of V arbitrarily into q pairs, say {x1, y1}, · · · , {xq, yq}.
Next, we construct a random partition of V into two disjoint subsets A and B of cardinality q as
follows. For each i ∈ [q], place one element of the pair {xi, yi} in A and the other in B, each choice
made independently with equal likelihood 1/2.

Fix a vertex w and a color used in c, say red. Let NA(w) (resp. NB(w)) denote the number of
neighbors of w in A (resp. B) joined to w by a red edge. Thus NA(w) can be written as the sum of
q independent indicator random variables σ1, · · · , σq, where σi is the number of neighbors of w in A
among xi, yi such that the edge from w to this neighbor is red. Thus each σi has one of the following
three simple distributions: either its value is 1 with probability 1 (if wxi, wyi are both red), or its
value is 0 with probability 1 (if neither of wxi, wyi is red), or its value is 1 with probability 1/2 (if
exactly one of wxi, wyi is red) and 0 otherwise. Let t denote the number of i’s such that exactly one
of wxi, wyi is red. Let r denote the number of red edges incident to w, so that r ≤ m. Our discussion
above indicates that
Prob (NA(w) > (r/2)+µ) equals the probability that more than (t/2)+µ flips among t independent

flips of a fair coin yield “heads”. By the Chernoff bound, this probability is at most e−µ
2/(3t/2) ≤

e−2µ2/3m.
Clearly, the same argument also applies to NB(w). Now, since there are n choices for a vertex

w, at most n2/2 choices for a color used in c, and 2 choices for a partite set (A or B), we conclude
that the probability that there exists a vertex with more than

m/2 +m2/3

neighbors of the same color in either A or B is at most

n3e−2m4/3/3m = n3e−2m1/3/3,

which is less than 1 for m > 125(lnn)3. Therefore, there exists a choice of A and B so that the above
does not happen. Clearly, for this choice of A and B, K[A],K[B],K[A,B] are all (m/2+m1/3)-good.
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Note that Lemma 4.9 holds even when m is not an integer, as long as we understand that an
m-good coloring is meant to be an bmc-good coloring.

Lemma 4.10 Suppose n = 2q ·N . Let m0,m1, · · · ,mq be a sequence of positive numbers such that

mi+1 = mi/2 + m
2/3
i for each i ∈ [q − 1], and mi > (3 lnN + 12)3 all for i ∈ [q]. Let K be an

m-good edge-colored Kn, where m = m0. Then there exists a partition of V (K) into 2q subsets of

cardinality N such that for each i ∈ [2q], K[Vi] and K[Vi, Vi+1] are both mq-good, where indices are

taken modulo 2q.

Proof. We prove the claim by induction on q. For q = 1, the claim follows from Lemma 4.9. For
the induction step, we suppose that V (K) can be split into P subsets U1, U2, · · · , UP of cardinality
2N where P = 2q−1, such that for each i ∈ [P ], K[Vi] and K[Vi, Vi+1] are both mq−1-good, where
indices are taken modulo P .

Independently for each i ∈ [P ], we obtain a random splitting of Ui into two subsets Ui,1, Ui,2
of cardinality N like in the proof of Lemma 4.9: first pairing up vertices of Ui into N pairs, then
randomly and independently putting one vertex of each pair in Ui,1 and the other in Ui,2. We show
that there exists a splitting (for all i simultaneously) that yields a desired partition.

First, let us fix a color, say red. Consider an arbitrary vertex u ∈ Ui for some i. For s =
i − 1, i, i + 1, l = 1, 2, let Xu

s,l denote the event that the number of red neighbors of u in Us,l

exceeds mq = mq−1 + m
2/3
q−1. Since K[Ui],K[Ui−1, Ui] and K[Ui, Ui+1] are all mq−1-good, by the

same calculations as in the proof of Lemma 4.9, we have for each s ∈ {i − 1, i, i + 1}, l ∈ {1, 2},
Prob (Xu

s,l) ≤ e−
2
3
m

1/3
q−1 . Let Zu =

⋃i+1
s=i−1

⋃2
l=1X

u
s,l. We have Prob (Zu) ≤ 6e−

2
3
m

1/3
q−1 . Let Du

denote the union of Zu over all possible colors that are incident to u in Ui, [Ui−1, Ui], or [Ui, Ui+1];
there are at most 3(2N) = 6N such colors. We have

Prob (Du) ≤ (6N)6e−
2
3
m

1/3
q−1 = 36Ne−

2
3
m

1/3
q−1 .

Note that if we can show that with positive probability none of the events Du’s holds, then there exists
a choice of Ui,1, Ui,2 for all i such that K[Ui,1],K[Ui,2],K[Ui,1, Ui,2],K[Ui,1, Ui+1,2] are all mq-good
(indices taken modulo P ). We can then obtain our splitting by defining V2j = Uj,1 and V2j−1 = Uj,2
for j = 1, · · · , P = 2q−1.

To show that with positive probability none of the events Du’s holds, we apply the Local Lemma.
Note that Du is mutually independent of all Dv’s except for those v that lie in Uj , where |j − i| ≤ 2;
there are 5(2N) = 10N such v. Now, we have

e · (36Ne−
2
3
m

1/3
q−1) · (10N) < 1,

since mq−1 > (3 lnN + 12)3 by our condition. By the Local Lemma, Prob (
⋂
uDu) > 0, completing

the proof.

Corollary 4.11 For every ε > 0 there exists a constant c2 = c2(ε) such that the following holds. Let

n,m,N, q be positive integers such that n = 2q ·N and m/2q > max{c2, (3 lnN + 12)3}. Let K be an

m-good edge-colored Kn. There exists a partition of V (K) into 2q subsets of cardinality N such that

for each i ∈ [2q], K[Vi] and K[Vi, Vi+1] are both (1 + ε)m/2q-good, where indices are taken modulo

2q.
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Proof. Given ε, let c2 = c2(ε) satisfy

c2 ≥
512

((1 + ε)1/3 − 1)3
. (1)

Let m0 = m, and let mi+1 = mi/2 + m
2/3
i for i = 0, · · · , q − 1. Note that for all i, mi > m/2q >

(3 lnN + 12)3). By Lemma 4.10, it suffices to show that mq ≤ (1 + ε)m/2q. Clearly, we have
mi+1 = mi/2 + m

2/3
i ≤ 1/2(m1/3

i + 2)3. Hence, by taking cube roots and subtracting 2
21/3−1

from
both sides, we have

m
1/3
i+1 −

2
21/3 − 1

≤ 1
21/3

(m1/3
i + 2)− 2

21/3 − 1
=

1
21/3

(
m

1/3
i − 2

21/3 − 1

)
.

Therefore
m1/3
q − 2

21/3 − 1
≤ 1

2q/3

(
m0 −

2
21/3 − 1

)
,

and since m0 = m and 21/3 − 1 > 1/4,

m1/3
q ≤ m1/3

2q/3
+ 8 ≤ (1 + ε)1/3m

1/3

2q/3
.

The last inequality follows from (1) and the assumption that m/2q ≥ c2. Thus, mq ≤ (1 + ε)m/2q,
completing the proof.

Now, we are ready to prove the result for cycle powers. For positive integers n, d, Cdn denotes the
d-th power of a cycle of length n.

Theorem 4.12 There exist constants c3, c4 such that f(m,Cdn) = n provided n ≥ c3md
c4.

Proof. Let D = 2d5. Choose c3, c4 to be large enough such that

c3

2
dc4+1 > 216(3d+ 2D)7(D + 1)20d. (2)

For convenience we make a few assumptions, each of which is not essential, but is convenient. Assume
first that m = 2q−1 ·d for some positive integer q. Assume also that n = c3md

c4 . Let N = n/2q. (We
thus assume that n is divisible by 2q. This is convenient, but not really essential, as if this is not
the case we can split the vertex set into nearly equal parts, instead of splitting it, in Corollary 4.11,
into equal classes. As this does not change the arguments, besides making them a bit cumbersome,
we assume n is indeed divisible by 2q). Note that by our assumption m/2q = d

2 and N = c3
2 d

c4+1.
Let c2 be the constant in Corollary 4.11 corresponding to ε = 0.5. Assume d is large enough such
that d > max{c2, (3 lnN + 12)3} = max{c2, [3 ln( c32 d

c4+1) + 12]3}. Clearly, we lose no generality by
making this assumption, as for small d we can compensate by adjusting c3.

Let K be an m-good colored Kn. Note that n,m,N, q satisfy the conditions of Corollary 4.11
for ε = 0.5. Applying Corollary 4.11, we obtain a partition of V = V (K) into V1, V2, · · · , V2q ,
each of size N = n/2q such that for each i ∈ [2q], both K[Vi] and K[Vi, Vi+1] are s-good, where
s = (1 + 0.5)m/2q = .75d ≤ d (indices taken modulo 2q). In particular, for each i ∈ [2q], both K[Vi]
and K[Vi, Vi+1] are d-good.

By our discussion above, for each i, K[Vi] is d-good and |Vi| = N = c3
2 d

c4+1 > 216(3d+2D)7(D+
1)20d, where the last inequality follows from (2). By Theorem 4.3, K[Vi] contains a properly colored
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copy Pi of the d5-th power of a spanning path of K[Vi] (note that such a spanning subgraph has
maximum degree 2d5). Our idea is, roughly speaking, to link up the Pi’s to get a properly colored Cdn.
Let Ui,1 and Ui,2 denote the set of the first d5 and the last d5 vertices on Pi. Since |Vi| = N > 2d5,
Ui,1 and Ui,2 are disjoint from each other.

Claim. For each i ∈ [2q], there exist d vertices xi,1, · · · , xi,d of Ui,2 and d vertices yi+1,1, · · · , yi+1,d

of Ui+1,1 such that the subgraph induced by these 2d vertices is properly colored.
Proof of Claim. Randomly select d elements xi,1, · · · , xi,d from Ui,2 and d elements

yi+1,1, · · · , yi+1,d from Ui+1,1. Recall that K[Vi],K[Vi+1], and K[Vi, Vi+1] are all d-good.
Thus the probability for a fixed pair of incident edges in the subgraph L induced by
xi,1, · · · , xi,d, yi+1,1, · · · , yi+1,d to have the same color is less than (roughly) d/d5. Hence, the proba-
bility that L has a pair of incident edges of the same color is less than 2d ·

(2d−1
2

)
·d/d5 < 1. Therefore

there exists a choice of xi,1, · · · , xi,d ∈ Ui,2 and yi+1,1, · · · , yi+1,d ∈ Ui+1,1 such that the subgraph L
induced by these 2d vertices is properly colored, proving the claim.

Note that our choices of the xi,j ’s and yi+1,j ’s are independent for different i’s. For convenience
we let Xi = {xi,1, · · · , xi,d} and Yi = {yi,1, · · · , yi,d}. Now, if we can find as a subgraph in each Pi a
properly colored copy P ′i of the d-th power of a spanning path of Pi satisfying
(1) yi,1, · · · , yi,d are the first d vertices on P ′i and xi,1, · · · , xi,d are the last d vertices on P ′i ,
(2) the color on an edge of P ′i with exactly one endpoint in Yi is not used in K[Yi ∪Xi−1],
(3) the color on an edge of P ′i with exactly one endpoint in Xi is not used in K[Xi ∪ Yi+1],
then

⋃ 2q

i=1 P
′
i together with the edges in K[Xi, Yi+1] for i = 1, · · · , 2q (indices modulo 2q) clearly

contains a properly colored copy of Cdn, and we are done.
Thus, it remains to show that one can find such P ′i inside Pi. Let S denote the set of vertices on

Pi outside Yi that are connected to vertices of Yi by edges of Pi using colors used in K[Yi ∪Xi−1].
Since there are fewer than (2d)2/2 = 2d2 colors used in K[Yi ∪Xi−1] and Pi is properly colored, it
is easy to see that |S| ≤ 2d2. Recall that Ui,1 denotes the first d5 vertices on Pi. Let S′i be a subset
of Ui,1 − Si ∪ Yi of cardinality d. Since d5 − 2d2 − d ≥ d, S′i exists. Similarly, let Ti denote the set
of vertices on Pi outside Xi that are connected to vertices of Xi by edges of Pi using colors used in
K[Xi∪Yi+1]. We have |Ti| ≤ 2d2. Let T ′i be a subset of Ui,2−Ti∪Xi of cardinality d; such T ′i exists.
Furthermore, S′i and T ′i are disjoint since Ui,1 and Ui,2 are disjoint.

For convenience, we let π denote the the ordering of vertices of Pi along Pi. We now define a
re-ordering π′ of the vertices of Pi as follows. We let Yi occupy the first d spots and S′i occupy the
next d spots. At the other end, we let Xi occupy the last d spots and T ′i the d spots immediately
preceding the last d spots. Finally, we fill the remaining vertices of Pi into the remaining spots in
accordance to their relative order in π. Note that the first d5 vertices in π still occupy the first d5

spots in π′ and the last d5 vertices in π still occupy the last d5 spots in π′. Each of the remaining
vertices occupies the same spot in π as in π′. In particular, two vertices at most d apart in π′ are
certainly at most d5 apart in π.

Let P ′i be a spanning subgraph of K[Vi] consisting of all edges connecting vertices at most d apart
in π′. Clearly P ′i is the d-th power of a spanning path of K[Vi] that satisfies condition (1). Since
two vertices in π′ at most d apart are at most d5 apart in π, all edges of P ′i are present in Pi. Hence
P ′i is a (spanning) subgraph of Pi and thus is properly colored. It remains to verify that P ′i satisfies
conditions (2) and (3). For that, note that an edge of P ′i with exactly one endpoint in Yi has the
other endpoint in one of the first 2d spots. Since no element of Si occupies any of the first 2d spots,
condition (2) is satisfied. Condition (3) is satisfied by a similar argument.
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5 Bounds on g(m,Kt)

Recall that g(m,G) denotes the smallest n such that every m-good coloring of E(Kn) yields a rainbow
copy of G. We first establish a lower bound on g(m,Kt) using the following result of Babai.

Lemma 5.1 [6] Let n be a positive integer. Every proper coloring of E(Kn) yields a rainbow com-

plete subgraph of order at least (2n)1/3. Furthermore, there exists a coloring of E(Kn) whose largest

rainbow complete subgraph has order less than 8(n lnn)1/3.

The lower bound in Lemma 5.1 was later improved by Alon, Lefmann, and Rödl [5] to c′(n lnn)1/3,
where c′ is a positive constant. Building on Lemma 5.1, we obtain a lower bound on g(m,Kt).

Theorem 5.2 There exists a positive constant c′1 such that for all positive integers m, t, where t ≥ 3,

we have

g(m,Kt) >
c′1mt

3

ln t
.

Proof. For t ≤ 20, say, the result trivially follows from Lemma 2.3 (for an appropriate choice of c′1).
We thus assume t > 20. Choose c′1 to be small enough such that c′1mt

3/ln t ≤ mb(1/1536)t3/ln tc
for all positive integers m, t, where t > 20; such c′1 clearly exists. Let N = b(1/1536)t3/ln tc. By
definition it suffices to show that there exists an m-good edge-coloring of KmN containing no rainbow
copy of Kt. By Lemma 5.1 there exists a proper coloring c of E(KN ) such that the largest rainbow
complete subgraph has order less than

8(N lnN)1/3 ≤ 8[
1

1536
· t

3

ln t
· ln(

1
1536

· t
3

ln t
)]1/3

< 8[
1

1536
· t

3

ln t
· ln t3]1/3 = t

In other words, c is a 1-good coloring of E(KN ) containing no rainbow copy of Kt. By Lemma
2.2, there exists an m-good coloring of E(KmN ) containing no rainbow copy of Kt.

Next, we give upper bounds on g(m,Kt). First, we give a simple, general upper bound on g(m,Kt)
which is within a factor of ln t from the lower bound given in Theorem 5.2. Then we improve it to
within a constant factor of the lower bound. This is done by first obtaining such a bound when m
grows modestly slowly as a function of t, and then by observing that using the splitting argument in
Corollary 4.11 we can reduce the general case to this one.

Theorem 5.3 For all positive integers m, t we have

g(m,Kt) ≤ 2mt3 + 4mt2.

Proof. Let n = 2mt3 + 4mt2, and let c be an arbitrary m-good coloring of E(Kn). We show that c
yields a rainbow complete subgraph of order t. Similar to the definition of a bad 2-claw from Section
3, we define a bad 2K2 to be a set of two independent edges of the same color. Since c is m-good,
the number of edges of each fixed color does not exceed nm/2. Thus, one can easily deduce that

#bad 2-claws ≤ n · (n/m) ·
(
m

2

)
<

1
2
m · n2

#bad 2K2’s ≤ 1
2

(
n

2

)
· n ·m/2 < 1

8
m · n3
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Pick randomly and uniformly a 2t-subset T of V (Kn). For any fixed bad 2-claw L let AL denote
the event that T contains all three vertices of L. For any fixed bad 2K2 graph Q let BQ denote the
event that T contains all four vertices of Q. Clearly we have

Prob (AL) =

(n−3
2t−3

)(n
2t

) ≤ (2t
n

)3

and

Prob (BQ) =

(n−4
2t−4

)(n
2t

) ≤ (2t
n

)4

.

Let X (resp. Y ) denote the number of bad 2-claws (resp. bad 2K2’s) contained in T . We have

E(X) = ΣL Prob (AL) <
1
2
mn2

(
2t
n

)3

=
4mt3

n
,

E(Y ) = ΣQ Prob (AQ) <
1
8
mn3

(
2t
n

)4

=
2mt4

n
.

By linearity of expectation E(X+Y ) < 4mt3+2mt4

n = t. This implies that there exists a 2t-subset
T ′ of V (Kn) that contains at most t bad 2K2’s or bad 2-claws. By deleting (at most) one vertex of
each such bad structure from T ′ we obtain a subset T ′′ of T ′ of order at least t containing no bad
2-claw or bad 2K2. Clearly, T ′′ induces a rainbow complete subgraph of order at least t.

Next, we improve the upper bound on g(m,Kt) to within a constant factor of the lower bound.
We need the following result of Duke, Lefmann, and Rödl [10] on uncrowded hypergraphs, although
we note that a previous slightly weaker result proven in [1] would be enough for our purpose. Let
H = (V, E) be a hypergraph with vertex set V and edge set E . For a vertex x ∈ V, let degH(x) denote
the degree of x in H, i.e. the number of edges e ∈ E containing x, and let ∆(H) = max{degH(x) :
x ∈ V}. Let α(H) denote the independence number of H, which is defined as the largest size of a
subset of V containing no edge of H.

Theorem 5.4 [10] For every fixed k ≥ 3 there is an a0 = a0(k) > 0 such that the following holds.

Let H = (V, E) be a k-uniform hypergraph on n vertices with maximum degree ∆(H) ≤ bk−1, where

b� k. If H contains no 2-cycles, then

α(H) ≥ a0 ·
n

b
(ln b)1/(k−1).

Theorem 5.5 Let β be a constant with 0 < β < 2. There exists a positive absolute constant c′2 such

that for any positive integer t sufficiently large and m = m(t) = O
(
t2−β

)
we have

g(m,Kt) <
c′2mt

3

ln t
.

Proof. Let c′2 be a sufficiently large positive constant to be specified later. Let n be any positive
integer with n ≥ c′2mt

3/ ln t. We show that every m-good edge-coloring of K = Kn contains a
rainbow copy of Kt.

Let c be an m-good edge-coloring of K. As in the proof of Theorem 5.3, the number of bad
2-claws in c is at most 1

2m · n
2 and the number of bad 2K2’s in c is at most 1

4m · n
3.
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Now consider a hypergraph H = (V, E) with vertex set V = V (K), and edge set E = E1 ∪
E2, where E1 = {{x, y, z} : {x, y, z} is the vertex set of a bad 2-claw in c}, and E2 = {{u, v, w, x} :
{u, v, w, x} is the vertex set of a bad 2K2 in c}. So by the above,

|E1| ≤
1
2
m · n2 and |E2| ≤

1
4
m · n3. (3)

Note that if Z ⊆ V is an independent set of H, then Z induces a rainbow complete subgraph.
Our aim thus is to find a large independent set of H. Our strategy is to find a large sub-hypergraph
of H with few edges and no 2-cycles and then use Theorem 5.4 to find a large independent set inside
it. For that we first bound the number of 2-cycles formed by edges in E2.

For l = 2, 3, let µl denote the number of 2-cycles formed by edges in E2 in which the two edges
intersect at exactly l vertices. We bound µ2 and µ3 as follows. Observe that since c is m-good, for
any two fixed vertices x, y there are fewer than 2m · n bad 2K2’s in c having x, y as two of four
endpoints. Thus each {u, v, w, x} ∈ E2 intersects fewer than

(4
2

)
· 2 ·m ·n other edges of E2 at exactly

two vertices. Therefore

µ2 ≤ |E2| · 2 ·
(

4
2

)
·m · n/2 < 2m2n4. (4)

To bound µ3, observe that for any fixed three vertices x, y, z there are at most 3m bad 2K2’s in
c that contain x, y, z (again because c is m-good). Thus, each {u, v, w, x} ∈ E2 intersects fewer than(4
3

)
· 3m other edges of E2 at exactly three vertices. Therefore

µ3 ≤ |E2| ·
(

4
3

)
· 3m/2 < (3/2)m2n3. (5)

Let p = 1
3m1/2n3/5 . Let Y be a random subset of V with vertices chosen independently, each with

probability p. We have E(|Y |) = p · n. For sufficiently large pn, we have by standard estimations
that

Prob (|Y | ≤ 7
8
· p · n) <

1
10
. (6)

Let H[Y ] denote the the sub-hypergraph of H induced by Y . For l = 2, 3, let µl(Y ) denote
the random variable counting the number of 2-cycles in H[Y ] induced by Y with the two edges
intersecting at exactly l vertices. Then

E(µ2(Y )) = µ2 · p6 ≤ 2m2n4p6 = 2m2n3p5 · (p · n) =
2

35m1/2
(p · n) ≤ 2

35
· p · n (7)

E(µ3(Y )) = µ3 · p5 ≤ (3/2)m2n2p4 · (p · n) =
1

54n2/5
· (p · n) ≤ 1

54
· p · n (8)

For i = 1, 2, and any U ⊆ V let Ei(U) = E(H[U ]) ∩ Ei. We have

E(|E1(Y )|) = |E1| · p3 ≤ 1
2
m · n2 · p3 = o(p · n), (9)

E(|E2(Y )|) = |E2| · p4. (10)

Now, the probability that µ2(Y ) > 1
8pn is at most 2

35 /
1
8 , since E(µ2(Y )) ≤ 2

35 pn. Similar
computations show that the probabilities of the separate events µ3(Y ) > 1

8pn, |E1(Y )| > 50mn2p3,
and |E2(Y )| > 2|E2|p4 are at most 1

54/
1
8 , 1

2/50, and 1/2 respectively. Recall also that Prob (|Y | ≤
7
8 · p · n) < 1

10 . Since these five probabilities sum to less than 1, we deduce that there exists a subset
Y0 ⊆ V with |Y0| ≥ 7

8 · p · n, µ2(Y0) ≤ 1
8 · p · n, µ3(Y0) ≤ 1

8 · p · n, |E1(Y0)| ≤ 50mn2p3 = o(p · n), and
|E2(Y0)| ≤ 2|E2| · p4.
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We delete from Y0 a vertex from each 2-cycle and a vertex from each edge in E1(Y0) to obtain
a subset Y1 ⊆ Y0, with |Y1| ≥ 1

2p · n, such that the sub-hypergraph H[Y1] induced by Y1 has no
2-cycles, no edges of E1, and at most 2|E2| · p4 edges in E2 (and thus is 4-uniform). Note that H[Y1]
has average degree at most 4|E(H(Y1))|/|Y1| ≤ 4 · (2|E2| · p4)/(1

2p · n) = 16·|E2|·p4

p·n .
Finally, delete all vertices in Y1 with degree larger than

32|E2| · p4

p · n
,

noting that there are at most 1
2 |Y1| such vertices. We obtain a subset Z ⊆ Y1 with at least 1

2 |Y1| ≥
1
4 · p · n vertices such that the sub-hypergraph G of H induced by Z satisfies the assumptions of
Theorem 5.4 with

∆(G) ≤ 32 · |E2| · p4

p · n
≤ 8 ·m · n2 · p3 =

8
27

n1/5

m1/2
= b3,

recalling from (3) that |E2| ≤ 1
4m · n

3. By our condition m = O(t2−β), and our choice of
n ≥ c′2mt3/ln t, we have b3 = Ω( n

1/5

m1/2 ) = Ω(tγ) for some positive constant γ. Thus, b� 4. Also,

b = (8 ·m · n2)1/3 · p.

Applying Theorem 5.4 to G and choosing a1, a2, a3 to be sufficiently small positive constants, we
have

α(H) ≥ α(G)

≥ a0 ·
|Z|
b
· (ln b)1/3

≥ a1 ·
p · n

(m · n2)1/3 · p
· [ln t]1/3

≥ a2(
n

m
)1/3(ln t)1/3

Recall that n ≥ c′2mt
3/ ln t. When c′2 is chosen to be sufficiently large beforehand, the last

inequality above yields α(G) ≥ t. Thus, c contains a rainbow complete subgraph of order t, completing
the proof.

Theorem 5.6 There exists an absolute constant c′′2 > 0 such that for all admissible integers m and

t,

g(m,Kt) ≤ c′′2
mt3

ln t
.

Proof. Clearly we may assume that t is sufficiently large as specified below. If, say, m ≤ t3/2, then
the result follows from Theorem 5.5 with β = 1/2. Otherwise, suppose n = c′′2

mt3

ln t , and let c be an
m-good coloring of Kn, where m > t3/2. We apply Corollary 4.11 as follows. Set ε = 1/2. Without
loss of generality, suppose m = 2q ·( t2) (and assume m/2q = t/2 is large enough as needed in Corollary

4.11 for the given ε). By Corollary 4.11, there is a subset S ⊆ V (Kn) of size ( c
′′
2mt

3

ln t )/2q = c′′2 t
4

2 ln t , so
that the coloring c restricted to S is (1 + ε) t2 -good. In particular, c restricted to S is t-good. By
Theorem 5.5 there is a rainbow copy of Kt in S, provided c′′2 is sufficiently large. This completes the
proof.
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6 Bounds on g(m,G) for general graphs G

In this section, we give bounds on g(m,G) for a general graph G in terms of degrees in G. First, we
recall and restate the trivial lower bound on g(m,G) from Lemma 2.3, now in terms of the average
degree of G.

Proposition 6.1 Suppose G is a graph with t vertices, having average degree d, with m any positive

integer. Then g(m,G) > m(dt− 2)/2.

For dense graphs G, we can considerably improve the lower bound to the following.

Theorem 6.2 There exists an absolute constant c′3 > 0 such that if G is a graph with t vertices,

average degree d and at least two edges, then

g(m,G) ≥ c′3 ·
md2t

ln t+ lnm
.

Proof. Let c′3 be a small positive constant to be specified later. Let N be a positive integer with
N = dc′3 · md2t

ln t+lnme. Without loss of generality, we assume that m divides N , and let q = N/m. We
show that there exists an m-good edge-coloring of K = KN with no rainbow copy of G.

Let M = {M1,M2, · · · ,MN} be any decomposition of E(K) into matchings, where such an M
exists since χ′(G) ≤ N . Let C be the probability space consisting of all m-perfect colorings of [N ]
using colors from [q], with each m-perfect coloring of [N ] being equally likely. For each m-perfect
coloring σ in C, let cσ denote the coloring of E(K) obtained by assigning color σ(j) to each edge of
matching Mj for each j = 1, 2, · · · , N . Since σ is m-perfect, cσ is an m-good coloring of E(KN ). Let
X = {x1, · · · , xt} be a fixed set of t vertices of K. Note that there are at most t! labeled copies of G
with vertex set X. Let H denote an arbitrary copy of G with vertex set X, and let AH denote the
event that H is rainbow under cσ. We estimate Prob (AH).

If H contains two edges e, e′ from the same Mi for some i, then clearly cσ(e) = cσ(e′), preventing
H from being rainbow. Thus, we have Prob (A) = 0 in this case. Next, suppose that no two edges
of H are from the same Mi. Let T = {j : E(H) ∩Mj is nonempty}. Then |T | = e(H), and the
probability that H is rainbow is equal to the probability that σ assigns distinct colors to the elements
of T . For convenience, let s = |T |. Note that s = e(H) = dt/2. By Lemma 2.5, we have

Prob (AH) ≤
[
exp(−m− 1

2N
)
]s(s−1)

≤
[
exp(− m

4N
)
]s2/2

= exp

[
−md

2t2

32N

]

Since there are
(N
t

)
many t-subsets X of V (G), and there are at most t! copies of G with vertex

set X, we have

Prob (Some copy of G in K is rainbow)
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≤
(
N

t

)
· t! · exp

[
−md

2t2

32N

]

≤ N t · exp
[
−md

2t2

32N

]
.

Recall that N = dc′3 · md2t
ln t+lnme. For a pre-chosen sufficiently small positive constant c′3, we have

N t · exp
[
−md2t2

32N

]
< 1 (as the logarithm of the left-hand side is negative). Thus we have

Prob (Some copy of G in K is rainbow ) < 1.

Hence
Prob (K contains no rainbow copy of G) > 0.

Thus there exists a coloring σ in C for which cσ is an m-good edge-coloring of K containing no
rainbow copy of G.

Remark 6.3 If G has average degree d on the order of t = n(G), then Theorem 6.2 and Theorem

5.6 imply that Ω(mt3/(ln t+ lnm)) ≤ g(m,G) ≤ O(mt3/ ln t).

Finally, we give an upper bound on g(m,G) for general graphs G in terms of the maximum degree
of G. The method is based on the proof of Theorem 4.4.

Lemma 6.4 Suppose ε ∈ (0, 1), n is a positive integer, and G is a graph with t = n(G) vertices and

maximum degree d.

If t < (1− ε)n− 2d2
√
mn/ε− (md2/2)t, then g(m,G) < n.

Sketch of proof. We follow the proof of Theorem 4.4 almost exactly, except that we define Type 3
vertices to be vertices w such that there exists u ∈ Nj for which uw has a color already used on an
edge of Gj−1 and note that there are at most md2t/2 such vertices.

Theorem 6.5 Let G be a graph with t vertices and maximum degree d. For all positive integers m,

we have g(m,G) ≤ 2md2t+ 32md4 + 4t.

Proof. Applying Lemma 6.4 with ε = 1/2, we have that if n satisfies

t < (1/2)n− 2d2
√

2mn−md2t/2 (11)

then g(m,G) < n. Rearranging, we get

n− 4d2
√

2m ·
√
n− (md2t+ 2t) > 0. (12)

Letting y =
√
n, B = 4d2

√
2m, C = md2t+ 2t, we can rewrite inequality (12) as

y2 −By − C > 0. (13)

Inequality (13) is clearly satisfied if

y >
B +

√
B2 + 4C
2

. (14)
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Inequality (14) is in turn satisfied if

n = y2 >
2B2 + 2(B2 + 4C)

4
= B2 + 2C.

Thus, we have
g(m,G) ≤ B2 + 2C = 32md4 + 2md2t+ 4t.

Remark 6.6 By Theorem 6.5, we have g(m,G) = O(mt) for graphs G on t vertices with bounded

maximum degree.

7 Concluding remarks

• Reacll that er(p) denotes the canonical Ramsey number of p as defined in Theorem A. In [15]
Lefmann and Rödl showed that every coloring of E(Kn) in which each color appears at most
n/(27

16p
6) times at each vertex yields a rainbow copy of Kp, and using this, concluded that

er(p) ≤ (
27p6

16
)2(p−2)2+1.

Using our improved bounds for g(m,Kt) we can slightly improve their bound by showing, using
Theorem 5.6, that

er(p) ≤ (c2
p3

ln p
)2(p−2)2+1.

This improves the constant c′ in their upper estimate er(p) ≤ 2c
′p2 ln p by roughly a factor of 2.

• By Theorem 4.3, for every fixed m and d and all n > n0(m, d), f(m,G) = n for every graph G
with n vertices and maximum degree d. It seems plausible to conjecture that this holds with
n0(m, d) = dc1m for some absolute positive constant c. By Theorem 4.12 this is the case for
certain graphs G, but at the moment we are unable to prove it for the general case.
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Research, Redmond, WA. The first author would like to thank his hosts at Microsoft for their
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[5] N. Alon, H. Lefmann, and V. Rödl, On an anti-Ramsey type result, Colloq. Math. Soc. Janós
Bolyai 60, Sets, Graphs and Numbers, Budapest, 9 - 22, 1991.

[6] L. Babai, An anti-Ramsey theorem, Graphs and Combinatorics 1, 23 – 28, 1985.
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[12] A. Gyáfás, J. Lehel, R.H. Schelp, and Zs. Tuza, Ramsey numbers for local colorings, Graphs
and Combinatorics 3, 267-277, 1987.
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