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Abstract

We say that a distribution over {0, 1}n is (ε, k)-wise independent if its restriction to every
k coordinates results in a distribution that is ε-close to the uniform distribution. A natural
question regarding (ε, k)-wise independent distributions is how close they are to some k-wise
independent distribution. We show that there exists (ε, k)-wise independent distribution whose
statistical distance is at least nO(k) · ε from any k-wise independent distribution. In addition,
we show that for any (ε, k)-wise independent distribution there exists some k-wise independent
distribution, whose statistical distance is nO(k) · ε.
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1 Introduction

Small probability spaces of limited independence are useful in various applications. Specifically,
as observed by Luby [4] and others, if the analysis of a randomized algorithm only relies on the
hypothesis that some objects are distributed in a k-wise independent manner then one can replace
the algorithm’s random-tape by a string selected from a k-wise independent distribution. Recalling
that k-wise independent distributions over {0, 1}n can be generated using only O(k log n) bits
(see, e.g., [1]), this yields a significant saving in the randomness complexity and also leads to a
derandomization in time nO(k). (This number of random bits is essentially optimal; see [3], [1].)

Further saving is possible whenever the analysis of the randomized algorithm can be carried
out also in case its random-tape is only “almost k-wise independent” (i.e., (ε, k)-wise distribution
where every k bits are distributed ε-close to uniform). This is because (ε, k)-wise distributions can
be generated using fewer random bits (i.e., O(k + log(n/ε)) bits suffice, where ε is the variation
distance of these k-projections to the uniform distribution): See the work of Naor and Naor [5] (as
well as subsequent simplifications in [2]).

Note that, in both cases, replacing the algorithm’s random-tape by strings taken from a distri-
bution of a smaller support requires verifying that the original analysis still holds for the replaced
distribution. It would have been nicer, if instead of re-analyzing the algorithm for the case of
(ε, k)-wise independent distributions, we could just re-analyze it for the case of k-wise independent
distributions and apply a generic result. This would imply that the randomized algorithm can be
further derandomized using an (ε, k)-wise independent distribution. Such a result may say that if
the algorithm behaves well under any k-wise independent distribution then it would behave essen-
tially as well also under any almost k-wise independent distribution, provided that the parameter ε
governing this measure of closeness is small enough. Of course, the issue is how small ε should be.

A generic approach towards the above question is to ask: What is the statistical distance δ be-
tween arbitrary almost k-wise independent distribution and some k-wise independent distribution?
Specifically, how does this distance δ depend on n and k (and on the parameter ε)? Note that we
will have to set ε sufficiently small so that δ will be small (e.g., δ = 0.1 may do).

Our original hope was that δ = poly(2k, n) · ε (or δ = poly(2k, n) · ε1/O(1)). If this had been
the case, we could have set ε = poly(2−k, n−1, δ), and use an almost k-wise independent sample
space of size poly(n/ε) = poly(2k, n, δ−1) (instead of size nΘ(k) as for perfect k-wise independence).
Unfortunately, the answer is that δ = nΘ(k) · ε, and so this generic approach (which requires setting
ε = δ/nΘ(k) and using a sample space of size Ω(1/ε) = nΘ(k)) does not lead to anything better than
just using an adequate k-wise independent sample space. In fact we show that every distribution
with support less than nΘ(k) has large statistical distance to any k-wise independent distribution.

2 Formal Setting

We consider distributions and random variables over {0, 1}n, where n (as well as k and ε) is a
parameter. A distribution DX over {0, 1}n assigns each z ∈ {0, 1}n a value DX(z) ∈ [0, 1] such
that

∑
z DX(z) = 1. A random variable X over {0, 1}n is associated with a distribution DX

and randomly selects a z ∈ {0, 1}n, where Pr[X = z] = DX(z). Throughout the paper we use
interchangeably the notation of a random variable and a distribution. The statistical distance,
denoted ∆(X, Y ), between two random variables X and Y over {0, 1}n is defined as

∆(X, Y ) def=
1
2
·
∑

z∈{0,1}n

|Pr[X =z]− Pr[Y =z]|
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= max
S⊂{0,1}n

{Pr[X∈S]− Pr[Y ∈S]}.

If ∆(X, Y ) ≤ ε we say that X is ε-close to Y . (Note that 2∆(X, Y ) equals to ‖DX − DY ‖1 =∑
z∈{0,1}n |DX(z)−DY (z)|.)
A distribution X = X1 · · ·Xn is called an (ε, k)-approximation if for every k (distinct) coordinates

i1, ..., ik ∈ {1, ..., n} it holds that Xi1 · · ·Xik is ε-close to the uniform distribution over {0, 1}k. A
(0, k)-approximation is sometimes referred to as a k-wise independent distribution (i.e., for every k
(distinct) coordinates i1, ..., ik ∈ {1, ..., n} it holds that Xi1 · · ·Xik is uniform over {0, 1}k).

A related notion is that of having bounded bias on (non-empty) sets of size at most k. Recall
that the bias of a distribution X = X1 · · ·Xn on a set I is defined as

biasI(X) def= E[(−1)
∑

i∈I
Xi ]

= Pr[⊕i∈IXi = 0]− Pr[⊕i∈IXi = 1] = 2Pr[⊕i∈IXi = 0]− 1.

Clearly, for any (ε, k)-approximation X, the bias of the distribution X on every non-empty subset
of size at most k is bounded above by 2ε. On the other hand, if X has bias at most ε on every
non-empty subset of size at most k then X is a (2k/2 ·ε, k)-approximation (see [7] and the Appendix
in [2]).

Since we are willing to give up on exp(k) factors, we state our results in terms of distributions
of bounded bias.

Theorem 2.1 (Upper Bound): Let X = X1....Xn be a distribution over {0, 1}n such that the bias
of X on any non-empty subset of size up to k is at most ε. Then X is δ(n, k, ε)-close to some
k-wise independent distribution, where δ(n, k, ε) def=

∑k
i=1

(n
i

)
· ε ≤ nk · ε.

The proof appears in Section 3.1. It follows that any (ε, k)-approximation is δ(n, k, ε)-close to some
(0, k)-approximation. (We note that our construction is not efficient both in its computation time
and in the number of random bits, and its main purpose is to generate some k-wise independent
distribution.) We show that the above result is nearly tight in the following sense.

Theorem 2.2 (Lower Bound): For every n, every even k and every ε such that ε > 2kk/2/n(k/4)−1

there exists a distribution X over {0, 1}n such that

1. The bias of X on any non-empty subset is at most ε.

2. The distance of X from any k-wise independent distribution is at least 1
2 .

The proof appears in Section 3.2. In particular, setting ε = n−k/5/2 (which, for sufficiently large
n � k � 1, satisfies ε > 2kk/2/n(k/4)−1), we obtain that δ(n, k, ε) ≥ 1/2, where δ(n, k, ε) is as in
Theorem 2.1. Thus, if δ(n, k, ε) = f(n, k) · ε (as is natural and is indeed the case in Theorem 2.1)
then it must hold that

f(n, k) ≥ 1
2ε

= nk/5.

A similar analysis holds also in case δ(n, k, ε) = f(n, k) ·ε1/O(1). We remark that although Theorem
2.2 is shown for an even k, a bound for an odd k can be trivially derived by replacing k by k − 1.
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3 Proofs

3.1 Proof of Theorem 2.1

Going over all non-empty sets, I, of size up to k, we make the bias over these sets zero, by
augmenting the distribution as follows. Say that the bias over I is exactly ε > 0 (w.l.o.g., the bias
is positive); that is, Pr[⊕i∈IXi = 0] = (1 + ε)/2. Then (for p ≈ ε to be determined below), we
define a new distribution Y = Y1...Yn as follows.

1. With probability 1− p, we let Y = X.

2. With probability p, we let Y be uniform over the set {σ1 · · ·σn ∈ {0, 1}n : ⊕i∈Iσi = 1}.

Then Pr[⊕i∈IYi = 0] = (1−p) · ((1+ ε)/2)+p ·0. Setting p = ε/(1+ ε), we get Pr[⊕i∈IYi = 0] = 1/2
as desired. Observe that ∆(X, Y ) ≤ p < ε and that we might have only decreased the biases on
all other subsets. To see the latter, consider a non-empty J 6= I, and notice that in Case (2) Y is
unbiased over J . Then∣∣∣∣Pr[⊕i∈JYi = 1]− 1

2

∣∣∣∣ =
∣∣∣∣((1− p) · Pr[⊕i∈JXi = 1] + p · 1

2

)
− 1

2

∣∣∣∣
= (1− p) ·

∣∣∣∣Pr[⊕i∈JXi = 1]− 1
2

∣∣∣∣ ,
and the theorem follows.

3.2 Proof of Theorem 2.2

On one hand, we know (cf., [2], following [5]) that there exists ε-bias distributions of support size
(n/ε)2. On the other hand, we will show (in Lemma 3.1) that every k-wise independent distribution,
not only has large support (as proven, somewhat implicitly, in [6] and explicitly in [3] and [1]), but
also has a large min-entropy bound. (Recall that the support of a distribution is the set of points
with non-zero probability.) It follows that every k-wise independent distribution must be far from
any distribution that has a small support, and thus be far from any such ε-bias distribution. Recall
that a distribution Z has min-entropy m if m is the maximal real such that Pr[Z = α] ≤ 2−m holds
for every α. (Note that min-entropy is equivalent to − log2 maxx∈{0,1}n DZ(x).)

Lemma 3.1 For every n and every even k, any k-wise independent distribution over {0, 1}n has
min-entropy at least − log2(kkn−k/2) = k log2(

√
n/k).

Let us first see how to prove Theorem 2.2, using Lemma 3.1. First we observe that a distribution Y
that has min-entropy m must be at distance at least 1/2 from any distribution X that has support
of size at most 2m/2. This follows because

∆(Y, X) ≥ Pr[Y ∈ ({0, 1}n \ support(X))]
= 1−

∑
α∈support(X)

Pr[Y = α]

≥ 1− |support(X)| · 2−m ≥ 1
2
.

Now, letting X be an ε-bias distribution (i.e., having bias at most ε on every non-empty subset)
of support (n/ε)2 and using Lemma 3.1 (while observing that ε > 2kk/2/n(k/4)−1 implies (n/ε)2 <
2m/2 for m = log2(nk/2/kk)), Theorem 2.2 follows. In fact we can derive the following corollary.
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Corollary 3.2 For every n, every even k, and for every k-wise independent distribution Y , if
distribution X has support smaller than nk/2/2kk then ∆(X, Y ) ≥ 1

2 .

Proof of Lemma 3.1: Let Y = Y1 · · ·Yn be a k-wise independent distribution, and α be a string
maximizing Pr[Y = α]. The key observation is that we may assume, without loss of generality (by
XORing Y with α), that α is the all-zero string. Now, the lemma follows by applying a standard tail
inequality for the sum of k-wise independent variables Y1, ..., Yn. Specifically, using the generalized
Chebychev Inequality and defining Zi

def= Yi − 0.5, we have:

Pr[(∀i) Yi = 0] = Pr

[
n∑

i=1

Yi = 0

]

≤ Pr

[∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ ≥ n

2

]

≤
E
[
(
∑

i Zi)
k
]

(n/2)k
.

Next, we use a crude bound on the k-th moment of the sum of the Zi’s, which follows from their
k-wise independence. Specifically, we first write

E

(∑
i

Zi

)k
 =

∑
i1,...,ik∈[n]

E[Zi1 · · ·Zik ] . (1)

Observe that all (r.h.s) terms in which some index appears only once are zero (i.e., if for some j
and all h 6= j it holds that ij 6= ih then E[

∏
h Zih ] = E[Zij ] · E[

∏
h 6=j Zih ] = 0). All the remaining

terms are such that each index appears at least twice. The number of these terms is smaller than( n
k/2

)
· (k/2)k < (k/2)k · nk/2, and each contributes at most 1/2k < 1 to the sum (because each Zi

resides in [±0.5]). Thus, the expression in Eq. (1) is strictly smaller than (k/2)k ·nk/2. The lemma
follows (because Pr[(∀i) Yi = 0] ≤ (k/2)k · nk/2/(n/2)k).
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