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Abstract

The Tutte-Gröthendieck polynomial T (G;x, y) of a graph G encodes numerous interesting combi-
natorial quantities associated with the graph. Its evaluation in various points in the (x, y) plane give
the number of spanning forests of the graph, the number of its strongly connected orientations, the
number of its proper k-colorings, the (all terminal) reliability probability of the graph, and various
other invariants the exact computation of each of which is well known to be #P -hard. Here we develop
a general technique that supplies fully polynomial randomised approximation schemes for approximat-
ing the value of T (G;x, y) for any dense graph G, that is, any graph on n vertices whose minimum
degree is Ω(n), whenever x ≥ 1 and y > 1, and in various additional points. Annan [2] has dealt with
the case y = 1, x ≥ 1. This region includes evaluations of reliability and partition functions of the
ferromagnetic Q-state Potts model. Extensions to linear matroids where T specialises to the weight
enumerator of linear codes are considered as well.

1 Introduction

Consider the following very simple counting problems associated with a graph G.

(i) What is the number of connected subgraphs of G?

(ii) How many subgraphs of G are forests?

(iii) How many acyclic orientations has G?
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Each of these is a special case of the general problem of evaluating the Tutte polynomial of a graph (or

matroid) at a particular point of the (x, y)-plane — in other words is a Tutte-Gröthendieck invariant.

Other invariants include:

(iv) the chromatic and flow polynomials of a graph;

(v) the partition function of a Q-state Potts model;

(vi) the Jones polynomial of an alternating link;

(vii) the weight enumerator of a linear code over GF (q).

It has been shown in Vertigan and Welsh [19] that apart from a few special points and 2 special hyperbolae,

the exact evaluation of any such invariant is #P -hard even for the very restricted class of planar bipartite

graphs. However the question of which points have a fully polynomial randomised approximation scheme

(fpras) is wide open. A survey of what is currently known is given in [21]. Here we prove several new

results concerning the existence of a fpras for dense graphs. More precisely, for 0 < α < 1, let Gα denote

the set of graphs G = (V,E) with |V | = n and minimum degree δ(G) ≥ αn. A graph is α-dense if it is a

member of Gα or, somewhat loosely, dense if we omit the α.

Various counting and approximation problems are known to be easier for graphs of sufficiently high density

than for general graphs. The number of perfect matchings in bipartite graphs (which is not an evaluation

of the Tutte polynomial) is one such example. The results of Broder [3] and of Jerrum and Sinclair [10]

supply a fpras for approximating that number for (1/4)-dense bipartite graphs. Dyer, Frieze and Jerrum

[5] found an fpras for the number of Hamilton cycles in graphs which are α-dense when α > 1/2. Annan

[2] obtained a fpras for the number of forests of a dense graph (given by the value of the Tutte polynomial

at (2, 1)). Edwards [6] showed that the number of proper k colorings of sufficiently dense graphs (given by

evaluating the Tutte polynomial at (1− k, 0)) can be computed exactly in polynomial time, whereas it is

clear that this number cannot be approximated in polynomial time for general graphs unless RP = NP .

Our main new result is a general technique that supplies fully polynomial randomised approximation

schemes for approximating the value of T (G;x, y) for any dense graph G, whenever x ≥ 1 and y > 1, and

in various additional points. Annan [2] has dealt with the case y = 1, x ≥ 1.
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The graph terminology used is standard. The complexity theory and notation follows Garey and Johnson

[8]. The matroid terminology follows Oxley [13]. Further details of most of the concepts treated here can

be found in Welsh [20].

2 Tutte-Gröthendieck invariants

First consider the following recursive definition of the function T (G;x, y) of a graph G, and two indepen-

dent variables x, y.

If G has no edges then T (G;x, y) = 1, otherwise for any e ∈ E(G);

(2.1) T (G;x, y) = T (G′e;x, y) + T (G′′e ;x, y) if e is neither a loop nor an isthmus, where G′e denotes the

deletion of the edge e from G and G′′e denotes the contraction of e in G,

(2.2) T (G;x, y) = xT (G′e;x, y) e an isthmus,

(2.3) T (G;x, y) = yT (G′′e ;x, y) e a loop.

From this, it is easy to show by induction that T is a 2-variable polynomial in x, y, which we call the

Tutte polynomial of G.

In other words, T may be calculated recursively by choosing the edges in any order and repeatedly using

(2.1-3) to evaluate T . The remarkable fact is that T is well defined in the sense that the resulting

polynomial is independent of the order in which the edges are chosen.

Alternatively, and this is often the easiest way to prove properties of T , we can show that T has the

following expansion.

First recall that if A ⊆ E(G), the rank of A, r(A) is defined by

r(A) = |V (G)| − k(A),

where k(A) is the number of connected components of the graph having vertex set V = V (G) and edge

set A.

It is now straightforward to prove:
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The Tutte polynomial T (G;x, y) can be expressed in the form

T (G;x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A).

These ideas can be extended to matroids - see for example [4] and [20].

3 A catalogue of invariants

We now collect together some of the naturally occurring interpretations of the Tutte polynomial. Through-

out G is a graph, M is a matroid and E will denote E(G), E(M) respectively.

(3.1) At (1,1) T counts the number of bases of M (spanning trees in a connected graph).

(3.2) At (2,1) T counts the number of independent sets of M , (forests in a graph).

(3.3) At (1,2) T counts the number of spanning sets of M , that is sets which contain a base.

(3.4) At (2,0), T counts the number of acyclic orientations of G. Stanley [17] also gives interpretations

of T at (m, 0) for general positive integer m, in terms of acyclic orientations.

(3.5) Another interpretation at (2,0), and this for a different class of matroids, was discovered by Za-

slavsky [23]. This is in terms of counting the number of different arrangements of sets of hyperplanes

in n-dimensional Euclidean space.

(3.6) T (G;−1,−1) = (−1)|E|(−2)d(B) where B is the bicycle space of G, see Read and Rosenstiehl [15].

When G is planar it also has interpretations in terms of the Arf invariant of the associated knot.

(3.7) The chromatic polynomial P (G;λ) is given by

P (G;λ) = (−1)r(E)λk(G)T (G; 1− λ, 0)

where k(G) is the number of connected components.

(3.8) The flow polynomial F (G;λ) is given by

F (G;λ) = (−1)|E|−r(E)T (G; 0, 1− λ).
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(3.9) The (all terminal) reliability R(G; p) is given by

R(G; p) = q|E|−r(E)pr(E)T (G; 1, 1/q)

where q = 1− p.

In each of the above cases, the interesting quantity (on the left hand side) is given (up to an easily

determined term) by an evaluation of the Tutte polynomial. We shall use the phrase “specialises to” to

indicate this. Thus for example, along y = 0, T specialises to the chromatic polynomial.

It turns out that the hyperbolae Hα defined by

Hα = {(x, y) : (x− 1)(y − 1) = α}

play a special role in the theory. We note several important specialisations below.

(3.10) Along H1, T (G;x, y) = x|E|(x− 1)r(E)−|E|.

(3.11) Along H2; when G is a graph T specialises to the partition function of the Ising model.

(3.12) Along HQ, for general positive integer Q, T specialises to the partition function of the Potts model

of statistical physics. These quantities are useful in simulations or computations of the probabilities

of configurations of spins on the vertices of the graph.

(3.13) Along Hq, when q is a prime power, for a matroid M of vectors over GF (q), T specialises to the

weight enumerator of the linear code over GF (q), determined by M .

(3.14) Along Hq for any positive, not necessarily integer, q, T specialises to the partition function of the

random cluster model introduced by Fortuin and Kasteleyn [7].

(3.15) Along the hyperbola xy = 1 when G is planar, T specialises to the Jones polynomial of the

alternating link or knot associated with G. This connection was first discovered by Thistlethwaite

[18].

More details on these topics can be found in Welsh [20] and other more specialised interpretations can

be found in the survey of Brylawski and Oxley [4].
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4 The ferromagnetic random cluster model

As we mentioned above, as Q varies between 0 < Q < ∞, T evaluates the partition function of the

random cluster model. For integer Q this is the Q-state Potts model and when Q = 2 it is the Ising

model. When x ≥ 1 and y ≥ 1, we have the region corresponding to ferromagnetism. In the case Q = 2

we know from Jerrum and Sinclair [11] that there is a fpras for all G. Here we obtain a similar result for

general Q but only for the dense case.

For the remainder of this paper, except for Sections 8 and 10, we assume that we are dealing with the

Tutte polynomial of an α-dense graph G.

A first easy, but essential, observation is the following. Let Gp denote the random graph obtained by

selecting edges of G independently with probability p.

Lemma 1 Assume G is connected with n vertices and m edges. Assume x, y > 1 and let p = (y − 1)/y
and Q = (x− 1)(y − 1). Let κ = κ(Gp) be the number of components of Gp. Then

T (G;x, y) =
ym

(x− 1)(y − 1)n
E(Qκ).

Proof

T (G;x, y) =
∑
A⊆E

(x− 1)n−1−r(A)(y − 1)|A|−r(A)

=
∑
A⊆E

(x− 1)κ(A)−1(y − 1)|A|+κ(A)−n

where κ(A) is the number of components of GA = (V,A). Thus

T (G;x, y) =
ym

(x− 1)(y − 1)n
∑
A⊆E

(
y − 1
y

)|A| (1
y

)m−|A|
((x− 1)(y − 1))κ(A)

=
ym

(x− 1)(y − 1)n
∑
A⊆E

Qκ(A)Pr{Gp = GA}.

2

We now describe a property of dense graphs which is the key to much of the ensuing analysis.

Define G∗ = (V,E∗) by (u, v) ∈ E∗ if and only if |N(u) ∩N(v)| ≥ α2n/2.
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Lemma 2 G∗ has at most s = d2/αe − 1 components.

Proof Suppose that G∗ has more than s components. Then there exist v1, v2, . . . vs+1 such that

|N(vi) ∩N(vj)| < α2n/2 if i 6= j. But then∣∣∣∣∣
s+1⋃
i=1

N(vi)

∣∣∣∣∣ ≥
s+1∑
i=1

|N(vi)| −
∑
i6=j
|N(vi) ∩N(vj)|

> (s+ 1)αn−
(
s+ 1

2

)
α2n

2

= (s+ 1)αn
(

1− sα

4

)
≥ n.

2

Let Q̂ = max{Q,Q−1} and ζ = ym/((x− 1)(y − 1)n).

We claim that the following algorithm estimates T (G;x, y) for G ∈ Gα.

Algorithm EVAL

begin

p := y−1
y ; Q := (x− 1)(y − 1);

t := d16Q̂2sε−2e;

for i = 1 to t do

begin

Generate Gp;

Zi := Qκ(Gp)

end

Z̃ := Z1+Z2+···+Zt
t ;

Output Z = ζZ̃

end

We first prove

Lemma 3 In the notation of Lemma 1, let

n0 = min

{
n : n ≥ max

{
32 ln(nQ̂)
α3p2

, Q10/α

}}
.
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If n ≥ n0 then

(a) Q ≥ 1 implies
E(Q2κ) ≤ 2Q2s.

(b) Q < 1 implies
E(Qκ) ≥ Qs/2.

Proof Let the components of G∗ be C1, C2, . . . Cρ, ρ ≤ s. Let Eu denote the event {κ(Gp) > uρ}

for 1 ≤ u ≤ u0 = dα2n/8e. If Eu occurs then at least one Ci must contain vertices from u + 1 distinct

components of Gp. In this case let x1, x2, . . . xu+1 be in the same component of G∗ but in different

components of Gp. The probability that Gp contains no path of length 2 connecting x2i−1 to x2i for each

i, 1 ≤ i ≤ b(u+ 1)/2c is at most (1− p2)K , where K = (α2n/2− 2u)u/2. Hence

Pr{Eu} ≤ nu+1(1− p2)K

≤ (n2e−α
2p2n/8)u, for u ≤ u0, n ≥ n0.

Thus for u ≤ u0, n ≥ n0

Pr{Eu} ≤ (n2 exp{−4 ln(nQ̂)/α})u

= (n2−4/αQ̂−4/α)u.

Suppose first that Q ≥ 1. Then

E(Q2κ) ≤ Q2ρ

(
1 +

u0∑
u=1

Q2uρPr{Eu}
)

+Q2nPr{Eu0}

≤ Q2ρ

(
1 +

u0∑
u=1

(n2−4/αQ2ρ−4/α)u
)

+Q2nn(2−4/α)(α2n/8)

≤ 2Q2ρ,

which deals with (a).

Suppose now that Q < 1. Then

E(Qκ) ≥ Qρ(1−Pr{E1})

≥ Qρ/2

for n ≥ n0, which deals with (b). 2
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Theorem 1 For fixed rational x, y, and ε > 0, if T = T (G;x, y) and Z is the output of Algorithm EVAL,
then

Pr{|Z − T | ≥ εT} ≤ 1
4
.

Proof Since Z = ζ
(
Z1+...+Zt

t

)
, from Lemma 1 we see that T = E(Z). From Chebychev’s inequality

Pr{|Z − T | ≥ εT} ≤ Var(Z)
ε2T 2

≤ ζ2

ε2t

Var(Zi)
T 2

≤ ζ2

ε2t

E(Z2
i )

T 2
.

Case Q < 1

Lemma 3 gives

E(Z2
i ) = E(Q2κ(Gp)) ≤ 1

T 2 = ζ2(E(Zi))2 = ζ2(E(Qκ(Gp)))2

≥ ζ2Q2s/4

giving

Pr{|Z − T | ≥ εT} ≤ 4
ε2tQ2s

.

Case Q ≥ 1

Pr{|Z − T | ≥ εT} ≤ ζ2

ε2t

E(Q2κ)
T 2

≤ 2Q2s

ε2t

using Lemma 3, and noticing that for Q ≥ 1, T ≥ ζ.

The result follows provided

t ≥ 16
ε2Q2s

(Q < 1)

and

t ≥ 8Q2s

ε2
(Q ≥ 1),

which it is by choice of t in EVAL. 2

Note: although polynomially bounded the running time grows when

(x− 1)(y − 1) or its inverse grow.
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5 Reliability - (x = 1, y ≥ 1)

The question here is: given a connected graph G and a rational p, 0 < p < 1, can we efficiently estimate

the reliability probability,

φ(p) = φ(G, p) = Pr{Gp is connected}.

This is well known to be a #P -hard problem, but approximation algorithms for p very large and G planar,

have been found by Karp and Luby [12]. Here we show that fully polynomial randomised approximation

schemes exist for estimating reliability for the class of dense graphs for all values of p. Consider the

following algorithm:

Algorithm RELIABILITY

begin

t := d4p−sε−2e;

for i = 1 to t do

begin

Generate Gp;

Zi =

{
1 Gp is connected
0 Gp is not connected

end

Z = Z1+Z2+···+Zt
t ;

Output Z

end

Theorem 2 The above algorithm is a fpras for estimating the reliability probability in the class of dense
graphs.

Proof We have to show that for n sufficiently large, the output Z satisfies

Pr{|Z − φ(p)| ≥ εφ(p)} ≤ 1
4
.

Clearly E(Z) = φ(p) and Var(Z) = φ(p)(1− φ(p))/t. Applying the Chebychev inequality

Pr{|Z − φ(p)| ≥ εφ(p)} ≤ Var(Z)
ε2φ(p)2
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≤ 1
tε2φ(p)

≤ 1
4
,

provided

φ(p) ≥ ps. (1)

We now prove that (1) holds for n sufficiently large. As in the proof of Lemma 3 let G∗ have components

C1, C2, . . . , Cρ. Consider the multi-graph G̃ with vertices {1, 2, . . . , ρ} and an edge (i, j) for each edge of

G joining Ci to Cj . In other words, G̃ is obtained from G by contracting each component Ci of G∗ to a

single vertex i. Since G is connected, G̃ contains a spanning tree. Let X be a fixed spanning tree of G̃.

Now Gp is connected if (i) Gp ⊇ X and (ii) for each i and all u, v ∈ Ci there exists w such that Gp

contains the path u,w, v. Thus if A is the event (i) and Bi is the event (ii) then

Pr(Gp is connected) ≥ P (A ∩B1 ∩ . . . ∩Bρ)

≥ P (A)
ρ∏
i=1

P (Bi)

using the FKG inequality.

Clearly

P (A) = pρ−1.

For fixed u, v ∈ Ci, the probability no (u,w, v) path exists is not more than

(1− p2)α
2n/2.

Hence

P (Bi) ≥ 1− (1− p2)α
2n/2

(
|Ci|
2

)
.

Thus

φ(p) ≥ pρ−1
ρ∏
i=1

(
1− (1− p2)α

2n/2

(
|Ci|
2

))

≥ pρ−1

(
1− (1− p2)α

2n/2
ρ∑
i=1

(
|Ci|
2

))
≥ ps for

for n sufficiently large. 2
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Note also that, for fixed p, the above algorithm works provided only that the network is not too sparse.

Each vertex should have at least Ω(n/ lnn) neighbours.

6 Strong Connectivity - (x = 0, y = 2)

By dualising Stanley’s result that T (G; 2, 0) counts the acyclic orientations of G, we see that T (G; 0, 2)

enumerates the number of orientations of G which are totally cyclic, that is, every edge belongs to a

directed cycle, see also [4]. Equivalently, an orientation of a connected graph G is totally cyclic if the

resulting digraph is strongly connected.

Whereas we cannot see how to find a fpras for the number of acyclic orientations, even in dense graphs,

we show that at (0,2) this is possible.

Here the question is: if we randomly orient the edges of G to form a digraph ~G, can we estimate the

probability ψ(G) that ~G is strongly connected. We assume that G has no bridges, else ψ(G) = 0. We use

the following algorithm.

Algorithm CONNECT

begin

t := dε−222s+1e

for i = 1 to t do

begin

Generate ~G;

Zi =

{
1 ~G is strongly connected
0 ~G is not strongly connected.

end

Z = Z1+···+Zt
t ;

Output Z

end

Clearly E(Z) = ψ(G) and Var(Z) = ψ(G)(1− ψ(G))/t, so Chebychev’s inequality gives

Pr{|Z − ψ(G)| ≥ εψ(G)} ≤ 1
tε2ψ

≤ 1/4 (2)
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provided tε2ψ ≥ 4.

Lemma 4
ψ(G) ≥ 2−(2s−1),

for n sufficiently large.

Proof Consider the multi-graph G̃ defined in the proof of Theorem 2. It is bridgeless, as G is, and

so it contains a spanning 2-edge connected subgraph Γ with at most 2ρ− 2 edges. Thus by an old result

of Robbins [16] there are at least two orientations of Γ which will make it strongly connected. Fix one

such orientation w0 and let E be the event that the random orientation is w0. Then

Pr{E} ≥ 22−2ρ.

Now ~G is strongly connected if (i) E occurs and (ii) for every component Ci of G∗ and every u, v ∈ Ci
there are directed paths of length two from u to v which avoid the edges of Γ. For a fixed u, v, the

probability of no such u, v path, given E , is at most (3/4)α
2n/2−2ρ and so

ψ(G) ≥ 22−2ρ

(
1− n(n− 1)

(
3
4

)α2n/2−2ρ
)

≥ 21−2s

provided

n ≥ 2 ln(2n2(4/3)2s)
α2 ln(4/3)

.

2

Combining Lemma 4 with (2) gives:

Proposition 1 The randomised algorithm CONNECT is a fpras for estimating the number of totally
cyclic orientations of dense graphs.

7 Other parts of the Tutte plane

The above arguments show that in the dense case T has a fpras in the region x ≥ 1, y > 1. Annan [2]

has dealt with the case y = 1, x ≥ 1.
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Now suppose that x < 1 and y > 1. Let x̃ = 2− x. Then

T (G;x, y) =
∑
A⊆E

(−1)n−1−r(A)(x̃− 1)n−1−r(A)(y − 1)|A|−r(A)

=
ym

(x̃− 1)(y − 1)n
E((−1)κ−1Q̃κ)

where κ = κ(Gp) and Q̃ = (x̃− 1)(y − 1).

But

E(((−1)κ−1Q̃κ)2) = E(Q̃2κ)

≤ 2Q̃2ρ,

where ρ is as in the proof of Lemma 3.

So if |E((−1)κ−1Q̃κ)| is not too small then one can use Algorithm EVAL with a suitable value of t. Let

pi = Pr{κ = i}, i = 1, 2, . . . , n. Since pi is negligible for i > ρ we can deduce that unless Q̃ is close to a

root of
ρ∑
i=1

(−1)ipizi = 0, (3)

then |E((−1)κ−1Q̃κ)| will be sufficiently large and we will be able to approximate T .

If α > 1/2 then Gp is connected with high probability since every pair of vertices have at least (2α− 1)n

common neighbours. We can then take ρ = 1 in (3) and there is no problem.

The approach does not seem to yield anything useful for x > 1 and y < 1. Putting ỹ = 2− y introduces

a factor (−1)|A|−r(A) into the sum which is not easy to deal with.

8 Random Graphs

Apart from its intrinsic interest, some insight into the limitations of the above methods is gained by

considering the case of an input which is a random graph.

First fix x, y both strictly greater than 1, as the point at which we aim to approximate T . Now suppose

that we apply Algorithm EVAL to an input G, chosen randomly from Gn,p1 ; with the slight modification

that we allow EVAL to run for a time

τ = d16Q̂2ε−2e
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where as usual Q = (x− 1)(y − 1) and Q̂ = max{Q,Q−1}.

Call this modified version EVAL′.

Lemma 5 Let Z be the random output of EVAL′. If T = T (Gn,p1 ;x, y) then provided

p1 ≥ 8
(

lnn
n

)(
y

y − 1

)

lim
n→∞

Prp1

(
Pr{|Z − T | ≥ εT} ≤ 1

4

)
= 1.

Our notation is that Prp1 denotes probabilities computed over the space of random graphs Gn,p1 . Prp

denotes (conditional) probabilities computed over the space of subgraphs of Gn,p1 . Prp2 denotes proba-

bilities computed over Gn,p2 , where p2 = pp1.

Proof Recall how EVAL works. On input G and p it successively generates, independently, Gp and

then outputs

Z = ζ

(
Z1 + . . .+ Zt

t

)
,

where Zi = Qκ(Gp) and p = (y − 1)/y. Here G is random from G(n, p1) so Gp can be regarded as drawn

randomly from G(n, p2).

Examining now the proof of Theorem 1, we see that what we need to do is bound Ep2(Z2).

In the following estimate k1, k2, . . . , kt are the sizes of components with at most n/2 vertices.

Ep1(Prp(κ(Gp) = t+ 1)) = Prp2{κ(Gp) = t+ 1}

≤
∑

k1+k2+···+kt≤n
1≤ki≤n/2

t∏
i=1

(
n

ki

)
(1− p2)ki(n−ki)/2

≤
∑

k1+k2+···+kt≤n
1≤ki≤n/2

t∏
i=1

(
ne

ki
e−np2/2

)ki/2

≤
∑

k1+k2+···+kt≤n
1≤ki≤n/2

t∏
i=1

(en−3)ki/2

=
∑

k1+k2+···+kt≤n
1≤ki≤n/2

(en−3)(k1+k2+···+kt)/2
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≤
n∑
k=t

(
k − 1
t− 1

)
(en−3)k/2

= (1 + o(1))(en−3)t/2.

So

Prp1(Prp(κ(Gp) = t+ 1) ≥ n−t) ≤ (en−1/2)t

and

Prp1(∃t : 1 ≤ t < n : Prp(κ(Gp) = t+ 1) ≥ n−t) = O(n−1/2).

We can assume therefore that G = Gn,p1 satisfies

Prp(κ(Gp) = t+ 1) ≤ n−t. (4)

We can now proceed as we did for dense graphs.

Case: Q < 1:

Ep(Qκ) ≥ QPrp(κ(Gp) = 1)

≥ Q

(
1− 1

n
− 1
n2
− · · ·

)
≥ Q/2 for n ≥ 2,

and so

Ep(Z) ≥ ζQ/2

Varp(Z) ≤ ζ2/τ

and

Prp(|Z −Ep(Z)| ≥ εEp(Z)) ≤ 4ζ2

ε2ζ2τQ2

≤ 1
4
.

Case: Q ≥ 1: if

t0 =
⌈

10n lnQ
lnn

⌉
,
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then

Ep1Ep(Z2
i ) ≤ Q2 +

t0∑
t=2

Q2t

nt−1
+Q2n−3n

≤ 2Q2

and so

Ep(Z) ≥ ζ

Varp(Z) ≤ 2ζ2Q2/τ

and

Prp(|Z −Ep(Z)| ≥ εEp(Z)) ≤ 2ζ2Q2

ε2ζ2τ

≤ 1
4
.

2

What we would really like is to be able to choose Gn,p1 first and then x, y arbitrarily, instead of considering

them fixed.

Note also that we can effectively deal with points x < 1, y > 1 as in Section 7, since (4) implies

|E((−1)κ−1Q̃κ)| ≈ Q̃.

9 Is exact counting hard?

The proof in [9] that evaluating T is #P -hard, at all but a few points, does not show it is hard in the

case of dense graphs. We do not propose to classify which parts of the plane are #P -hard in the dense

case, however the following results suggest that there is considerable variation in behaviour, so that a

complete characterisation may be difficult.

Lemma 6 Even when G is dense, evaluating T (G; a, 1) for a 6= 1, cannot be done in polynomial time
unless NP = RP .

Proof The k-thickening of a graph G is the graph obtained by replacing each edge {u, v} by k parallel

edges with endpoints u, v. From [9] we know that the k-thickening Gk of G has Tutte polynomial given

17



by

T (Gk;x, y) = (1 + y + . . .+ yk−1)n−r(G)T (G;X,Y )

where

X =
x+ y + . . .+ yk−1

1 + y + . . .+ yk−1

Y = yk.

Suppose that there exists a polynomial time algorithm evaluating T for dense graphs at (a, 1). Then for

any dense G we can find a succession of thickenings G2, G3, ... which are also dense and

T (Gk; a, 1) ≈ T (G; zk, 1)

where ≈ is interpreted as equality up to multiplication by an easily determined constant and

zk = (a+ k − 1)/k.

Provided a 6= 1 this gives us enough points to recover T (G; 2, 1) by Lagrange interpolation. But Annan

[2] has shown that even in the dense case, T (G; 2, 1) (equalling the number of forests of G) has no

polynomial-time evaluation algorithm unless NP = RP . 2

Similarly, let (a, b) ∈ hyperbola Hλ with λ a positive integer. Then we can write

T (G; a, b) =
∑
A

(a− 1)r(E)−r(A)(b− 1)|A|−r(A)

= (a− 1)r(E)
∑
A

λ|A|−r(A)(a− 1)−|A|.

Suppose we can evaluate T for G ∈ Gα at (a, b). Then consider the transformation G 7→ Gk;

T (Gk;x, y) ≈ T (G;X,Y )

where X and Y are as given above.

Take x = a, y = b, and since G→ Gk preserves density, we obtain evaluations of T (G) at enough points

along the hyperbola Hλ to be able to interpolate T (G; 1−λ, 0). But this gives the number of λ-colourings

of G and from Edwards [6] we know that if α < λ−2
λ−1 this evaluation is #P -hard for λ ≥ 3. Hence we

have:

18



for (a, b) ∈ Hλ, λ integer ≥ 3 and α satisfying 0 < α < λ−2
λ−1 it is #P -hard to evaluate T (G; a, b) for

G ∈ Gα.

This illustrates the point that a complete characterisation of the difficulty of exact evaluation in the dense

case may prove difficult. For example, the main result of Edwards [6] is that for α > (λ − 2)/(λ − 1),

exact evaluation of the number of λ-colourings is in P . In other words:

evaluating T (G; 1− λ, 0) is in P whenever G ∈ Gα and α > (λ− 2)/(λ− 1).

This critical cut off, in which there exists some αc (in this case αc = (λ − 2)/(λ − 1)) which separates

tractable from almost certainly intractable, may well extend to randomised approximation. This is

because Edwards also showed it was NP -hard to decide if G had a λ-colouring when α < (λ− 3)/(λ− 2)

but was in P for larger values of α. Thus, an immediate consequence is:

Corollary 1 Even in the case of dense G ∈ Gα, if α < (λ − 3)/(λ − 2), where λ is a positive integer,
there is no fpras for estimating T at (1− λ, 0) unless NP = RP .

It is interesting that in the region

(
λ− 3
λ− 2

)
< α <

(
λ− 2
λ− 1

)
,

where the decision problem is easy but exact counting is hard, there is no obvious obstacle to the existence

of a fpras.

10 Extension to Linear Matroids

The above results can be extended to a class of dense linear matroids in a fairly natural way. Let M be

an m×n matrix over some field F . Let M̄ be the m×n 0-1 matrix with M̄i,j = 1 if and only if Mi,j 6= 0.

Then let ρi = ρi(M) =
∑n
j=1 M̄i,j .

For 0 < α < 1 and k ≥ 3 let

Mα,k = {M : (i) ρi ≥ α
( m
k−1

)
, (ii) each column of M̄ has at most k 1’s and (iii) the columns of M̄ are

distinct.}
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Assume w.l.o.g. that M has full row rank. Then the Tutte polynomial T (M ;x, y) can be expressed as

follows

T (M ;x, y) =
∑
A⊆[n]

(x− 1)m−r(A)(y − 1)|A|−r(A)

where r(A) is the rank of the sub-matrix of M induced by the columns Mj , j ∈ A

=
yn

(y − 1)m
∑
A⊆[n]

Qm−r(A)p|A|(1− p)n−|A|,

where Q = (x− 1)(y − 1) and p = (y − 1)/y as before,

=
yn

(y − 1)m
E(Qm−r), (5)

where r = r(Mp) and Mp is the random sub-matrix of M obtained by including each column with

probability p. We are assuming here that x, y > 1.

We first prove a lemma serving the same purpose as Lemma 2.

Lemma 7 If A ∈Mβ,k then
r(A) ≥ m− (2k lnm)/β,

provided m ≥ 3k.

Proof We will prove the existence of an h× h permutation matrix H, h ≥ m− (2k lnm)/β, which

is a submatrix Ā. This will clearly prove the lemma.

Put s = d2 lnm/βe and let S1, . . . , Ss be s random subsets of the rows of Ā, where each subset Si is

chosen randomly and independently according to a uniform distribution among all subsets of cardinality

at most k− 1 of [m]. For each i, 1 ≤ i ≤ m, let Ai denote the complement of the following event; row i is

in at least one of the sets Sj or there is a subset Sj so that {i}∪Sj is precisely the set of ones of a column

of Ā. We claim that the probability of each event Ai is at most (1− β/2)s < 1/m. To see this, observe

that if i is not in any of the sets Sj , then these sets are random subsets of cardinality at most k − 1 of

[m]− {i}. By assumption there are at least β
( m
k−1

)
distinct columns of Ā which have a 1 in row number

i. The conditional probability that for a fixed j, Sj is not the set of ones of such a column without i,

given that Sj does not contain i, is at most

1−
β
( m
k−1

)∑k−1
l=0

(m−1
l

) ≤ 1− β

2
,
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where here we applied the fact that m ≥ 3k. Since the subsets Sj are chosen independently the probability

of each Ai is indeed at most (1− β/2)s < 1/m, as claimed.

It follows that with positive probability none of the events Ai occurs. Let S1, . . . , Ss be a fixed choice for

the sets Sj for which no event Ai occurs. Define T = [m]−∪sj=1Sj . Observe that for each row i in T there

is a column ci of Ā that has a one in row i and in no other row of T . The submatrix of Ā on the rows in T

and the columns ci, i ∈ T is a permutation matrix, as required. Since |T | ≥ m−s(k−1) ≥ m−2k lnm/β

the desired result follows. 2

We can modify Algorithm EVAL of Section 4 to estimate E(Qm−r) by putting

t = d16mdε−2e, d = 8k ln Q̂/(αp), Zi = Qm−r and ζ = yn/(y − 1)m.

The validity of this approach depends on the following lemma, where we assume that k ≥ 3 since the

case k = 2 (corresponding to graphs) had already been considered.

Lemma 8 If k ≥ 3 and m ≥ m1(Q, k, α, p) then

(a) Q ≥ 1 implies E(Q2(m−r)) ≤ 2md,

(b) Q ≤ 1 implies E(Qm−r) ≥ 1
2m
−d/2.

Proof Let E denote the event {M̄p 6∈ Mαp/2}. Applying the Chernoff bound for the tails of the

binomial distribution (see, for example, Alon and Spencer [1])

Pr(E) ≤ m exp

{
−α
(

m

k − 1

)
p/8

}
.

Applying Lemma 7 we see that if Q ≥ 1,

E(Q2(m−r)) ≤ Q(8k lnm)/(αp) +Qm Pr(E)

≤ 2md,

and if Q ≤ 1,

E(Qm−r) ≥ Q(4k lnm)/(αp)(1− Pr(E))

≥ 1
2
m−d/2.

2
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11 Conclusion

(a) For x ≥ 1, y ≥ 1 there exists a fpras for all dense graphs; it is open whether one exists for non dense

graphs.

(b) For x < 1, y > 1, there exists a fpras for strongly dense graphs (α > 1
2); again the question is open

in the remaining case.

At a few special points of this region, namely (x = (2k− 2)/(2k− 1), y = 2k) (k = 1, 2, ...) there is a fpras

for all dense graphs [via the k-thickening at (0,2)].

It would be very surprising if these were just sporadic good points.

(c) For x > 0, y < 1, the situation is completely open. A key point here is (2, 0) which enumerates

acyclic orientations.

A possibly easier subregion is x ≥ 1, y < −1, but the obvious map (x, y) 7→ (x,−y) doesn’t seem to work.

(d) For x < 0, y ≤ 1, the antiferromagnetic region, the situation is more variable and more interesting.

For example the arguments of Jerrum and Sinclair [11] and Welsh [22] show that unless NP = RP , there

is no fpras along the curves where the hyperbolae (x − 1)(y − 1) = Q for integer Q ≥ 2, intersect this

region.

One possible scenario is that the following is true:

For each (x, y) either exact evaluation is in P or there exists a critical density αc(x, y), which separates

the tractable case from the intractable, where intractable is to be interpreted in the sense “No fpras exists

unless some very unlikely complexity hypothesis (such as NP = RP ) is true”.

If this is the case, then in the region x ≥ 1, y ≥ 1, αc(x, y) = 0, by our earlier argument. However it still

seems more plausible that, as conjectured in [17], there exists an fpras throughout this region, regardless

of density.
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