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STABLE KNESER HYPERGRAPHS AND
IDEALS IN N WITH THE NIKODÝM PROPERTY

NOGA ALON, LECH DREWNOWSKI, AND TOMASZ  LUCZAK

Abstract. We use stable Kneser hypergraphs to construct ideals in N which

are not nonatomic yet have the Nikodým property.

1. Introduction

We say that an ideal I in P(N) has the Positive Summability Property (PSP)
if for any sequence (xn) of positive reals such that

∑∞
n=1 xn diverges, there exists

I ∈ I for which
∑
n∈I xn diverges as well. It is not hard to show that the ideal Z

of sets of density zero has (PSP). This ‘folklore’ fact can be traced back (at least)
to a short note of Auerbach [2] from 1930, and has later been rediscovered several
times (for more information see [3]). However, all known proofs of this and similar
results are based on the fact that the ideal in question is nonatomic, in the sense
of the definition given in the next section. The aim of this note is to use stable
Kneser hypergraphs to provide an example of an ideal which has (PSP), as well as
a stronger Nikodým property, but is not nonatomic. This solves in the affirmative
Problem 8.1 from [4].

2. Ideals in N

Let us recall that an ideal in N is a family I of subsets of N such that if A,B ∈ I
and C ⊆ A, then also A ∪ B ∈ I and C ∈ I. We call an ideal I in N nonatomic
if there exists a sequence (Pn) of finite partitions of N such that each Pn is refined
by Pn+1, and whenever (An) is a decreasing sequence with An ∈ Pn for each n,
and a set Z ⊆ N is such that Z \An is finite for each n, then Z ∈ I. Observe also
that the ideal Z of sets of density zero is nonatomic (it is enough to consider the
sequence of partitions (Bn) such that Bn consists of congruence classes modulo 2n).
Thus, Auerbach’s result follows immediately from the following statement.

Theorem 2.1. Every nonatomic ideal I in N has (PSP).

Proof. Let (Pn) be a sequence of finite partitions of N which validates that I is
nonatomic, and let

∑∞
i=1 xi be a divergent sequence of positive numbers. Since

each Pn+1 is a refinement of Pn, one can easily find a decreasing sequence of sets
(An) such that An ∈ Pn and

∑
i∈An

xi =∞ for n = 1, 2, . . . . Now, proceeding by
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induction, for every n choose a finite set Bn ⊆ An so that maxBn−1 < minBn and∑
i∈Bn

xi ≥ 1, and set Z =
⋃∞
n=1Bn. Then, the set Z \An ⊆

⋃n−1
j=1 Bj is finite for

each n, so Z ∈ I, but clearly
∑
i∈Z xi =∞. �

In this note we shall be mainly interested in ideals defined by families of finite
subsets of N in the following way. Let F = (Fn) be a family of distinct finite subsets
of N and let

Z(F ) =
{
A ∈ N : lim sup

n→∞

|A ∩ Fn|
|Fn|

= 0
}
.

It is easy to see that Z(F ) is an ideal. In particular, if H = ([n]), where [n] =
{1, 2, . . . , n}, then Z(H) is the ideal of sets of density zero.

We say that an ideal I in N has the Nikodým property if a family M of bounded
finitely additive scalar measures µ defined on I is uniformly bounded provided
that supµ∈M |µ(A)| < ∞ for every A ∈ I. The Nikodým property of ideals (as
well as algebras or rings) of sets is important in studying certain types of locally
convex spaces; for more information and further references, see, for instance, [4]
and [7]. It is easy to see that the Nikodým property implies (PSP). Indeed, for a
sequence (xi), xi ≥ 0, consider a sequence (µn) of scalar measures on I defined as
µn(A) =

∑
i∈A∩[n] xi. Clearly, for every A ∈ I, we have supn µn(A) =

∑
i∈A xi.

Thus, if I has the Nikodým property and for every A ∈ I we have
∑
i∈A xi < ∞,

then
∑∞
i=1 xi <∞, and so I has (PSP). We also mention that, as was shown in [4,

Th. 5.4], for ideals of type Z(F ) these two properties are equivalent.

Lemma 2.2. If F is a family of finite sets in N, then Z(F ) has (PSP) if and only
if Z(F ) has the Nikodým property. �

The main goal of this note is to use stable Kneser hypergraphs to supplement
Theorem 2.1 and Lemma 2.2 by the following result.

Theorem 2.3. There exists a family F of finite sets in N such that the ideal Z(F )
is not nonatomic but it has the Nikodým property.

3. Stable Kneser hypergraphs

Let us start with some notation. We say that a set A ⊆ S is k-sparse in S ⊆ [n]
if for any two elements a′, a′′ ∈ A, a′ < a′′, there is a j, 0 ≤ j ≤ k, and 2k − 2
elements s1, s2, . . . , s2k−2 ∈ S \A, such that

s1 < s2 < · · · < sj < a′ < sj+1 < · · · < sj+k−1 < a′′ < sj+k < · · · < s2k−2,

i.e., between any two elements of A there are at least k − 1 elements of S in a
natural ‘cyclic order’. Given a set S ⊆ [n] the family of all k-sparse m-element
subsets of S we denote by M(k,m, S).

Let us recall that a k-uniform hypergraph H is a pair (V,E), where V is the set
of vertices of H, and the set E of edges of H is a family of k-element subsets of V .
The stable Kneser hypergraph H(k, `,m) is a k-uniform hypergraph defined in the
following way. Let k ≥ 2, `, m, be natural numbers. Set n = km+ ` and consider
the set of n ‘points’ {1, . . . , n}. The set V of vertices of H(k, `,m) is the family
M(k,m, [n]) of k-sparse m-element subsets of [n]. The vertices A1, . . . , Ak ∈ V
form an edge of H(k, `,m) if A1, . . . , Ak are pairwise disjoint.

The stable Kneser hypergraphs have the following, rather surprising, property.
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Lemma 3.1. For every choice of non-negative weights x : V → [0,∞) of vertices
of H(k, `,m), and every integer r, where 1 ≤ r ≤ k, there exists a subset W of V
such that the following two conditions hold:

(i) each edge of H(k, `,m) shares with W at most r vertices;
(ii) ∑

w∈W
x(w) ≥ rm

km+ `

∑
v∈V

x(v) .

Proof. For every point i ∈ [n] define the weight of i as

x̄(i) =
∑

v∈V ;v3i
x(v) .

Since each vertex contains m points, we have
n∑
i=1

x̄(i) = m
∑
v∈V

x(v) .

Hence the average weight of a point i ∈ [n] is

1
n

n∑
i=1

x̄(i) =
m

km+ `

∑
v∈V

x(v) .

Let R denote a set of r consecutive points of [n] (in the cyclic order) of maximum
weight, and let W be the set of all vertices of H(k, `,m) which intersect R. Then,
clearly, each edge of H(k, `,m) contains at most |R| = r vertices from W . Moreover,
since r ≤ k and the elements of R are consecutive, each vertex from W contains at
most one point from R. Hence∑

w∈W
x(w) =

∑
i∈R

x̄(i) ≥ rm

km+ `

∑
v∈V

x(v) . �

Let us recall that the chromatic number χ(H) of a k-uniform hypergraph H is
the minimum number of sets into which one can partition the set of vertices of H
so that no edge of H is contained in any of the sets of the partition. It is easy to
find a partition which shows that χ(H(k, `,m)) ≤ d `+kk−1e, and it is strongly believed
that in this estimate the equality holds (see Ziegler [8]). Indeed, as proved in [1],
this is the chromatic number of the k-uniform hypergraph whose vertices are all m-
element subsets of [km+ `], where A1, A2, . . . , Ak form an edge if they are pairwise
disjoint.

Conjecture 3.2. For each k, `, and m,

χ(H(k, `,m)) =
⌈ `+ k

k − 1

⌉
.

Although we cannot settle the above statement we prove the following fact,
which, in particular, implies that to check whether Conjecture 3.2 holds it is enough
to verify it for prime k’s.

Lemma 3.3. If Conjecture 3.2 holds for both k1 and k2 (and all values of ` and m),
then it holds also for k = k1k2.
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Proof. Let k = k1k2, n = km + `, and t = `+k
k−1 . As we have already mentioned,

we only have to show that χ(H(k, `,m)) ≥ dte. To this end, let M =M(k,m, [n])
denote the vertex set of H(k, `,m), and consider any coloring h : M → [dte − 1]
ofM with dte− 1 colors. We need to show that if Conjecture 3.2 holds for both k1

and k2, then there exists a k-tuple of pairwise disjoint m-element sets A1, A2, . . . , Ak
colored with the same color.

Let S ⊆ [n] be a k2-sparse subset of [n] with k1m + `1 elements, where `1 =
(dte−2)(k1−1). Observe that any m-element subset A ⊆ S which is k1-sparse in S
is k-sparse in [n], so it is colored by h with one of dte − 1 colors. Note also that⌈`1 + k1

k1 − 1

⌉
=

⌈
dte − k1 − 2

k1 − 1

⌉
= dte .

Consequently, since the coloring h uses only dte − 1 colors and we have assumed
that Conjecture 3.2 holds for k1, S contains k1 disjoint k1-sparse m-element subsets
colored with the same color. We denote this color by ĥ(S).

Now let us consider the familyM1 =M(k2, k1m+`1, [n]) of all k2-sparse subsets
of [n] with k1m + `1 elements. By our previous construction there is a coloring
ĥ : M1 → [dte − 1] of M1 with dte − 1 colors. Consider the k2-uniform stable
Kneser hypergraph H(k2, `2, k1m+ `1) which corresponds to this family, where

`2 = km+ `− k2(k1m+ `1) = `− (dte − 2)(k1 − 1)k2 .

Note that
`2 + k2

k2 − 1
= t+

(k1 − 1)k2

k2 − 1
(1 + t− dte) ≥ t ,

so d(`2 + k2)/(k2 − 1)e ≥ dte . Hence, since we have assumed that Conjecture 3.2
holds for k2, and ĥ uses only dte − 1 colors, there exist k2 disjoint k2-sparse sets
S1, . . . , Sk2 which are colored with the same color by ĥ. This however implies that
in the coloring h there are k = k1k2 disjoint k-sparse sets which are colored with
the same color by h. Hence χ(H(k, `,m) ≥ dte and the assertion follows. �

Corollary 3.4. Conjecture 3.2 holds for k = 2i, for every i ≥ 1.

Proof. This follows immediately from Lemma 3.3 and the fact that Conjecture 3.2
holds for k = 2 and every m and `, as proved by Schrijver [6] (see also Matoušek [5]).

�

4. Proof of the main result

Proof of Theorem 2.3. Let us recall that our goal is to construct a family of finite
sets F such that the ideal Z(F ) is not nonatomic but has the Nikodým property.
For every k ≥ 1 denote by Hk the stable Kneser 2k-uniform hypergraph Hk =
H(2k, 22k, 23k). Note that by Corollary 3.4 the chromatic number of Hk is larger
than 2k. Let G = (Gk) be a partition of N into finite sets Gk such that the number
of points of Gk is the same as the number of vertices in Hk. Embed in each Gk
the hypergraph Hk (i.e., via a bijection replace Gk by the set of vertices of Hk),
and define F to be the collection of all edges of the hypergraphs Hk for k ≥ 1. We
show that F has both required properties.

Note first that Z(F ) is not nonatomic. Indeed, let us partition N into ` parts,
N1, . . . , N`. Then, using Corollary 3.4, in each Hk such that 2k > ` there is an edge
which is contained in one of the parts of the partition. Consequently, there is an i,
1 ≤ i ≤ `, such that Ni contains infinitely many sets from F . Now, let (Pn) be a
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sequence of finite partitions of N such that each Pn is refined by Pn+1. By what
we have just observed, one can find a decreasing sequence (An) and a sequence
(Fn) of pairwise distinct members of F such that Fn ⊆ An ∈ Pn for each n. Then,
clearly, the union Z of the Fn’s is not in Z(F ) so that the condition required in
the definition of a nonatomic ideal is not satisfied. Thus Z(F ) is not nonatomic.

Now let
∑∞
i=1 xi be any divergent series of positive numbers. For each k, set

yk =
∑
i∈Gk

xi. Since
∑
k yk = ∞, there is a sequence (ak) of positive numbers

such that ak → 0, 2kak ≥ 1 for all k, and
∑
k akyk =∞. Select k0 so that ak ≤ 1/2

for k ≥ k0. For such k, let rk = d2kake, and note that rk ≤ 2 · 2kak ≤ 2k. Hence
we may apply Lemma 3.1 with r = rk to find a set Wk of vertices of Hk such that
each edge of Hk shares at most rk vertices with Wk, and yet∑

i∈Wk

xi ≥
rk23k

2k23k + 22k

∑
i∈Gk

xi ≥ ak
24k

24k + 22k

∑
i∈Gk

xi ≥ 1
2ak

∑
i∈Gk

xi = 1
2akyk .

Finally, let W =
⋃
k≥k0 Wk. Then

∑
i∈W xi ≥ 1

2

∑
k≥k0 akyk = ∞, while for every

set F ∈ F such that F ⊆ Gk for some k ≥ k0 we have
|W ∩ F |
|F |

=
|Wk ∩ F |
|F |

≤ rk
2k
≤ 2ak ,

so W ∈ Z(F ). Consequently, Z(F ) has (PSP) property and thus, by Lemma 2.2,
also the Nikodým property. �
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