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Abstract

Given a hypergraph H, a cover of H is a collection of edges whose union is the set of vertices;
the minimal number of edges in a cover is the covering number cov(H) of H. The maximal codegree
∆2(H) is the maximal number of edges containing two fixed vertices of H. For D = 1, 2, . . .,
let HD be a D-regular k-uniform hypergraph on n vertices, where k and n are functions of D.
Among other results, we shall prove that if ∆2(HD) = o(D/e2k logD) and k = o(logD) then
cov(HD) = (1 + o(1))n/k; this extends the known result that this holds for fixed k. On the other
hand, if k ≥ 4 logD then cov(HD) ≥ Ω(n

k log( k
log D )) may hold even when ∆2(HD) = 1. Several

extensions and variants are also obtained, as well as the following geometric application. The
minimum number of lines required to separate n random points in the unit square is, almost surely,
Θ(n2/3/(log n)1/3)).

1 Introduction

A hypergraph H = (V,E) consists of a vertex set V , and a collection E of subsets of V , called edges.
We say that a hypergraph is k-uniform if all edges have cardinality k. Given a hypergraph H, the
degree dH(v) of a vertex v is the number of edges containing v, and H is D-regular if the degree of
every vertex is exactly D. Given two vertices u and v, the codegree dH(u, v) of u and v is the number
of edges containing both u and v; we write ∆2(H) for the maximal codegree of H. In the rest of this
section, we consider only D-regular k-uniform hypergraphs on n vertices, and all statements are made
only for this class of hypergraphs, unless otherwise specified. We assume that D tends to infinity, and
the asymptotic notation such as o,O,Ω, is used under this assumption. All logarithms are to base e.

A cover of a hypergraph H is a set of edges whose union is the vertex set of H; thr covering number
cov(H) of H is the minimal number of edges in a cover. It is clear that if H is k-uniform and has n
vertices, then cov(H) ≥ n/k. A cover C is nearly optimal if |C| = n

k (1+o(1)). A closely related notion
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is that of a nearly perfect matching. A matching in H is a collection of pairwise disjoint edges. Given
a matching M in H, we denote by U(M) the number of vertices left uncovered by M, and we say
that M is nearly perfect if U(M) = o(n). It is obvious that if k is fixed and H has a nearly perfect
matching, then it also has a nearly optimal cover. The question whether a hypergraph has a nearly
perfect matching or a nearly optimal cover (and how close to optimal they are) is among the central
questions in extremal combinatorics, and has been investigated intensively. Pippenger [23], based on
an original work of Rödl [25] on the Erdős-Hanani conjecture, showed that the existence of a nearly
perfect matching can be guaranteed by a simple condition on the codegrees. He proved that if k is
fixed and ∆2(H) = o(D) then H contains a nearly perfect matching. (Recall that we always assume
that the hypergraph is k-uniform and D-regular). In recent years, there have been several attempts to
make Pippenger’s observation quantitatively sharper, namely, to give a better bound on the number
of uncovered vertices. Alon, Kim and Spencer [3] showed that if the hypergraph is simple, that is,
the codegrees are at most 1, then there is a matching M such that U(M) = O( n

D1/(k−1) ), with an
additional polylogD factor for k = 3. Grable [10] and Kostochka and Rödl [21] proved a related result
for hypergraphs with moderate codegrees. The most recent result in this direction, proved by Vu [27],
implies that, for any constant k ≥ 4, if ∆2(H) ≤ C then the hypergraph H contains a matching M
such that U(M) = O(n(CD )1/(k−1)polylogD). This result can also be stated in terms of covering as
follows.

Theorem 1.1 Let k ≥ 4 be a fixed positive integer. If H is a D-regular k-uniform hypergraph on n

vertices with maximum codegree C, then

cov(H) =
n
k

+ O(n(
C
D

)1/(k−1) logγ D),

where γ = 3/2 if k = 4 and γ = 1 if k > 4.

As already mentioned, the results above were proved with k constant and D → ∞. ¿From these
results it is not clear what happens if k also tends to infinity as a function of D, say, k = log1/2D or
Dε.

The first goal of this paper is to study the behaviour of the optimal cover of a hypergraph in
the case of non-constant k. A simpler version of the main theorems in the first part of the paper
is the following result, which extends Theorem 1.1 to non-constant k and also gives a more precise
logarithmic term. The full version is presented in Section 3 (see Theorem 3.7).

Theorem 1.2 Let H be a D-regular k-uniform hypergraph with maximum codegree C. Then

cov(H) =
n
4

(
1 + O

(((log D)4C
D

)1/3))
if k = 4, and

cov(H) =
n
k

(
1 + O

((C log(1 + C)
D

)1/(k−1)))
if k > 4 and e2kC = o(D/ logD).
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If 4 < k = o
(

log D
C log(1+C)

)
, then the error term O

((
C log(1+C)

D

)1/(k−1))
is o(1) and in this case H

has a nearly optimal cover. Thus Theorem 1.2 has the following consequence.

Corollary 1.3 Let H be a D-regular k-uniform hypergraph with maximum codegree C. If 4 < k =
o
(

log D
C log(1+C)

)
then H has a cover of size (1+o(1))n

k .

In case k does not satisfy the condition e2kC = o(D/ logD), one can still derive the following
bound from Theorem 1.2 by simply splitting every edge into smaller edges (for more details, see the
argument following Theorem 3.7).

Corollary 1.4 Let H be a D-regular k-uniform hypergraph with maximum codegree C. If C =
o
(

D
logD

)
, and k ≥ (1/3) log D

C logD , then H has a cover of size

O
( |V |

log(D/(C logD))

)
.

Theorem 1.2 also yields the following result on nearly perfect matchings.

Corollary 1.5 Let H be a D-regular k-uniform hypergraph. Then there is a matching which covers
all but

O
(((logD)4C

D

)1/3
n
)

vertices when k = 4, and all but

O
(
k
(C log(1 + C)

D

)1/(k−1)
n
)

if k > 4 and e2kC = o(D/ logD).
In particular, if k > 4 and

k = o
(

log
D

C log(1 + C)

)
,

then there is a matching of size (1−o(1))n
k .

Theorem 1.2 implies, for instance, that for any simple D-regular k-uniform hypergraph H with
k = o(logD), H always contains a nearly optimal cover. When k = Θ(logD), the bound is O(n/k).
In Section 2, we show that for k = bc logDc with c > 4, one can construct a simple k-uniform
hypergraph whose best cover has size at least Ω(nk log c). Therefore, in the worst case, the ratio
between the cardinality of the smallest cover and n/k tends to infinity as c tends to infinity. This, in
a sense, means that k = logD is the threshold of the property of containing a nearly optimal cover.

In the second part of the paper we describe two geometric consequences of the above theorem.
The first one is a determination, up to a constant factor, of the typical minimum number of lines
needed to cover a random set of points of the projective plane PG(2, q) obtained by picking each point
with probability p. This is done for all admissible values of p, and turns out to be a rather simple
consequence of the theorm above. For the special case p ≥ b log q/q for a sufficiently large constant b,
a more precise estimate was given by Kahn in [13].
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The second application is more complicated and deals with the typical minimum number of lines
needed to separate a set of n random points in the unit square. A collection of lines separates a set
of points if no two points in the set lie in the same connected component of the complement of the
collection. We show that the minimum size of a collection of lines that separates a set of n random
points in the unit square is, almost surely, Θ(n2/3/(log n)1/3).

The rest of the paper is organized as follows. In Section 2 we show that if k is asymptotically bigger
than logD then there are simple D-regular k-uniform hypergraphs with no nearly optimal covers.
Section 3 contains the proof of Theorem 1.2 and some extensions. The two geometric applications
are described in Sections 4 and 5, and the final Section 6 contains some concluding remarks and open
problems.

2 Simple regular uniform hypergraphs with no small covers

In this section we prove that if D ≥ k ≥ 3 and k ≥ 4 logD, then there are simple D-regular k-
uniform hypergraphs on n vertices in which any set of edges that covers all vertices contains at
least Ω(nk log( k

logD )) edges. This fact, as well as some related results, is proved by a probabilistic
construction. We describe a probabilistic procedure for generating D-regular k-uniform hypergraphs
on n vertices. This is the hypergraph analog of the known model for random regular graphs (see [6]).
The probability that the hypergraph generated in this procedure is simple is small, but positive. Yet,
we show that this probability is much larger than the probability it contains a small cover, implying
the desired result. The treatment here can be done in a way similar to the known one for graphs, but
we prefer to describe a simple, self-contained proof whose advantage is that it can be used to obtain
some conclusions even when n is not bigger than a polynomial in k and D.

The actual details require some notation and lemmas, as follows. For two integers n ≥ D ≥ 3, let
V = V (n,D) denote the set of all ordered pairs (i, j) with 0 ≤ i < n and 1 ≤ j ≤ D. For an integer
k ≥ 3, a permutation σ = σ1, σ2, . . . , σnD of V is called k-legal if for every 0 ≤ i < j < n there is at
most one pair of elements σt and σg of σ the distance between which satisfies |t − g| < k and whose
first coordinates are i and j respectively.
Note that if a permutation σ of V as above is k-legal, then there are no two members of σ with
the same first coordinate the distance between which in σ is at most 2k − 2 (since in this case there
will always be another member of σ whose distance from each of them is less than k, violating the
condition that σ is k-legal). Note also that if nD is a multiple of k then any k-legal permutation σ as
above, can be used to generate a simple D-regular k-uniform hypergraph H = H(σ) on n vertices as
follows. The n vertices are {0, 1, . . . , n − 1} and the edges are obtained by splitting the permutation
into nD/k blocks of k consecutive elements each, and by defining each set of the k first coordinates
of the elements in each block to be an edge. As the permutation is k-legal, each edge indeed contains
k distinct vertices, and no two edges have more than one vertex in common, as needed. Our model
for generating randomly a D-regular k-uniform hypergraph is thus as follows; let σ be a random
permutation of V , and let H = H(σ) be the corresponding hypergraph. Our objective is to show that
with positive (though small) probability this hypergraph is simple and contains no small covers.
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We first show that if n is sufficiently large as a function of k and D, then there are some k-legal
permutations of V (n,D). This is done in the following lemma. We note that it is not difficult to
improve the estimate it provides (and drop the assumption that n is a prime), but since this requires
a somewhat more complicated proof and the present estimate suffices for our purpose, we present only
the short proof below.

Lemma 2.1 For every prime n satisfying n ≥ k4D2 there exists a k-legal permutation of V (n,D).

Proof: Let a1, a2, . . . , aD be D residues modulo n chosen randomly, uniformly and independently.
We claim that with positive probability for every 1 ≤ i ≤ j ≤ D,

s1ai + s2ai+1 6≡ ±(r1aj + r2aj+1)( mod n), (1)

for all nonnegative integers s1, s2, r1, r2 satisfying 1 ≤ s1 + s2 ≤ k − 1 and 1 ≤ r1 + r2 ≤ k − 1, unless
the equality holds trivially (that is i = j and (s1, s2) = (r1, r2) or i+ 1 = j, s1 = r2 = 0 and s2 = r1).

To prove this claim note that there are
(D+1

2

)
< D2 possibilities to choose i and j, and 2[

(k+1
2

)
−1]2 ≤

k4 possibilities to select s1, s2, r1, r2 and a sign. For each such fixed selection, the probability that
(1) holds is 1/n and the claim thus follows by the assumption that n ≥ k4D2. Given the residues
a1, a2 . . . , aD satisfying the assertion of the claim, define the following permutation of v(n,D):

(a1, 1), (2a1, 1), . . . , (na1, 1) ( = (0, 1) ), (a2, 2), (2a2, 2), . . . , (na2, 2) ( = (0, 2) ),

. . . , (aD, D), (2aD, D), . . . , (naD, D).

Note that the difference, modulo n, between the first coordinates of any two elements whose distance in
the permutation is at most (k−1) is of the form s1ai+s2ai+1, where s1, s2 ≥ 0 and 1 ≤ s1 +s2 ≤ k−1,
and hence the permutation is k-legal, by (1). 2

Lemma 2.2 Let f(n, k,D) denote the number of k-legal permutations on v(n,D). If n ≥ 4(k− 1)2D

then
f(n+ 1, k,D) ≥

f(n, k,D)(nD+ 1)(nD+ 2− 4(k− 1)2D)(nD+ 3− 2 · 4(k− 1)2D) · · · (nD+D− (D− 1)4(k− 1)2D).

Proof: Each k-legal permutation on v(n,D) can be completed in several ways to a k-legal permutation
on v(n+ 1, D) by inserting the elements (n, 1), (n, 2), . . . , (n,D) one by one, keeping the permutation
k-legal, as follows. There are nD+1 possible places to insert (n, 1). After (n, 1), . . . , (n, i) have already
been placed, there are at most 4(k− 1)2iD forbidden places to insert (n, i+ 1), as it cannot be within
distance k − 1 from any element whose first coordinate is the first coordinate of some other element
that lies within distance k − 1 of some of the i elements (n, j) that have already been inserted. This
supplies the desired estimate. 2

Since for every s there is a prime between s and 2s, the two last lemmas imply the following.
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Corollary 2.3 For n ≥ 2k4D2, the probability that a random permutation of v(n,D) is k-legal is at
least

1
(2k4D2)2k4D2 e

−4k2D2 logn.

2

Next we estimate the probability that the random hypergraph constructed by our permutation contains
a small cover. For simplicity, we omit all floor and ceiling signs whenever these are not crucial.
We first prove a simple correlation inequality, a special case of which is applied later. Define N =
{0, 1, 2, . . . , n− 1} and let Di, 0 ≤ i < n be positive integers. Let U = U(n,D1, . . . , Dn−1) denote the
set of all

∑
i∈N Di elements (i, bi) where i ∈ N, 1 ≤ bi ≤ Di, and let τ be a random permutation of U .

(Note that in the special case Di = D for all i, the set U is simply v(n,D) and hence in this case τ
is the random permutation used in the definition of our hypergraph.) Let t ≤

∑
i∈N Di be a positive

integer. We say that i appears in the t-prefix of τ if there is an element among the first t members of τ
whose first coordinate is i. Let Ai denote this event, and let PN (Ai) denote its probability. Similarly,
for S ⊂ N and j 6∈ S, let PN (∩i∈SAi) denote the probability of the event that all members of S
appear in the t-prefix of τ , and let PN−j(∩i∈SAi) denote the probability of the event that all members
of S appear in the t prefix of the permutation obtained from τ by deleting all elements whose first
coordinate is j. Obviously, the latter event contains the former one, implying the following:
Fact:

PN (∩i∈SAi) ≤ PN−j(∩i∈SAi).

Lemma 2.4 In the above notation, for every S ⊂ N ,

PN (∩i∈SAi) ≤
∏
i∈S

PN (Ai).

Proof: We apply induction on |S|. For |S| = 1 the result is trivial. Assuming it holds for all sets of
size |S| − 1, suppose S ⊂ N , |S| ≥ 2. Choose, arbitrarily, j ∈ S and put S′ = S − j. Then

PN (∩i∈SAi) = PN (∩i∈S′Ai)− PN (∩i∈S′Ai ∩Aj)

= PN (∩i∈S′Ai)− PN (Aj)PN (∩i∈S′Ai|Aj) = PN (∩i∈S′Ai)− PN (Aj)PN−j(∩i∈S′Ai)

≤ PN (∩i∈S′Ai)− PN (Aj)PN (∩i∈S′Ai),

where the last inequality follows from the fact above. By the induction hypothesis, the last expression
is simply

PN (Aj)PN (∩i∈S′Ai) ≤ PN (Aj)
∏
i∈S′

PN (Ai) =
∏
i∈S

PN (Ai),

completing the proof. 2

Returning to our random permutation σ of v(n,D), we next prove the following.

Lemma 2.5 For every fixed i ∈ N , the probability that i does not appear in the nr-prefix of σ is at
least (1 − nr

Dn−D+1)D. In particular, for all D ≥ 3 and, say, n ≥ 100D2, this probability is at least
4−r. Moreover, for D and n as above, the probability that all element of N appear in the nr-prefix of
σ is at most e−n/4

r
.
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Proof: The probability that i does not appear in the nr-prefix of σ is precisely(Dn−nr
D

)(Dn
D

) ≥ (
Dn− nr −D + 1
Dn−D + 1

)D = (1− nr

Dn−D + 1
)D ≥ 4−r,

where the last inequality follows from the fact that n ≥ 100D2 and D ≥ 3. Therefore, the probability
that i does appear is at most 1−4−r, and by Lemma 2.4 the probability that all members of N appear
is thus at most (1− 4−r)n ≤ e−n/4r . 2

We note that it is possible to give a similar bound for the probability that all but at most, say, n
2·4r

elements appear in the nr-prefix of σ, but the bound above suffices for our purpose here.
Recall that the permuation σ is partitioned into nD/k blocks of k consecutive elements each, in order
to define the edges of the corresponding hypergraph H = H(σ). It thus follows, by the last lemma and
the obvious fact that there is nothing special about the first nr/k blocks, that the probability that all
elements of N appear in any given fixed set of nr/k blocks of σ does not exceed e−n/4

r
. As there are(Dn/k

nr/k

)
possibilities to choose nr/k blocks, it follows that the probability that σ contains some set of

n
k r blocks in which all vertices appear does not exceed(

Dn/k

nr/k

)
e−

n
4r ≤ (

eD

r
)nr/ke−

n
4r .

Combining this with Corollary 2.3 we obtain the following result.

Theorem 2.6 Suppose that n ≥ 2k4D2, nD is divisible by k and the following two inequalities hold:

n

4r
> 2

nr

k
log(

eD

r
), (2)

n

4r
> 2 · 4k2D2 log n+ 2 · 2k4D2 log(2k4D2). (3)

Then there is a simple D-regular k-uniform hypergraph with n vertices containing no cover of size n
k r.

Proof: Let σ be a random permutation of v(n,D). By the assumptions, Corollary 2.3 and the para-
graph preceding the statement of the theorem, with positive probability H(σ) is a simple hypergraph
that satisfies the required conditions. 2

Remarks.

• For every fixed k,D and r, the inequality (3) always holds provided n is sufficiently large, whereas
(2) holds provided k > 2r4r log( eDr ). This implies the following.

Corollary 2.7 There exists an absolute positive constant c such that for all D ≥ k ≥ 4 logD
there is a simple D-regular k-uniform hypergraph on n vertices, containing no cover of size
smaller than cnk log( k

logD ).

By a special case of the main result in the next section, if k ≤ 4 logD, then there is always a
cover of size at most O(nk ).
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• The bound in Corollary 2.7 is tight, up to a constant factor, for all k satisfying, say, k ≥ (logD)1.1,
even without the assumption that the hypergraph is simple, as shown in the following proposition.

Proposition 2.8 Every D-regular k-uniform (not necessarily simple) hypergraph H = (V,E)
on n vertices contains a cover of size at most n(log k+1)

k .

Proof: We follow the argument in [2]. Let F be a random subset of the set of edges of H
obtained by picking each member of E, randomly and independently, to lie in F with probability
log k/D. Let Y = Y (F ) be the set of all vertices not covered by F . Note that by adding to F
an arbitrarily chosen edge containing y for each vertex y ∈ Y we obtain a cover of H of size at
most |F | + |Y |. Since the expected size of F is nD

k
log k
D = n log k

k , and the expected size of Y is
n(1 − log k

D )D ≤ n/k, the expected size of the above cover is at most n(log k+1)
k , completing the

proof. 2

• By extending the assertion of lemma 2.5 using a martingale inequality we can prove the following
extension of Corollary 2.7.

There exists an absolute positive constant c such that for all D ≥ k ≥ 4 logD there is a simple
D-regular k-uniform hypergraph H on n vertices, such that every set of at most cnk log( k

logD )
edges of H does not cover at least n

2·4r vertices.

Since we do not use this statement in what follows we omit the detailed proof.

• Being slightly more careful in handling the constants in the above proof of Theorem 2.6 it is
easy to check that it shows that for large D ≥ k ≥ e logD there is a simple D-regular k-uniform
hypergraph on n vertices, containing no cover of size smaller than (1 + o(1))nk log( k

logD ), where
the o(1) term tends to 0 as D tends to infinity. In particular, for every ε > 0 there is a δ > 0
and D0 such that if D > D0 and k > (1 + ε)e logD, then there is such a hypergraph containing
no cover of size less than (1 + δ)nk .

• The arguments in the derivation of Theorem 2.6 can be modified to deal with matchings instead
of covers. The computation in this case is, in fact, easier. Indeed, the probability that no
element of N appears more than once in any given set of m blocks of the random permutation
σ of v(n,D) is precisely

Dn(Dn−D)(Dn− 2D) · · · (Dn−D(mk − 1))
Dn(Dn− 1)(Dn− 2) · · · (Dn−mk + 1)

.

There are
(Dn/k

m

)
possibilities to choose m blocks, and therefore, by immitating the computation

in the proof of Theorem 2.6 we obtain the following statement, whose detailed (simple) proof is
omitted.

Proposition 2.9 There exists an absolute positive constant c such that for all D and k there
is a simple D-regular k-uniform hypergraph on n vertices, containing no matching of size bigger
than c n

k2 logD.
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3 Economical covers

In this section, we use the nibble method to construct the desired cover. The method was first intro-
duced by Ajtai, Komlós and Szemerédi [1] and used by Rödl [25] to confirm a conjecture of Erdős and
Hanani [8] regarding Partial Steiner Systems. More sophisticated constructions have been developed
during the last decade to solve various intriguing combinatorial problems dealing with hypergraph
matching and Partial Steiner System [3, 10, 18, 21, 23, 27], hypergraph edge coloring [24], and list-
coloring [14, 15], sparse graph coloring [16, 12, 28, 29], the Ramsey number R(3, t) [17], total coloring
[22], and complete arcs in projective planes [19]. The analysis of these constructions is usually based
on martingale or isoperimetric inequalities (see e.g. [15, 3, 26, 20]).

The nibble method, which may be regarded as an approximation of the random greedy method,
depends centrally on the notion of constructing the desired object in small random increments. To
construct a matching of almost optimal size, for example, we first choose a small number of edges so
that only few pairs of the chosen edges intersect. Then discard all (both chosen and unchosen) edges
that intersect any other chosen edge. The remaining chosen edges are permanently in the matching
we are constructing. Applying this procedure repeatedly for the remaining unchosen edges will yield
an almost optimal matching if the hypergraph satisfies certain conditions.

As pointed out in [4], constructing a cover is easier than constructing a matching, because a cover
does not have to satisfy such a rigid condition as a matching. Thus we do not have to discard any
chosen edges, and this makes the analysis easier. To do this, we shall incrementally construct sets
of edges C, called partial covers, that have certain properties. This sequence of partial covers will be
eventually extended to an economical cover. A vertex is said to be covered (by C) if it is contained
in at least one edge of C. Otherwise, it is uncovered. To be extended to an economical cover, C is
required to cover few vertices more than once and the hypergraph induced on the set of uncovered
vertices is required to satisfy some properties so that the same method may be applied to extend it
to a larger partial cover. We repeat this procedure until only few vertices remain uncovered, and then
add for each uncovered vertex an edge containing it.

To explain how partial covers will be constructed, suppose, for simplicity, that the initial hyper-
graph is D-regular. It turns out that such a strict regularity condition may be relaxed (see (4) below).
We construct a random set of edges to which each edge belongs independently with probability θ/D.
Then it covers about θ fraction of the vertices. It is also economical if θ is small enough in the sense
that only few vertices are covered more than once. The subhypergraph induced on the remaining
uncovered vertices has about n(1− θ) vertices and each vertex has degree about D(1− θ)k−1. Repeat
this procedure until only few vertices remain uncovered. Then one edge for each remaining vertex
is enough to obtain the desired cover. Making this argument rigorous involves a somewhat technical
proof. The main task here is to show that the degrees of the vertices decrease as predicted, with
tolerable error terms.

To turn this sketch into a rgorous argument, let H = (V,H) be a D-regular k-uniform hypergraph
satisfying

D − f(D) ≤ d(x) ≤ D ∀x ∈ V, and C := max
x,y∈V

cd(x, y) = o(D/ logD) (4)

9



where f is a positive real-valued function of D with f(D) ≤ 0.1D. We also assume that k ≤ (1/2) logD.
Choose each edge of H with probability θ/D for some parameter θ with kθ ≤ 0.1, and let C be the
collection of chosen edges. Then the expected size of C is bounded by θ|V |/k since there are at most
D|V |/k edges. Moreover, the probability of a vertex being covered by C is at most 1− (1−θ/D)D and
at least 1− (1− θ/D)D−f(D). It turns out that (artificially) making all such probabilities the same is
not only convenient but also helps to control the error terms. This technique was introduced in [15]
and simplified in [3]. Define

p∗ = 1− e−θ(1+10(C logD
θD

)1/2)

and introduce a random set W to which each vertex belongs independently with a certain probability
so that

Pr[v is covered by C or v ∈W ] = p∗.

(Here the 10( logD
θD )1/2 term is added for the sake of convenience, and W stands for ‘waste’.) Putting

it slightly differently, Pr[v ∈W ] = p(v), where p(v) satisfies

(1− θ/D)d(v)(1− p(v)) = 1− p∗.

This is possible as 1− p∗ ≤ (1− θ/D)d(v) for all v. It is also easy to check that

p(v) ≤ 2θf(D)/D. (5)

We regard vertices in W as covered vertices for a while and add later for each vertex in W an edge
containing it.

Lemma 3.1 Let H be a hypergraph as described above. If there is a function g(D) ≥ 10k such that

f(aD)− af(D) ≥ 20(1− a)(g(D)CD logD)1/2 (6)

for all 0.9 ≤ a ≤ 1, then there is a collection C of edges and a set W of vertices with the following
properties. For θ = (g(D))−1,

|C| ≤ θ|V |
k

(1 + 1/D), |W | ≤ 2θf(D)|V |
D

and for the induced sub-hypergraph H′ on the set V ′ = V \ (W ∪
⋃
e∈C e) of uncovered vertices,

|V ′| ≤ e−θ|V |, e−(k−1)θD − f(e−(k−1)θD) ≤ dH′(x) ≤ e−(k−1)θD

for all x ∈ V ′.

The proof of Lemma 3.1 is based on the following Azuma-Hoeffding ([5, 11]) type martingale inequality.
For more general similar inequalities and their proofs, the reader may consult [3] and [16].
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Lemma 3.2 Let X1, ..., Xm be independent random variables with Pr[Xi = 0] = 1 − pi and Pr[Xi =
1] = pi. Let Y = Y (X1, ..., Xm) be such that

|Y (X1, ...Xi−1, 1, Xi+1, ..., Xm)− Y (X1, ...Xi−1, 0, Xi+1, ..., Xm)| ≤ ci

for all X1, ...Xi−1, Xi+1, ..., Xm, i = 1, ...,m. Then for σ2 =
∑n
i=1 pi(1 − pi)c2

i
and α ≤ 2σ2/maxi ci

we have
Pr[|Y − E[Y ]| ≥ α] ≤ 2e−α

2/(4σ2).

The minimum ci in the lemma is called the effect of the variable Xi, or simply the effect of i. In
our case, the random variables are indexed by all edges and pe = θ/D. The effect of an edge e means
the effect of the corresponding random variable Xe.

Proof of Lemma 3.1. Let C, W , H′ and p∗ be as above with θ = (g(D))−1. It is enough to show
that the last inequalities hold with probability at least e−5|V |D−4

, i.e.

Pr
[
e−(k−1)θD − f(e−(k−1)θD) ≤ dH′(v) ≤ e−(k−1)θD, ∀v ∈ V ′

]
≥ e−5|V |D−4

, (7)

and then each of the the other inequalities holds with probability at least 1− e−5|V |/D4
/4.

To prove (7), it is convenient to define the pseudo degree d∗(v) of a vertex v in V (for v ∈ V ′ as
well as for v 6∈ V ′) as the number of edges containing v all of whose vertices except possibly v are in
V ′:

d∗(v) = |{e ∈ H : v ∈ e, e \ {v} ⊂ V ′}|.

Clearly, d∗(v) = dH′(v) for all v ∈ V ′. We show (7) for d∗(v) by estimating the expectation of d∗(v)
first, applying Lemma 3.2, and then using the Lovász Local Lemma.

Notice that
E[d∗(v)] =

∑
e3v

Pr[e \ {v} ⊂ V ′].

For each edge e containing v, there are at most
∑
w∈e\{v} dH(w) edges containing a vertex in e other

than v. On the other hand, as cd(x, y) ≤ C implies that there are no more than C
(k−1

2

)
edges

containing two vertices in e \ {v}, at least
∑
w∈e\{v} dH(w)− k2C/2 edges contain a vertex in e other

than v. Since e \ {v} ⊂ V ′ means that all w ∈ e \ {v} are uncovered, or equivalently no w ∈ e \ {v} is
covered by C nor belongs to W ,

1 ≤ Pr[e \ {v} ⊂ V ′]∏
w∈e\{v}(1− θ/D)dH(w) Pr[w 6∈W ]

≤ (1− θ/D)−Ck
2/2.

Moreover,
(1− θ/D)dH(w) Pr[w 6∈W ] = 1− p∗ = e−θ(1+10(C logD

θD
)1/2)

and

(1− θ/D)−Ck
2/2 ≤ 1 + θk2C/D ≤ 1 + o

((k2θC logD
D

)1/2)

11



as θk ≤ 0.1 and kC/D = o(1). Thus we have

1 ≤ Pr[e \ {v} ⊂ V ′]
e−θ(k−1)(1+10(C logD

θD
)1/2)

≤ 1 + o
((k2θC logD

D

)1/2)
,

and
E[d∗(v)] = e−θ(k−1)(1+10(C logD

θD
)1/2)dH(v) + o(k(θCD logD)1/2).

The effect of an edge e is at most the number of edges containing v that have a non-empty
intersection with e \ {v}. Since for each vertex w in e \ {v} there are at most C edges containing both
v and w, the effect of e is at most kC and∑

e

c2
e
≤ kC

∑
e

ce ≤ kC
∑
e

∑
e′3v

1(e ∩ e′ 6= ∅) = kC
∑
e′3v

∑
e

1(e ∩ e′ 6= ∅) ≤ Ck2D2.

Let
α = 4k(θCD logD)1/2 and σ2 = (1− θ/D)(θ/D)Ck2D2 ≤ θCk2D.

As f(D) ≤ 0.1D and (6) for a = 0.9 imply that

C logD
θD

≤ 1
400

and
4k(θCD logD)1/2 · kC ≤ 2(1− θ/D)θCk2D,

Lemma 3.2 yields
Pr
[ ∣∣∣d∗(v)− E[d∗(v)]

∣∣∣ ≥ 4k(θCD logD)1/2
]
≤ 2D−4.

Let A(v) be the event ∣∣∣d∗(v)− E[d∗(v)]
∣∣∣ ≥ 4k(θCD logD)1/2

and define a dependency graph making two vertices v, w adjacent if there are three edges e1 , e2 , e3 such
that v ∈ e1 , w ∈ e3 and both of e1 ∩ e2 , e2 ∩ e3 are not empty. Then A(v) is mutually independent of
all A(w) with w not adjacent to v. Since v is adjacent to no more than k2D3 vertices, the condition
of the Lovász Local Lemma, see e.g. [4], 4 maxv Pr[A(v)]k2D3 < 1 is satisfied and hence

Pr
[ ∣∣∣d∗(v)− E[d∗(v)]

∣∣∣ ≤ 4k(θD logD)1/2 ∀v ∈ V
]
≥
∏
v

(1− 2 Pr[A(v)]) ≥ e−5|V |D−4
.

Since

E[d∗(v)] = e−θ(k−1)(1+10(C logD
θD

)1/2)dH(v) + o(k(θD logD)1/2)

≤ e−θ(k−1)D − 4k(θD logD)1/2

and

e−θ(k−1)(1+10(C logD
θD

)1/2)dH(v) ≥ e−θ(k−1)(1+10(C logD
θD

)1/2)(D − f(D))

≥ e−(k−1)θD − 10(k − 1)(θCD logD)1/2 − e−(k−1)θf(D)

≥ e−(k−1)θD − f(e−(k−1)θD) + 5k(θCD logD)1/2,

12



the proof of (7) is complete.
We now prove

Pr[|V ′| ≥ e−θ|V |] ≤ 1
4
e−5|V |/D4

.

The other two inequalities, which are for sums of independent random variables, may be proven
similarly and we omit their proofs. The expected size of V ′ is (1− p∗)|V | ≤ e−θ|V |(1− 1/D) by (6).
The effect of each edge e is no more than k (for the event e ∈ C) and the effect of each vertex w is just
1 (for the event w ∈W ), and hence σ2 ≤ k2(|V |D/k)(θ/D) + 2θ|V |f(D)/D ≤ 2θk|V | by (5). Thus

Pr[|V ′| ≥ e−θ|V |] ≤ Pr
[∣∣∣|V ′| − E[|V ′|]

∣∣∣ ≥ |V |
D

]
≤ e−|V |/(8θkD

2) ≤ 1
4
e−5|V |/D4

. 2

To apply Lemma 3.1 recursively, define, for two functions f and g, α0 = 1 and

αi = e
−
∑i−1

j=0
θj , Di = (αi)k−1D, and θi = (g(Di))−1.

If the hypotheses of the lemma are satisfied for all Di, i = 0, ..., t, then we iteratively apply it to have
collections Ci of edges and sets Wi of vertices satisfying

|Ci| ≤
θi|Vi|
k

(1 + 1/Di), |Wi| ≤
2θif(Di)|Vi|

Di
, and |Vi| ≤ αi|V |,

and for the induced sub-hypergraph Ht on the set Vt = V \ (
⋃t−1
i=0 Wi ∪

⋃t−1
i=0

⋃
e∈Ci e) of uncovered

vertices,
|Vt| ≤ αt|V |, Dt − f(Dt) ≤ dH′(v) ≤ Dt.

Adding, for each vertex in ∪t−1
i=0Wi, an edge containing it, we have a partial cover Dt that covers

all vertices except those in Vt and is of size at most
t−1∑
i=0

θiαi|V |
k

+
t−1∑
i=0

θi(αi)2−k|V |
kD

+ 2
t−1∑
i=0

θi(αi)2−kf((αi)k−1D)|V |
D

.

Note that
t−1∑
i=0

θiαi =
t−1∑
i=0

θie
−
∑i−1

j=0
θj ≤

∫ − logαt

0
e−x dx+

t−1∑
i=0

θi(e
−
∑i−1

j=0
θj − e−

∑i

j=0
θj )

≤ 1− αt + 2
t−1∑
i=0

(θi)2e
−
∑i−1

j=0
θj .

Provided
g(x) ≥ g(y) for x ≥ y and f((1− ε)x) ≥ f(x)/2, ∀0 ≤ ε ≤ 0.1,

one may have
t−1∑
i=0

(θi)2e
−
∑i−1

j=0
θj =

t−1∑
i=0

θi
(
g(e−(k−1)

∑i−1

j=0
θjD)

)−1
e
−
∑i−1

j=0
θj

≤ 2
∫ − logαt

0
e−x

(
g(e−(k−1)xD)

)−1
dx

=
2

(k − 1)D1/(k−1)

∫ D

Dt

x1/(k−1)

xg(x)
dx.
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Similarly,

1
D

t−1∑
i=0

θi(αi)2−k(
1
2k

+ f((αi)k−1D)) ≤ 1
D

t−1∑
i=0

θie
(k−2)

∑i−1

j=0
θj (1 + f(e−(k−1)

∑i−1

j=0
θjD))

≤ 2
D

∫ − logαt

0
e(k−2)x(1 + f(e−(k−1)xD)) dx

=
2

(k − 1)D1/(k−1)

∫ D

Dt

x1/(k−1)(1 + f(x))
x2

dx.

Thus we have the following consequence of Lemma 3.1.

Corollary 3.3 With the same hypotheses as in Lemma 3.1, if

g(x) ≥ g(y) for x ≥ y and f((1− ε)x) ≥ f(x)/2, ∀0 ≤ ε ≤ 0.1,

then there is a cover Dt and a subset Vt of V such that Dt covers all vertices but those in Vt. Further-
more,

|Dt| ≤
(1− αt)|V |

k
+

2|V |ID,k(f, g : t)
(k − 1)D1/(k−1)

,

where

ID,k(f, g : t) =
∫ D

Dt

x1/(k−1)

xg(x)
+
x1/(k−1)(1 + f(x))

x2
dx,

and for the induced sub-hypergraph Ht on Vt we have

|Vt| ≤ αt|V |, Dt − f(Dt) ≤ dHt(v) ≤ Dt.

The partial cover Dt guaranteed by Corollary 3.3 is nearly optimal and hence contains a large
matching. Such a matching may be obtained by discarding all edges containing a vertex covered more
than once. Considering the hypergraph F consisting of all vertices covered by Dt and all edges in it,
the number of discarded edges is at most

∑
v:dF (v)≥2

dF (v) ≤ 2
∑
v

(dF (v)− 1) ≤ 2(k|Dt| − (1− αt)|V |) = O
(ID,k(f, g : t)|V |

D1/(k−1)

)
.

Therefore, Corollary 3.3 has the following immediate consequence.

Corollary 3.4 With the same hypothesis as in Corollary 3.3, there is a matching that covers all but
at most

O
(kID,k(f, g : t)|V |

D1/(k−1)

)
+ αt|V |

vertices.

In the rest of this section, we consider k-uniform hypergraphs H with maximal codegree C such
that for every vertex v we have

D − f(D) ≤ dH(v) ≤ D, C = o
( D

e2k logD

)
, (8)
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where
f(x) = 20(x2C log x)1/3, g(x) =

1
20

( x

C log x

)1/3
. (9)

In particular, k ≤ (1/2) logD since C ≥ 1. With these functions, we may apply Lemma 3.1 and
Corollary 3.3 as long as Dt is larger than a (large) constant times k3C log(kC). Define, for a fixed
(large) constant M , t0 = t0(M) to be the smallest t such that Dt ≤ ek−1MC log(1+C), or equivalently
αt ≤ e(MC log(1 + C)/D)1/(k−1). It is easy to see that Dt = o(D) by the second condition of (8).
It is also routine to check that all conditions are satisfied as long as M is large enough and that
D(0) := Dt ≥ 0.9ek−1MC log(1 + C). Moreover, for k > 4

ID,k(f, g; t) = O
(
(C log(1 + C))1/(k−1)

)
.

As usual, for each vertex in Vt, we take an edge containing it to find a cover of size

|V |
4

(
1 +O

(((logD)4C

D

)1/3))
for k = 4. (10)

If k > 4, then since

|Vt0 | = O
((C log(1 + C)

D

)1/(k−1)
|V |
)
,

there is a cover of size at most

|V |
k

(
1 +O

(
k
(C log(1 + C)

D

)1/(k−1)))
. (11)

Corollary 3.4 also implies that there is a matching that covers all but

O
(((logD)4C

D

)1/3
|V |
)

(12)

vertices if k = 4, and all but at most

O
(
k
(C log(1 + C)

D

)1/(k−1))
(13)

vertices if k > 4.
If k is large, though (11) is still valid, it may be so weak that it gives only the trivial bound O(|V |).

For example, if k = (1/3) logD and C = 1, the bound is just O(|V |). To deal with these cases, we
shall show that for the hypergraph H(0) := Ht0 as in Corollary 3.3, there is a cover of size O(|V (0)|/k)
for large k, which yields a cover for H of size at most

|V |
k

(
1 +O

((C log(1 + C)
D

)1/(k−1)))
.

Lemma 3.5 For the hypergarph H(0) described above, there is a cover of size O(|V (0)|/k).

Proof. Take l such that 2l < k ≤ 2l+1 and then randomly discard k − 2l−1 vertices from each edge
independently of the other edges to create a new edge of size 2l−1. Using the Lovász Local Lemma it
is easy to show that with positive probability the degree d(x) of each vertex x of the new hypergraph
satisfies ∣∣∣d(x)− 2l−1dH(0)(x)/k

∣∣∣ ≤ 2
√
D(0) logD(0).
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Let H(1) be a hypergraph satisfying the degree conditions, and k1 = 2l−1,

D(1) = 2l−1D(0)/k + 2
√
D(0) logD(0).

Then H(1) is k1-uniform and
D(1) − f(D(1)) ≤ dH(1)(x) ≤ D(1),

with ek−1MC log(1 + C)/5 ≤ D(1) ≤ ek−1MC log(1 + C)/2. In particular, D(1) is much larger than
k3

1C log(kC) as long as M is large enough, and Corollary 3.3 may be applied for the smallest t1
satisfying αt1 ≤ 2/5. Thus D(2) := Dt1 is between 0.9(2/5)k1−1D(1) and (2/5)k1−1D(1), or simply

(2/5)k1D(1) ≤ D(2) ≤ (2/5)k1−1D(1).

Furthermore, the argument above yields

ID(1),k1
(f, g : t1) = O

(
(C log(1 + C)1/(k1−1)

)
,

and
2|V (1)|ID(1),k1

(f, g : t1)
(k1 − 1)(D(1))1/(k1−1)

≤ 2|V (1)|
k1 − 1

.

Thus there is a partial cover D(1) and a hypergraph H(2) on the uncoverd vertices such that

|D(1)| ≤ 3|V (1)|
k1

≤ 12|V (0)|
k

for V (1) = V (0) and k1 ≥ k/4, and

|V (2)| ≤ 2|V (1)|
5

, D(2) − f(D(2)) ≤ dH(2)(x) ≤ D(2).

We iteratively apply the same argument for the parameters ki = 2l−i and D(i) with

(2/5)ki−1Di−1 ≤ Di ≤ (2/5)ki−1−1Di−1.

Since

D(i) ≥ (2/5)2k1D(1) ≥ (2/5)2k1ek−1MC log(1 + C)/5 ≥ (2e/5)k−1MC log(1 + C)/5

there are partial covers D(i) and hypergraphs H(i+1) on the uncoverd vertices by ∪ij=1D(j) such that

|D(i)| ≤ 3|V (i)|/ki

and

|V (i+1)| ≤ 2|V (i)|
5

, D(i+1) − f(D(i+1)) ≤ dH(i+1)(x) ≤ D(i+1).

This procedure stops when ki = 4, in which case

|V (i)| ≤ (2/5)l−3|V (1)| = o(|V (0)|/k)

as V (1) = V (0) and l ≥ log2 k − 1. Therefore, there is a complete cover of size at most

3|V (1)|
k1

∞∑
i=0

(4/5)i + o(|V0|/k) = O(|V0|/k).

2
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Corollary 3.6 Let H be a k-uniform hypergraph satisfying (8) and suppose k > 4 . Then there is a
cover of size at most

|V |
k

(
1 +O

((C log(1 + C)
D

)1/(k−1)))
.

In case the degrees of some vertices are so small that (8) is violated, we may still find an economical
cover. Suppose a k-uniform hypergraph satisfies (8) except for the vertices in a set B (B for bad),
whose degrees are less than D − f(D). For a fixed vertex x ∈ B, consider a hypergraph consisting
of k vertex disjoint copies H1, ...,Hk of H together with an artificial edge containing the k copies of
x. Then the degree of x in this hypergraph is one more than the degree in H and all other degrees
remain the same. By this way, we may construct many copies of H together with artificial edges
consisting of copies of vertices in B so that the new hypergraph satisfies (8). Now apply our result
to this hypergraph to find an economical cover of the appropriate size and then discard all artificial
edges from the cover. Clearly each edge of the partial cover obtained is contained in a unique copy of
H. Thus one can find a partial cover of a copy of H as described in (10), (11), or Corollary 3.6 and it
covers all vertices but those in (the copy of) B. As usual, one may choose, for each vertex in B, an
edge of (the copy of) H containing it to extend it to a cover. We summarize these assertions in the
theorem below.

Theorem 3.7 Let H be a k-uniform hypergraph satisfying (8) except for vertices v in a set B, whose
degrees are less than D − f(D). Then

there is a cover of size at most

cov(H) =
|V|
4

(
1 + O

(((log D)4C
D

)1/3))
+ |B|

if k = 4, and

cov(H) =
|V|
k

(
1 + O

((C log(1 + C)
D

)1/(k−1)))
+ |B|

if k > 4.

If H is D-regular then B is empty and Theorem 3.7 implies Theorem 1.2. Moreover, if |B| =
o(|V |/k), and k > 4 with

k = o
(

log
D

C log(1 + C)

)
,

then there is a nearly optimal cover of size (1 + o(1))n/k.
In case k is so large that the second condition of (8) is violated, we can still derive a bound from

Theorem 3.7 by the following procedure. Set

k0 = (1/3) log(D/(C logD))

and take l such that lk0 ≤ k < (l+ 1)k0 . From each edge, randomly discard k − lk0 vertices and split
the remainder into l edges of sizes k0 . Assuming C = o(D/ logD), the same argument used in the
proof of Lemma 3.5 would yield a k0-uniform hypergraph satisfying the degree conditions with respect
to some parameter D′ with D/2 ≤ D′ ≤ D. Thus we have the following corollary.
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Corollary 3.8 Let H be a k-uniform hypergraph satisfying the first condition of (8) except vertices
in a set B, whose degrees are less than D − f(D). If

C = o
( D

logD

)
, and k ≥ (1/3) log(D/C logD),

then there is a cover of size at most

O
( |V |

log(D/(C logD))

)
+ |B|.

Theorem 3.7 also implies the following result on matchings.

Theorem 3.9 Let H be a k-uniform hypergraph satisfying (8) except vertices in a set B, whose degrees
are less than D − f(D). Then there is a matching which covers all vertices except

O
(((logD)4C

D

)1/3
|V |
)

+ |B| for k = 4,

O
(
k
(C log(1 + C)

D

)1/(k−1)
|V |
)

+ |B| for all k > 4.

4 Covering random subsets of the projective plane

In this section we describe a simple application of the main result of the previous section. Let P =
PG(2, q) denote the finite projective plane of order q. For a real p between 0 and 1, let A = Ap

be a random subset of P obtained by choosing, randomly and independently, each point of P with
probability p. Let c(A) denote the minimum number of lines of P whose union covers A. Our objective
is to estimate the typical size of c(Ap) as a function of p. Since the whole plane can be covered by
q+ 1 lines, for every subset A of P , c(A) ≤ q+ 1. By a result of Kahn [13] (formulated in his paper in
a dual form), there exists an absolute (large) constant b such that if p ≥ b log q/q then almost surely
(that is, with probability that tends to 1 as q tends to infinity), c(Ap) = q+ 1. Therefore, in this case
we cannot save even a single line over the trivial bound.
If p = o(q−3/2) then it is easy to check that almost surely there are only o(|Ap|) points of Ap that
lie in lines containing more than 2 points of Ap, meaning that in this range, almost surely c(Ap) =
(1 + o(1))|Ap|/2. Thus if q and q2p tend to infinity and q3p2 tends to 0 then almost surely c(Ap) =
(1 + o(1))q2p/2.

In the middle range the situation seems more complicated, but we can always determine the
typical value of c(Ap) up to a constant factor. Before dealing with the general case, observe that if,
say, p ≥ log q

100q then almost surely c(Ap) = Θ(q). Indeed, q + 1 lines always suffice, and even if p = log q
100q

then we need at least Ω(q) points to cover Ap since then almost surely there are at least Ω(q log q)
points in Ap and by the standard estimates for Binomial distributions (c.f., e.g., [4], Appendix A) no
line contains more than O(log q) of them. Note also that if, say, p ≤ q−1.1 then almost surely no line
contains more than 20 points of Ap and hence in this case almost surely c(Ap) = Θ(|Ap|).

The following theorem determines the typical value of c(Ap) up to a constant factor in all the other
cases.
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Theorem 4.1 There are two absolute positive constants c1 and c2 such that for any p = f/q with
q−0.1 ≤ f ≤ log q/100, the size c(Ap) of the minimum number of lines covering all points in Ap

satisfies, almost surely,

c1

qf log[ log q
f ]

log q
≤ c(Ap) ≤ c2

qf log[ log q
f ]

log q
.

Before proving this theorem, we need the following technical lemma.

Lemma 4.2 For all sufficiently large q and all positive reals p = f
q where f satisfies q−0.1 ≤ f ≤ log q

100

the following two assertions hold.
(i) For s = 4 log q

log[ log q
f

]
,

q2

(
q + 1
s

)
ps = o(1).

(ii) Define

F (s) =

(
q

s

)
ps(1− p)q−s,

and let t be the largest integer s such that F (s) ≥ 1√
q . Then

1
3

(
log q

log[ log q
f ]

) ≤ t ≤ 2(
log q

log[ log q
f ]

). (14)

Proof: We assume, whenever this is needed, that q is sufficiently large. To prove (i), note that since
log q
f ≥ 100, it follows that

log[
log q
f

] ≤ [
log q
f

]0.49,

say. Therefore, substituting the value of s we conclude that(
q + 1
s

)
ps = (1 + o(1))

(
q

s

)
(
f

q
)s ≤ [

ef

s
]s

= (
e

4
f

log q
log[

log q
f

])s ≤ (
f

log q
)0.51s =

1
q0.51·4 = o(

1
q2

),

as needed.

To prove (ii) observe that as
F (s+ 1)
F (s)

=
(q − s)
(s+ 1)

f

q

1
(1− p)

it follows that the function F is decreasing for all s ≥ 2f . Define

t1 =
1
3

(
log q

log[ log q
f ]

)

and
t2 = 2(

log q
log[ log q

f ]
).
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It is easy to check that t1 ≥ 2f (since log q
f ≥ 100.) As F (s) is monotone decreasing for s ≥ 2f it

suffices to check that F (t1) ≥ 1√
q and that F (t2) < 1√

q in order to deduce the assertion in (14). To do

so note, first, that as p ≥ log q
100q it follows that for every nonnegative s, (1− p)q−s ≥ 1

q0.02 .
Substituting the value of t1 it follows that

F (t1) ≥ 1
q0.03

(
ef

t1
)t1 =

1
q0.03

(
ef log[ log q

f ]
1
3 log q

)t1

≥ 1
q0.03

(
f

log q
)t1 =

1
q0.03

1
q1/3

>
1
√
q
,

as needed.
Similarly, since e

2 logM ≤M1/2 for all M ≥ 100, and since log q
f ≥ 100, it follows that

F (t2) ≤ (
ef

t2
)t2 = (

ef log[ log q
f ]

2 log q
)t2

≤ (
f

log q
)t2/2 =

1
q
<

1
√
q
.

This completes the proof. 2

Proof of Theorem 4.1: The lower bound is simple. Almost surely there are (1+o(1))(q2 +q+1)p =
(1 + o(1))qf points in A, and no line contains s of them provided q2

(q+1
s

)
ps = o(1), since the expected

number of lines containing at least s points is at most (q2 + q + 1)
(q+1
s

)
ps. By Lemma 4.2, part (i)

this inequality holds for s = 4 log q

log[ log q
f

]
, implying the desired lower bound.

To prove the upper bound we choose t such that the probability that a fixed set of q points of P
contains precisely t members of Ap is roughly 1/

√
q. More precisely, let t be the integer defined in

Lemma 4.2, part (ii). Put

g = F (t) =

(
q

t

)
pt(1− p)q−t

and note that by definition g ≥ 1√
q and that by Lemma 4.2, part (ii),

1
3

(
log q

log[ log q
f ]

) ≤ t ≤ 2(
log q

log[ log q
f ]

).

Define k = t+ 1, and let H be the k-uniform hypergraph whose vertices are the points of Ap and
whose edges are all collections of k points of Ap that lie in a line containing precisely k such points.

The hypergraph H is obviously simple. Moreover, the degree of each of its vertices is a Binomial
random variable with parameters g and q+1, and hence, by our choice of g and the standard estimates
for Binomial distributions all degrees are, almost surely, between (q + 1)g + O((qg)1/(log q)1/2) and
(q + 1)g − O((qg)1/2(log q)1/2). Since here k ≤ log((q + 1)g) (as log q

f ≥ 100), the desired result now
follows from the corollary in the previous section. 2
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5 Separating random sets of points in the plane

A set L of lines (in R2) is said to separate the points of a set S if no two points of S are in the same
component of R2 \L. Define X(S) to be the minimal number of lines needed to separate the points of
S. Recently, Da Silva and Fukuda [7] gave bounds on X(S) when S consists of n points. In particular,
they noted that if |S| = n then

√
8n−7−1

2 ≤ X(S) ≤ n − 1 and XS) = r(S) − 1 if r(S), the maximal
number of colinear points of S, is greater than (n+ 1)/2.

In this section we shall study X(Sn) for a set Sn of n points chosen at random from the square
[0, 1]2 with the uniform distribution. Our aim is to show that, with high probability, X(Sn) has order
n2/3/(log n)1/3. As usual, we say that an event holds with high probability if for some fixed ε > 0 the
probability of failure is O(n−ε).

Theorem 5.1 With high probability,

Xn = X(Sn) = Θ(n2/3/(log n)1/3). (15)

Proof: In the proof below we shall replace Sn by Pn, a random set of points with Poisson distribution
of intensity n in [0, 1]2. This change is justified since, with high probability, n/2 ≤ |Pn| ≤ 2n, so
assertion (15) holds for Sn iff it holds for Pn. In fact, it we shall consider a Poisson process of intensity
n in the entire plane, and define Pn = P ∩ [0, 1]2.

(i) First we prove a lower bound on Xn; as we shall see, this is rather easy. Set

k = n2/3/(log n)1/3,

and take a k × k grid in [0, 1]n, dividing it into 1/k × 1/k squares called cells so that altogether we
have k2 cells. For j ≥ 0, a j-cell is a cell containing precisely j points of Pn. For each fixed cell, the
number of points in the cell has Poisson distribution with mean n/k2, so the probability p that a fixed
cell is a 2-cell is

p =
n2

2k4
e−n/k

2 ≤ n2

2k4
.

Since n/k2 = o(1), we have p ∼ n2/2k4. In particular, if n is large enough,

2n2

5k4
≤ p ≤ n2

2k4
.

The number of 2-cells has binomial distribution Binom(k2, p) with mean k2p ≥ 2n2/5k2. Hence, with
probability 1 + o(e−n

1/2
), there are at least n2/3k2 2-cells.

In order to prove a lower bound for Xn, all we shall use is that in a separating system of lines every
2-cell is intersected by a line. Fix a line `. Since ` intersects at most 2k− 1 < 2k cells, the probability
that ` intersects at least d 2-cells is at most(

2k
d

)
pd < (

2ekn2

d2k4
)d = (

e log n
d

)d.

Hence, the probability that a fixed line intersects at least d0 = e2 log n 2-cells is less than n−e
2
< n−7.

21



For a line `, let C(`) be the set of cells intersected by `. Note that, crudely, for k ≥ 3 there are at
most

2(

(
(k + 1)

2

)
)2 < k4

sets C(`), since C(`) can always be given by a line ` that goes ‘slightly’ above or below two of the
(k+ 1)2 ‘lattice points’ of our k× k grid, and these two lattice points are neither in the same row nor
in the same column. Hence the probability that some line meets at least d0 2-cells is at most

k4n−7 = o(n−4).

Therefore, with probability 1 + o(n−4), there are at least n2/3k2 2-cells and every line intersects at
most d0 of these 2-cells. Consequently, with probability 1 + o(n−4), we need at least

(n2/3k2)/d0 >
n2/3

22(log n)1/3

lines to separate Pn
(ii) Now we turn to the real content of the theorem, the upper bound in equation (15). It will be

convenient to take a Poisson process of intensity n in the entire plane and define Pn = P ∩ [0, 1]2. Our
strategy is simple. We use a grid to separate points ‘far apart’, about log logn sets of lines to separate
pairs of points at ‘medium’ distance, and one line each for every pair of points at ‘small’ distance.

Dealing with ‘large’ and ‘small’ distances is rather easy, so we shall do it first. Set h̄ = 4n2/3/(log n)1/3,
and take the 2(h̄ − 1) < 8n2/3/(log n)1/3 internal lines of this grid. These lines separate all pairs of
points in [0, 1]2 that are ‘far apart’, i.e., at distance at least

√
2/h̄ < 1

2(log n)1/3n−2/3.
Before we turn to separating points that are close to each other, we consider sets of grids. A batch

of h-grids is a set of four grids, each with 1/h × 1/h cells: the first is an h × h grid on [0, 1]2, the
second is an (h + 1) × ((h + 1) grid with lower left vertex at (−1/2h,−1/2h), and the other two are
h× (h+ 1) and (h+ 1)× h grids with lower left vertices at (0,−1/2h) and (−1/2h, 0). Thus all four
grids cover [0, 1]2 and, given their lower left vertices, are minimal with respect to that. With slight
inaccuracy, we shall take each of the four grids of a batch to be an h× h grid.

All we shall need about a batch of the h-grids is that if x, y ∈ [0, 1]2 with d(x, y) ≤ 1
2h then x and

y belong to the same cell in one of the four grids of the batch.
To separate the pairs of points of Pn at ‘medium’ and ‘small’ distances, for each t with 0 ≤ t ≤

u = 1
2 log 2 log log n we shall make use of the batch Bt of ht-grids, where

ht = 2tn2/3/(log n)1/3 = n2/3/ct.

Thus hu = n2/3(log n)1/6. Needless to say, we shall not use the lines of these grids, since otherwise we
would use many more than O(n2/3/(log n)1/3) lines, but we shall use them to identify the pairs of the
points we wish to separate at each stage.

To separate points that are close, we consider the grids of Bu. The probability that a cell of an
hu-grid is 2, 3, . . . , or 7− cell is

(1 + o(1))
n2

2h4
u

≤ n2

h4
u

,
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so the expected number of such cells is at most n2/h2
u ≤ n2/3/(log n)1/3. Hence, with high proba-

bility, there are at most 2n2/3/(log n)1/3 such cells. The points in these cells can be separated by
12n2/3/(log n)1/3 lines. Furthermore, the expected number of i-cells with i ≥ 8 is

(1 + o(1))
n8

8!h14
u

≤ n−4/3,

so with probability 1 + o(1/n) neither of the four grids in Bu contains an i-cell with i ≥ 8. Since every
pair of points {x, y} in Pn with d(x, y) ≤ 1/2hu is contained in the same cell of one of the grids in Bu,
we see that with probability 1 +O(1/n) all such pairs can be separated by at most 12n2/3/(log n)1/3

lines.
With this, we have arrived at the main part of the proof: we shall show that with high probability,

all pairs {x, y} ⊂ Pn with
1

2hu
< d(x, y) <

1
2

(log n)1/3/n2/3 =
1

2h0
(16)

can be separated by O(n2/3 log n) lines.
Set ci = (logn)1/32−i, so that hi = n2/3/ci, 0 ≤ i ≤ u. We shall treat the pairs {x, y} ⊂ Pn with

1
4hi
≤ d(x, y) ≤ 1

2hi

separately, using the batch Bi. We know that every such pair {x, y} is contained in some cell of a grid
in Bi, so it suffices to prove that, with high probability, there are

O
( n2/3

2i(log n)1/3

)
(17)

lines that separate all pairs of {x, y} ⊂ Pn that are contained in some cell of a grid in Bi and satisfy
d(x, y) ≥ 1/4hi. Indeed, equation (17) implies that, with high probability, all pairs {x, y} satisfying
equation (16) can be separated by

O
( u∑
i=0

n2/3

2i(log n)1/3

)
= O

(
n2/3/(log n)1/3

)
lines.

To prove equation (17), set c = ci, and h = hi = n2/3/c so that (logn)−1/3 ≤ c ≤ (log n)1/3 and
n2/3/(log n)1/3 ≤ h ≤ n2/3(log n)1/6, and let L be a fixed h-grid. Call a cell of L full if it contains at
least two points of Pn, and write p for the probability that a cell is full, so that

p = e−n/h
2
∞∑
j=2

(n/h2)2

j!
= (1 + o(1))

n2

2h4
. (18)

Our aim is to show that, with high probability, there is a family Fh of O(n2/3/2i(log n)1/3) ‘almost
horizontal’ lines such that each full cell is met by one of these lines. Here ‘almost horizontal’ means
that for some β − α > 0 each line has slope at most hα−β. Replace each line ` ∈ Fh by a family of 17
lines, say, obtained from ` by translating it in the vertical direction by j/8h, j = 0,±1, . . . ,±8. The
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new family F∗h of O(n2/3/2i(log n)1/3) lines is such that if x = (x1, x2) and y = (y1, y2) are two points
of Pn in the same cell of the grid with |x2− y2| ≥ 1

4
√

2h
then some line ` ∈ F∗h separates x from y. By

symmetry, there is a similar family G∗h of ‘almost vertical’ lines. Clearly, F∗h ∪ G∗h separates all points
x, y ∈ Pn in the same cell of L provided d(x, y) ≥ 1

4h .
We have further narrowed our problem: we have to show that Fh exists with high probability. To

this end, let α, β, γ and δ be constants with

0 < γ < α < β < α+ β < δ < 1.

For each i, 1 ≤ i ≤ hα, set ei = bih1−βc and εi = ei
h−ei ∼ ih−β . Let Hi be the family of h lines with

slope εi, such that the jth line goes through the point (1− j/h+ η, (j − 1)/h), where 0 < η < 1/h is
chosen so that none of the h lines goes through a point of L.

Note that the jth line crosses the line y = 0 at x = aj = 1 − j/h + η − (j − 1)/hεi and the line
y = 1 at x = bj = 1− j/h+ η + (h− j + 1)/hεi). Our choice of εi implies that aj = bh−ei+j , precisely
the first ei lines cross the bottom of the grid L, and precisely the ei lines cross the top of the grid L.
For 1 ≤ j ≤ ei, we identify the jth line with the (h− ei + j)th line, so that Hi consists of h− ei lines.
Equivalently, we take the y coordinates of the lines of Hi modulo 1.

For each line ` ∈ Hi, let C(`) be the set of cells of the grid L intersected by `. We call C(`)
a combinatorial line. Let Ci be the set of combinatorial lines obtained from the lines of Hi and set

C =
hα⋃
i=1

Ci. By construction, every line in Hi crosses either bεihc or dεihe horizontal division lines of

the grid L, so it crosses h + bεihc or h + dεihe cells of L. Also, every cell of L is in precisely one
combinatorial line of Ci. Thus the combinatorial lines of Ci partition the h2 cells of the L into h− ei
sets of as equal sizes as possible. Crudely, each combinatorial line has at least h and at most h+2hα−β

cells.
In addition to the ‘equipartition’ property of Ci, we need the following simple consequence of the

fact that for i 6= j the slopes εi and ej differ by at least about h−β . If i 6= j, Ci ∈ Ci and Cj ∈ Cj , then
no two cells of Ci ∩ Cj are horizontally separated, where we call two cells of L horizontally separated
if either no combinatorial line contains both of them, or their x coordinates differ by at least 2hβ−1.

Let us turn the question of finding a suitable set of lines Fh into a question about hypergraph
covering. Let 0 < γ < α and let m be the maximal integer such that

g =

(
h

m

)
pm(1− p)h−m ≥ h−γ , (19)

where p is as in (18). Clearly, g is the probability that precisely m of h given cells are full. Standard
estimates show that

m = Θ(
log n
t+ 1

) (20)

Set k = m+ 1, and define a k-uniform hypergraph H as follows. The vertex set of H is the set V of
the full cells of L. A k-subset of V is an edge of H if it is of the form C ∩ V for some combinatorial
line C ∈ C and it consists of horizontally separated cells. The construction of H implies that it is a
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k-uniform simple hypergraph. Furthermore, |V | has binomial distribution with parameters h2 and p

so, with high probability, |V | = (1 + o(1))h2p = (1
2 + o(1))n2/h2 = (1

2 + o(1))c3h.
To complete the proof of our theorem, it suffices to show that, with high probability, H has a cover

with

O
( n2/3

2i(log n)1/3

)
(21)

edges.
Indeed, if H has a cover with q edges then the set of full cells of the grid L is the union of some q

combinatorial lines, and so there is a family Fh of at most 2q ‘almost horizontal’ lines such that every
full cell is intersected by at least one of these lines.

To prove the bound (21) we shall show that, with high probability, H is an almost regular simple
hypergraph except for a few vertices of low degree, and then apply our hypergraph covering theorem.

Call a full cell σ horizontally isolated if it is horizontally separated from every other full cell.
Clearly, these are at most

2(2hβ)(2hβhα−β) = 8hα+β

cells that are not horizontally separated from σ. Hence, writing W for the set of cells that are full but
not horizontally isolated, we see that

E(|W |) ≤ h2p28hα+β = O((log n)2hα+β).

Therefore, with high probability, |W | < hδ. The sets W are the exceptional vertices of H.
Since m < (log n)2, for h′ = h+O(hα−β) we have(

h′

m

)
pm(1− p)h′−m = (1 + o(1))g.

Furthermore, if we select m numbers from 1, 2, . . . , h′ then almost every selection is such that any
two selected numbers differ by more than 3hβ . Therefore, conditional on a cell σ being full and
horizontally isolated, the probability that a combinatorial line through σ gives an edge of H is (1 +
o(1))g. Consequently, the conditional expectation of the degree of σ, E′(d(σ)), is (1 + o(1))ghα ≥
(1 + o(1))hα−γ .

We claim that, with high probability, every full and horizontally isolated cell σ is such that

|d(σ)−E′(d(σ))| ≤ 4(ghα log h)1/2. (22)

To see (22), note that, conditional on a fixed cell σ being full and horizontally isolated, d(σ)
is the sum of hα independent Bernoulli random variables, with probabilities g1, g2, . . . , ghα , where
gi = (1 + o(1))g for each i. Therefore the probability that (20) fails is at most h−7, and so the
probability that it fails for some cell is at most h−5.

A weak form of (22) is that, with high probability, every full and horizontally isolated cell has degree
(1+o(1))ghα. In fact, with high probability, every vertex of H has degree at most (1+o(1))ghα since,
for every full cell σ, if we fix the distribution of full cells horizontally separated from σ then the degree
of σ is maximal if σ is horizontally isolated.
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Let us summarize what we have learned about H: with high probability, H is a k-uniform simple
hypergraph with (1

2 + o(1))c3h vertices and maximal degree (1 + o(1))ghα ≥ (1 + o(1))hα−γ such that
all but at most hδ vertices have degree (1 + o(1))ghα. Since k = O(log hα−γ) and hδ < c3h/k, our
hypergraph cover theorem implies that such an H has a cover with O(c3h/k) edges. Recalling (20)
and c = ci = (logn)1/32−i, we see that, with high probability, H has a cover with

O
((log n)2−3in2/32i(i+ 1)

(log n)4/3

)
= O

( n2/3(i+ 1)
22i(log n)1/3

)
,

implying (21) and so completing the proof.
2

The method above can be used to solve the higher dimensional analogue of Theorem 5.1, but the
technical difficulties involved are considerably more unpleasant.

6 Concluding remarks

• It seems plausible that for every k and D bigger than 1, the minimum size of a cover of a simple
D-regular k-uniform hypergraph on n vertices is

O( Min{n
k

log(
k

logD
+ 2),

n

k
D}),

and that this is tight, up to a constant factor, for all admissible values of k and D. Our methods
here suffice to show this is the case for all k ≤ O(logD) as well as for all k ≥ (logD)1+Ω(1).

• It will be interesting to determine the maximum possible k = k(D) for which every simple D-
regular k-uniform hypergraph on n vertices contains a cover of nearly optimal size, that is, of
size (1 +o(1))nk , where the o(1)-term tends to 0 as D tends to infinity. By the results in Sections
2 and 3 this holds when k(D) = o(logD) and does not hold when k(D) > (1 + Ω(1))e logD. It
is not difficult to see that if a nearly optimal cover always exists for k and D, and if k′ < k, then
a nearly optimal cover always exists for k′ and D as well.

• It seems that the arguments in Section 5 can be extended to higher fixed dimensions, using
the same technique. Thus, for every fixed d, the minimum number of hyperplanes needed to
separate all points in a randomly chosen set of n points in the unit cube in Rd is, almost surely,
Θ( n2/(d+1)

(logn)1/(d+1) ).
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