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Abstract

We consider the problem of learning a matching (i.e., a graph in which all vertices have degree
0 or 1) in a model where the only allowed operation is to query whether a set of vertices induces
an edge. This is motivated by a problem that arises in molecular biology. In the deterministic
nonadaptive setting, we prove a ( 1

2 + o(1))
(
n
2

)
upper bound and a nearly matching 0.32

(
n
2

)
lower

bound for the minimum possible number of queries. In contrast, if we allow randomness then we
obtain (by a randomized, nonadaptive algorithm) a much lower O(n log n) upper bound, which is
best possible (even for randomized fully adaptive algorithms).

1 Introduction

This paper is motivated by an important and timely problem in computational biology that arises
in whole-genome shotgun sequencing. Shotgun sequencing is a high throughput technique that has
resulted in the sequencing of a large number of bacterial genomes (over 70 at the time of this writing),
as well as Drosophila (fruit fly) and Mouse and the celebrated Human genome (at Celera). In all such
projects, we are left with a collection of contigs (long DNA sequences) that for various biological or
computational reasons cannot be assembled with even the best sequence assembly algorithms. The
contigs must be ordered and oriented and the gaps between them must be sequenced using slower,
more tedious methods. When the number of gaps is small (e.g., less than ten) biologists often use
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combinatorial PCR. This technique initiates a set of “bi-directional molecular walks” along the gaps
in the sequence; these walks are facilitated by PCR.

In order to initiate the molecular walks biologists use primers.1 Primers are designed so that
they bind to unique (with respect to the entire DNA sequence) templates occurring at the end
of each contig. A primer (at the right temperature and concentration) anneals to the designated
unique DNA substring and promotes copying of the template starting from the primer binding site,
initiating a one-directional walk along the gap in the DNA sequence. A PCR reaction occurs, and
can be observed as a DNA ladder, when two primers that bind to positions on two ends of the same
gap are placed in the same test tube.

If we are left with N contigs, the combinatorial (exhaustive) PCR technique tests all possible
pairs (quadratically many) of 2N primers by placing two primers per tube with the original uncut
DNA strand. PCR products can be detected using gels or they can be read using sequencing tech-
nology or DNA mass-spectometry. When the number of gaps is large, the quadratic number of PCR
experiments is prohibitive, so primers are pooled using K > 2 primers per tube; this technique is
called multiplex PCR.2 Our paper provides optimal strategies for pooling the primers to minimize
the number of biological experiments needed in the gap-closing process.

Our gap-closing problem can be stated more generally as follows. We are given a set of chemicals,
a guarantee that each chemical reacts with at most one of the others (because only primers on opposite
sides of the same gap create a reaction), and an experimental mechanism to determine whether a
reaction occurs when several chemicals are combined in a test tube. We wish to determine which
pairs of chemicals react with each other with a minimum number of experiments.

Our problem can be modeled as the problem of identifying or learning a hidden matching given
a vertex set and an allowed query operation ([6, 2], see [4, 5] for an alternative formulation). A
vertex will represent a chemical, an edge of the matching will represent a reaction, and a query
will represent checking for a reaction when a set of chemicals are combined in a test tube. Let
V = {1, 2, . . . , n}. We wish to identify an unknown (not necessarily perfect) matching M on V by
asking a small number of queries of the form

QF : does F contain at least one edge of M ? (1)

where F is a subset of V . This problem is of interest even in the deterministic, fully nonadaptive
case. We say that a family F of subsets of V solves the matching problem on V if for any two
distinct matchings M1 and M2 on V there is at least one F ∈ F that contains an edge of one of the
matchings and does not contain any edge of the other. Obviously, any such family enables us to learn
an unknown matching deterministically and non-adaptively, by asking the questions QF defined in
(1) for each F ∈ F .

1Primers are short preconstructed single-stranded polynucleotide chains to which new deoxyribonucleotides can be

“appended” by DNA polymerase.
2The earliest reference to multiplex PCR is [3]. Since then hundreds of papers report using the multiplex PCR

technique to answer a diverse set of questions in molecular biology. Multiplex PCR using a simple, nonoptimal pooling

strategy has recently been applied successfully at The Institute for Genomic Research (TIGR) to close gaps in a number

of genomes including Streptococcus [6].
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Our objective is to estimate the minimum possible cardinality of a family that solves the matching
problem on a set of n vertices. Toward this end, we will generalize the matching problem to finding
matchings contained in a graph H (not necessarily complete), and produce an H for which we can
solve the matching problem with a family of size roughly half the number of edges of H. By applying
a partitioning theorem of Wilson, we can then solve the matching problem on n vertices with a family
of size (1

2 + o(1))
(n

2

)
.

We show that our construction is tight up to a constant factor, as stated in the following theorem.

Theorem 1.1 For every n > 2, every family F that solves the matching problem on n vertices
satisfies

|F| ≥ 49
153

(
n

2

)
.

The proof of the lower bound is presented in Sections 3 and 4.
Next we consider randomized nonadaptive algorithms. In contrast to the 1-round deterministic

case we produce, somewhat surprisingly, an O(n log n) solution in this model. This solution is
asymptotically optimal up to a constant factor, because of the information-theoretic Ω(n log n) lower
bound, even if we do not restrict the number of rounds. We believe that the sharp difference between
deterministic and randomized nonadaptive algorithms here is remarkable; while one can hardly beat
the trivial

(n
2

)
bound in the deterministic case, the randomized fully nonadaptive algorithm is already

as efficient (up to a constant factor) as the best possible fully adaptive algorithm for the problem.
Moreover, the same technique shows that a hidden copy of any sparse graph, that is, a graph with
a linear number of edges in which all degrees are o(

√
n), can be found, with high probability, in a

one-round randomized algorithm making only O(n log n) queries.
Finally we present deterministic k-round algorithms that make O(kn1+1/(2(k−1))polylogn) queries.

Our deterministic 2-round algorithm asks 5
4n

3/2(1 + o(1)) queries of size at most n1/4 each. This is
optimal up to a factor of 5/4 among all algorithms that make queries of size at most n1/4, which
may be useful in view of practical limitations on multiplexing. For k ≥ 3 our algorithms are based
on a coloring lemma for projective planes that may be interesting in its own right.

Our techniques combine combinatorial and probabilistic tools with results about graph decom-
position and about the existence of certain designs. Throughout the paper, we omit all floor and
ceiling signs, whenever these are not crucial. All logarithms are in base 2, unless otherwise specified.

2 Related Work

In an earlier paper with Fortnow and Apaydin [2] we obtained a randomized, adaptive algorithm
that solves the matching problem in 8 rounds with an expected number of approximately 0.72n log2 n

queries. Our results here improve the number of rounds to 1 in the randomized case (at the cost
of doubling the number of queries. If we allow 2 rounds we can, in fact, keep the total number of
queries to be roughly 0.72n log2 n). We further show here that in the one round, deterministic case,
far more queries are needed, though some saving over the trivial algorithm is possible.
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Grebinski and Kucherov [4, 5] consider the problem of finding a Hamilton cycle. They obtain
an O(n log n) adaptive algorithm. They also have an O(n) purely nonadaptive solution using more
powerful queries (i.e., queries that report the number of edges induced by a set of vertices). Using
our methods here we can show that Ω(n2) queries are needed for finding a Hamilton cycle in the
deterministic nonadaptive case in our model. A similar Ω(n2) lower bound can be proved for the
problem of determining the number of edges of a hidden matching, as well as for the problem of
finding a hidden copy of any given bounded degree graph with Ω(n) edges.

3 Sparse families

A family of sets A = {A1, . . . , Ak} is sparse if there is a collection of pairwise disjoint pairs of
members of V =

⋃k
i=1Ai such that each Ai contains at least one of the pairs. Therefore, A is sparse

iff there is a matching on V such that the answer to each question QA for A ∈ A is “yes.” It is easy
to see that any set of more than (p2 + p+ 1)/2 lines in a projective plane of order p (in which each
line is of size p + 1) is not sparse, and our results here will imply that every family consisting of at
most 0.32

(m+2
2

)
sets, each of size at least m, is sparse.

For a family F of subsets define the t-weight of the family, denoted wt(F), as follows:

wt(F) =
∑
F∈F

1(|F |+t
2

) .
The 2-weight is simply called the weight and is denoted, for short, by w(F). The main lemma of this
section is the following.

Lemma 3.1 Every family F of sets whose weight is at most 49/153, is sparse.

Proof: If F contains a set of size 1 then w(F) ≥ 1/3 > 49/153. Thus we may and will assume that
all sets in F are of size at least 2. Let M ∈ F be a set of minimum cardinality, |M | = m.

For a pair of distinct elements p, q, define

F(p, q) = {F − {p, q} : F ∈ F , {p, q} 6⊆ F}.

Note that if we pick the pair {p, q} as a member of the matching we are trying to construct to show
that F is sparse, then the members of F(p, q) are precisely those that will have to be handled by the
rest of the matching. This suggests to prove the following claim:
Claim: There exists a pair of distinct elements p, q of F such that w(F(p, q)) ≤ w(F).
To prove the claim we choose p, q randomly and uniformly among all pairs of members of M and
show that the expected value E(w(F(p, q))) is at most w(F).

Henceforth F will denote an element of F − {M}. Let κ(F ) denote |F ∩M |. We have

E(w(F(p, q))) = w(F)− 1(m+2
2

) +
∑
F 6=M

(
κ(F )(m− κ(F ))(m

2

) (
1(|F |+1
2

) − 1(|F |+2
2

))− (κ(F )
2

)(m
2

) 1(|F |+2
2

))
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= w(F)− 1(m+2
2

) +
∑
k<m

∑
κ(F )=k

(
k(m− k)(m

2

) (
1(|F |+1
2

) − 1(|F |+2
2

))− (k
2

)(m
2

) 1(|F |+2
2

))

= w(F)− 1(m+2
2

) +
1(m
2

) ∑
k<m

∑
κ(F )=k

(
k(m− k)

((|F |+2
2

)(|F |+1
2

) − 1

)
−
(
k

2

))
1(|F |+2
2

)
= w(F)− 1(m+2

2

) +
1(m
2

) ∑
k<m

∑
κ(F )=k

(
2k(m− k)
|F |

−
(
k

2

))
1(|F |+2
2

)
≤ w(F)− 1(m+2

2

) +
1(m
2

) ∑
k<m

∑
κ(F )=k

(
2k(m− k)

m
−
(
k

2

))
1(|F |+2
2

)
= w(F)− 1(m+2

2

) +
1(m
2

) ∑
k<m

(
2k(m− k)

m
−
(
k

2

)) ∑
κ(F )=k

1(|F |+2
2

)
= w(F)− 1(m+2

2

) +
1(m
2

) ∑
k<m

µ(m, k)
∑

κ(F )=k

1(|F |+2
2

) ,
where we define µ(m, k) = 2k(m−k)

m −
(k

2

)
. For all m, we have µ(m, 0) = 0, µ(m, 1) = 2 − 2/m,

µ(m, 2) = 3− 8/m, and k ≥ 2⇒ µ(m, k) ≤ µ(m, 2). Thus µ(m, k) is maximized at k = 1 or k = 2.
Define µ(m) = maxk<m µ(m, k). Now we have

E(w(F(p, q))) ≤ w(F)− 1(m+2
2

) +
1(m
2

) ∑
k<m

µ(m, k)
∑

κ(F )=k

1(|F |+2
2

)
≤ w(F)− 1(m+2

2

) +
1(m
2

) ∑
k<m

µ(m)
∑

κ(F )=k

1(|F |+2
2

)
= w(F)− 1(m+2

2

) +
1(m
2

)µ(m)
∑
k<m

∑
κ(F )=k

1(|F |+2
2

)
= w(F)− 1(m+2

2

) +
1(m
2

)µ(m)
∑
F 6=M

1(|F |+2
2

)
= w(F)− 1(m+2

2

) +
1(m
2

)µ(m)

(
w(F)− 1(m+2

2

))

= w(F)− 1(m+2
2

) +
1(m+2
2

) (m+ 2)(m+ 1)
m(m− 1)

µ(m)

(
w(F)− 1(m+2

2

)) .
Thus it suffices to prove that

(m+ 2)(m+ 1)
m(m− 1)

µ(m)

(
w(F)− 1(m+2

2

)) ≤ 1

or equivalently that

w(F) ≤ m(m− 1)
(m+ 2)(m+ 1)µ(m)

+
1(m+2
2

) .
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As noted above, µ(m) is either µ(m, 1) or µ(m, 2). In the first case, we have

m(m− 1)
(m+ 2)(m+ 1)µ(m)

+
1(m+2
2

) =
m2 + 4

2(m+ 2)(m+ 1)
≥ 13

40

for m > 1 (with equality at m = 3). In the second case, we have

m(m− 1)
(m+ 2)(m+ 1)µ(m)

+
1(m+2
2

) =
1
3

m2(m− 1) + 6m− 16
(m+ 2)(m+ 1)(m− 8/3)

≥ 49
153

for m > 2 (with equality at m = 16). By assumption, w(F) ≤ 49/153 < 13/40, completing the proof
of the claim.

By repeatedly applying the claim we get smaller and smaller families of sets whose weights remain
bounded by 49/153. This process must terminate with a matching that captures all members of F ,
showing that F is sparse and completing the proof of the lemma. 2

4 The proof of the main result for the fully nonadaptive case

In this short section we present the proof of Theorem 1.1. We need the following simple fact.

Lemma 4.1 Let F be a family of subsets of V = {1, 2, . . . , n} that solves the matching problem on
V . Then, for every two distinct a, b ∈ V , the family Fa,b = {F − {a, b} : F ∈ F and {a, b} ⊆ F} is
not sparse.

Proof: Assume this is false, and Fa,b is sparse for some a, b ∈ V . Then, there is a matching M in
V −{a, b} so that each member of Fa,b contains an edge of M . But then the answers to each question
QF with F ∈ F for the two matchings M and M ∪ {a, b} are identical, contradicting the fact that
F solves the matching problem. 2

Proof of Theorem 1.1: Let F be a family of subsets of V = {1, 2, . . . , n} that solves the matching
problem on V . Let a, b be any pair of distinct vertices in V . We know by Lemma 4.1 that the family
Fa,b = {F − {a, b} : F ∈ F and {a, b} ⊆ F} is not sparse. Therefore, by Lemma 3.1,

∑
F∈F ,{a,b}⊆F

1(|F |
2

) =
∑

F ′∈Fa,b

1(|F ′|+2
2

) > 49
153

.

We can now assign, for each F ∈ F a weight of 1

(|F |2 )
to each pair of distinct elements a, b ∈ F . The

total weight distributed in this way is precisely |F|, as the total contribution of each F ∈ F is 1.
On the other hand, the total weight assigned to each pair a, b ∈ V is at least 49

153 , implying that
|F| ≥ 49

153

(n
2

)
, as needed. 2

Note that the same proof supplies a 49
153

(n
2

)
lower bound for the number of queries in any one-round

deterministic algorithm that determines the number of edges of a hidden matching on n vertices.
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5 Other hidden graphs

In this section we show how to extend the methods described in the previous two sections and obtain
a lower bound for the number of queries needed to find a hidden copy of a member of a given family
of graphs with certain properties. Throughout the section, we make no attempt to optimize the
absolute constants in our various estimates.

Let H be a family of labelled graphs on the set V = {1, 2, . . . , n}, and suppose H is closed under
isomorphism. Thus, for example, H may be the set of all Hamilton cycles on V , or all matchings on
V , or all perfect matchings on V . Our objective is to learn a hidden copy of some member of H by
asking a small number of queries QF as given in (1). We say that a family F solves the H-problem
if for any two distinct members H1 and H2 in H there is at least one F ∈ F that contains an edge of
one of the graphs Hi and does not contain any edge of the other. Obviously, any such family enables
us to learn an unknown member of H deterministically and non-adaptively, by asking the questions
QF defined in (1) for each F ∈ F .

Theorem 5.1 There exists an absolute constant c > 0 such that the following holds.
Let H be a family of graphs on V , closed under isomorphism, and suppose that there are two distinct
graphs H1,H2 ∈ H and a set of vertices D ⊂ V , |D| = d satisfying the following:
(i) The graphs obtained from H1 and from H2 by omitting all edges connecting two vertices of D are
identical, and
(ii) There is a matching of at least pn edges in H1 which contains no vertices of D (clearly this
matching is also a matching in H2).
Then, if 1/p > d, every family F that solves the H-problem satisfies |F| ≥ cp

2

d2

(n
2

)
.

Note that this result provides an Ω(n2) lower bound for the problem of learning a perfect matching or
a Hamilton cycle, and, more generally, the problem of learning a hidden copy of any fixed, bounded-
degree graph with Ω(n) edges. It also provides an Ω(n2) lower bound for the problem of finding a
hidden copy of a vertex disjoint union of a clique of size n − 3 and a single edge, but not for the
problem of finding a hidden copy of a vertex disjoint union of a clique of size n− 2 and a single edge
(and indeed it is easy to see that O(n) queries suffice for the latter problem).

A family F of subsets of V is p-sparse if there is a collection of at most pn pairwise disjoint pairs
of members of V such that each F ∈ F contains at least one of the pairs. Therefore, F is p-sparse
iff there is a matching on V consisting of at most pn edges such that the answer to each query QF
for F ∈ F is “yes.”

Lemma 5.2 There is an absolute constant c1 > 0 such that every family F of subsets of V of weight
at most c1p

2 is p-sparse.

Proof: Let V1 be a random subset of V obtained by picking each v ∈ V , randomly and independently,
to lie in V1 with probability p. As the expected size of V1 is pn, it follows that with probability at
least a half, its size is at most 2pn. For each set F ∈ F , the expected size of F ∩ V1 is clearly p|F |,
and as this size is a binomial random variable it follows, by the standard estimates for Binomial
distributions (see, e.g., [1], Appendix A, Theorem A.1.13), that the probability that it is not at least
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p|F |/2 does not exceed e−p|F |/8. Since the weight of F is at most c1p
2 for some (small ) c1, we

conclude that each set in F is of size at least, say, 100/p. As e−px/8 < 1
p2(x+2

2 ) for all x > 100/p,

it follows that the probability that there is some set F ∈ F such that |F ∩ V1| < p|F |/2 is smaller
than w(F)

p2 ≤ c1 < 1/2. Therefore, there exists a set V1 ⊂ V of cardinality at most 2pn so that
|F ∩ V1| ≥ p|F |/2 for all F ∈ F . As |F | > 100/p for each F ∈ F , this implies that the weight of the
family F1 = {F ∩ V1 : F ∈ F} is at most, say, 8

p2w(F) ≤ 8c1 < 49/153 (assuming c1 is sufficiently
small). By Lemma 3.1, F1 is sparse, and as |V1| ≤ 2pn, it follows that F is p-sparse. 2

Lemma 5.3 Let H, V , n, d, and p be as in Theorem 5.1. Let F be a family of subsets of
V = {1, 2, . . . , n} that solves the H-problem. Then, for every subset D ⊂ V , |D| = d, the family
FD = {F −D : F ∈ F , |F ∩D| ≥ 2} is not p-sparse.

Proof: Assume this is false, and suppose FD is p-sparse for some D′ ⊂ V , |D′| = d. Then, there
is a matching M of size at most pn in V −D′ so that each member of FD′ contains an edge of M .
The matching M can be completed to a graph with no edges in D′ which is isomorphic to the graph
obtained from H1 (or H2) by omitting the edges inside D, where the isomorphism maps D onto D′.
It is now possible to extend this graph to a copy of H1, or to a copy of H2, by only adding edges
inside D′. But then the answers to each question QF with F ∈ F for these two distinct members of
H are identical, contradicting the fact that F solves the H-problem. 2

Proof of Theorem 5.1: Let F be a family of subsets of V = {1, 2, . . . , n} that solves theH-problem.
By Lemma 5.2 and Lemma 5.3, for every set D consisting of d vertices of V , the weight of the family
FD = {F −D : F ∈ F , |F ∩D| ≥ 2} is at least c1p

2. We claim that

∑
F∈F ,|F∩D|≥2

1(|F |
2

) ≥ c2p
2,

for every D as above (and for an appropriately chosen c2 > 0). Indeed, if there is a set F ∈ F of size
at most, say, 10/p, that intersects D in at least 2 elements, this follows immediately. Otherwise, by
the assumption that 1/p > d,

1(|F |−d+2
2

) ≤ 2
1(|F |
2

) ,
and the claim follows from the fact that the weight of FD is at least c1p

2.
If D is a random subset of d vertices of V , then for every F ∈ F , the probability that |D∩F | ≥ 2

is at most
(d
2

)(|F |
2

)
/
(n

2

)
. It follows that the expected value of the random variable

∑
F∈F ,|F∩D|≥2

1(|F |
2

)
is at most

(d
2

)
|F|/

(n
2

)
, and as this random variable is always at least c2p

2, the desired result follows.
2
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6 An upper bound for the fully nonadaptive case

In this section we show how to design families of size (1
2 + o(1))

(n
2

)
to solve the matching problem on

n vertices. It will be helpful if we first generalize the matching problem. We say that a family F of
cliques contained in G solves the matching problem on G if for any two distinct matchings contained
in G, there is at least one clique in F that contains an edge of one of the matchings and does not
contain any edge of the other. (Note, for example, that if G is triangle free then F must be a set of
edges.) The matching problem on n vertices is thus the same as the matching problem on Kn. Let
f(G) denote the size of the smallest family that solves the matching problem on G.

Throughout this section, let E(H) denote the edge set of a graph H, and let gcd(H) denote the
greatest common divisor of the degrees of all vertices in H.

Theorem 6.1 (Wilson [7]) For every graph H there exists a constant N such that for all n ≥ N ,
Kn is the union of

(n
2

)
/|E(H)| pairwise edge-disjoint graphs isomorphic to H if and only if

(n
2

)
is

divisible by |E(H)| and n− 1 is divisible by gcd(H).

Corollary 6.2 For every fixed graph H,

f(Kn) ≤ f(H)
|E(H)|

(
n

2

)
+O(n).

Furthermore, for fixed H, the solution to the matching problem for Kn is constructive.

Proof: By Wilson’s theorem, Kn is the union of
(n

2

)
/|E(H)| graphs isomorphic to H. Solve the

matching problem in each of those graphs with a family of size f(H). 2

We say that a family F determines the status of an edge e if for every pair of matchings M1,M2

such that e ∈ M1 and e /∈ M2 there is at least one clique F that contains an edge of one of the
matchings and does not contain any edge of the other.

The reader may easily verify the following lemma:

Lemma 6.3 (Two Thirds) Let a, b, c, x be four distinct vertices. Assume that F determines the
status of {a, b} and {b, c}. If F contains the two triangles {a, b, x} and {b, c, x}, then F also deter-
mines the status of {a, x}, {b, x}, and {c, x}.

We note in passing that one may easily apply the Two Thirds lemma to obtain a solution of size
2
3

(n
2

)
+O(n).

Definition 6.4 (HEX+
s ) Let s ≥ 1. Tile a hexagon having side length s with unit equilateral trian-

gles. Add one more vertex Z and edges from Z to every vertex in the tiling. Call the resulting graph
HEX+

s .

The tiling above contains v = 3s2 + 3s + 1 vertices, e = 9s2 + 3s edges, and f = 6s2 triangles.
Therefore the graph HEX+

s contains v+ e = 12s2 + 6s+ 1 edges. We solve the matching problem on
HEX+

s with the following tests:

9



Tetrahedra T ∪ {Z}, for every triangle T in the tiling,

Boundary every boundary edge of the tiling, and every edge from Z to a point on the boundary.

As a warmup, let us see why these tests suffice, assuming that Z is unmatched. In this case, the
tetrahedra queries are equivalent to triangles, and we just apply the two-thirds lemma repeatedly,
starting at the boundary of the tiling.

Now let us see why these tests suffice in general. Try the following cases in order.

Case 1: For some Y on the boundary of the tiling, ZY ∈ M . This edge is tested, so we
know ZY ∈M . Finish as in the warmup.

Case 2: For some Y in the interior of the tiling, ZY ∈M . In this case all six tests containing
Y say yes. Call that the 6-triangle property for Y . If only one point has the 6-triangle property then
we know that that point is matched to Z. If three distinct points have the 6-triangle property, it is
easy to check that they must be adjacent in a straight line, and the middle one must be matched
to Z. Consequently, no more than three points can have the 6-triangle property. In either of those
subcases we finish as in the warmup.

If exactly two points have the 6-triangle property, then they must be adjacent; we proceed as in
the warmup until we reach the 10 triangles containing those two points. With the aid of the tests
already performed, a simple case analysis tells us which point is matched to Z.

Case 3: For all Y in the tiling, ZY /∈ M . Then no point has the 6-triangle property, so we
know that Z is unmatched. Proceed as in the warmup.

The total number of tests is f + 12s = 6s2 + 12s. The ratio of tests to edges is

(6s2 + 12s)/(12s2 + 6s+ 1) =
1
2

+
18s− 1

24s2 + 12s+ 2
.

Combining this with the Corollary of Wilson’s Theorem, we see that f(Kn) = (1/2 + O(1/s))
(n

2

)
.

Letting s be a slowly growing function of n, we obtain

Corollary 6.5

f(Kn) ≤
(

1
2

+ o(1)
)(

n

2

)
.

7 Probabilistic nonadaptive algorithms

In this section we present a very efficient randomized algorithm for the matching problem. The
simplest version of the algorithm queries bn log n random subsets of size c

√
n each. The analysis

below shows that for an appropriate choice of b and c the algorithm solves, with high probability, the
matching problem in one round. Since we believe that this algorithm and some of its variants may
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be of practical interest, we do make here some efforts to optimize the absolute constant obtained in
the estimate for the total number of queries. It turns out that in order to improve the constant, it
is better to ask the queries according to randomly shifted (modified) projective planes. The details
follow.

Procedure RPP: Testing according to a random projective plane We assume now that
n = p2 + p + 1 for some prime p. Testing according to a random projective plane consists of the
following: Randomly permute our n vertices and identify them with the points of the projective
plane P of order p. Perform one test for each line.

Now consider a pair (x, y). Exactly one line in P contains x and y. The probability that that line
contains no (other) edge of M is at least the value of this probability when the matching is perfect
and xy is not a matching edge. It is not difficult to see that in this case, the probability is precisely:

(n− 4)(n− 6) . . . (n− 2p)
(n− 2)(n− 3) . . . (n− p)

.

Indeed, the number of ways to choose an ordered set of the other p − 1 points of the line (besides
x and y) without containing any matching edge is the numerator, as after i points (including x and
y) have already been chosen, there are n − 2i possibilities for choosing the next point, which has
to be different from the chosen points and their mates. The denominator is the total number of
possibilities for choosing an ordered set of p− 1 points. The last expression is at least

e−(1−o(1)) p
2

2n = e−1/2(1− o(1)).

Testing according to d log n random projective planes Perform Procedure RPP d log n times
independently in parallel, for some real number d. The probability that every line containing x and y

contains an edge of M (other than possibly (x, y)) is at most π(d) =
((

1− e−1/2
)d

(1 + o(1))
)logn

.

If we choose d = (1 + o(1)) ln 2/ ln (1/(1− e−1/2)) ≈ 0.74, then π(d) ≤ 1/n.
Consequently, those tests suffice to identify all but n/2 non-matching edges on average. Those

remaining nonedges and all matching edges can be identified in a second round with only n tests.
Thus we have a 2-round algorithm for the matching problem that makes an expected number of
approximately 0.74n log n tests and makes no errors.

If we choose d twice as large, i.e., d = 2 ln 2/ ln (1/(1− e−1/2)) + ε for some arbitarily small ε (say
d ≈ 1.49), then π(d) = o(1/n2). Consequently, those tests suffice to identify all non-matching edges
with high probability. Once we have identified all nonedges, the same reasoning shows that all the
matching edges are identified with high probability as well. Thus we have a 1-round algorithm for
the matching problem that makes an expected number of approximately 1.49n log n tests and makes
no errors.

Point doubling These constants can be improved. When every vertex is in the same number of
tests, the ideal test size is approximately

√
(2 ln 2)n, but there are no designs like the projective

11



plane with sets of size greater than
√
n. Fortunately, we do not need every pair of points to belong

to exactly one set. It suffices to construct designs in which every pair of points belongs to at least
one set, provided that we do not generate too many sets in the process. This can be accomplished
rather easily by randomly “doubling” some of the points in the projective plane. We double a point
x by adding a new point x′ to each line that contains x.

To be precise, we assume now that n = d(2 ln 2)me, where m = p2 + p + 1 and p is prime. We
start with the projective plane of order p and double d(2 ln 2− 1)me randomly chosen points. This
results in n points. We still have m ≈ n/(2 ln 2) lines. By the law of large numbers each of those
lines has approximately 2 ln 2

√
m ≈

√
(2 ln 2)n points with high probability.

Now, let us look at a single design and a single pair of points x, y. Consider a “line” containing
x and y. (If x and y are not the duplicates of a single point, there is one such line, else, there are
p+ 1 such lines, and then it suffices to consider one of them.) Let t ≈

√
(2 ln 2)n be the number of

points on this line. The probability that it contains no (other) edge of M , besides, possibly, xy, is,
by the same reasoning described above, at least

(n− 4)(n− 6) . . . (n− 2t+ 2)
(n− 2)(n− 3) . . . (n− t+ 1)

= e−(1+o(1)) t
2

2n = (1/2)(1 + o(1)).

Take, now d log n random projective planes with doubled points of the type above. The probability
that every “line” containing x and y contains an edge of M (other than possibly (x, y)) is at most
π′(d) =

(
(1/2)d

(
1 + o(1)))logn. Thus π′(1 + o(1)) = 1/n and π′(2 + o(1)) = 1/n2. Since each design

contains approximately n/(2 ln 2) “lines,” we obtain the following.

Theorem 7.1 The matching problem on n vertices can be solved by probabilistic algorithms with the
following parameters:

• 2 rounds and (1/(2 ln 2))n log n(1 + o(1)) ≈ 0.72n log n tests

• 1 round, and (1/ ln 2)n log n(1 + o(1)) ≈ 1.44n log n tests.

Note that the algorithms make no errors in the sense that when we get the answers we know
which edges are matching edges and which are not. With high probability, we get all the information
in the 1-round algorithm; in the rare event we do not, we know it, and can make an additional set of
queries for all the edges whose status has not been determined. In the 2-round algorithm we always
get all the information, but with positive probability we will have to ask more than n queries in the
second round.

Note also that the algorithms described here can be easily modified to find a hidden copy of any
graph with O(n) edges and with maximum degree O(

√
n) in one randomized round, using O(n log n)

queries.

8 Deterministic k-round algorithms

In this section we present deterministic k-round algorithms that make at mostO(n1+1/(2(k−1))polylogn)
queries per round. In the special case k = 2, we do not need the polylogn factor. All of our deter-
ministic algorithms are constructive.
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A lemma about the chromatic number of the graph consisting of all edges contained in half the
lines of a projective plane will allow us to reduce the general problem to a bipartite matching problem.
The lemma, which may be interesting in its own right, is proved by considering the eigenvalues of
the plane’s incidence matrix.

Lemma 8.1 (Coloring) Let P be a finite projective plane with n points. Obtain Q by deleting at
least n/2 of P ’s lines. Let G = (V,E) where V is P ’s point set and E consists of all pairs (x, y) such
that there is a line in Q containing both x and y. Then G is

√
n lnn(1 + o(1)) colorable using color

classes of size less than
√
n. Furthermore such a coloring can be found in time polynomial in n.

The basic idea in the proof of this lemma is as follows. Consider a set B of points. On average,
a line will contain about |B|/

√
n points. We will show that if B is not very small then most lines

contain at least half that number of points. This will allow us to greedily choose our color classes
from among the lines that were deleted from P . We need the following Lemma, whose proof is
essentially identical to that of Lemma 9.2.4 of [1].

Lemma 8.2 Let G = (U, V ;E) be a d-regular bipartite graph with classes of vertices U and V of
size n each. Let A = (Au,v : u ∈ U, v ∈ V ) be the (bipartite) adjacency matrix of G given by Au,v = 1
iff uv ∈ E and Au,v = 0 otherwise. Suppose, further, that every eigenvalue of AtA except the largest
(which is d2) is at most λ2. Then, for every B ⊆ V ,

∑
u∈U

(
|N(u) ∩B| − d |B|

n

)2

≤ λ2|B|
(

1− |B|
n

)
.

Let P be a projective plane of order p. Thus it has n = p2 + p+ 1 points. Let G be the incidence
graph of P , i.e., the bipartite graph with classes of vertices U and V , with |U | = |V | = n, in which
V is the set of points and U is the set of lines, where uv is an edge iff the line u contains the point v.
If A is the adjacency matrix of G, then AtA is a matrix in which all diagonal entries are p + 1
and all other entries are 1. Consequently, the largest eigenvalue of AtA is (p + 1)2 and all its other
eigenvalues are equal to p. It follows that for every set of points B ⊂ U , we can bound the number
of lines v containing less than d|B|

2n points of B by the above lemma. Namely∣∣∣∣{v ∈ V : |N(v) ∩B| < d

2
|B|
n

}∣∣∣∣ <
4λ2

d2

n2

|B|

=
4p

(p+ 1)2

n2

|B|

≤ 4n3/2

|B|
.

Therefore, if |B| > 10
√
n then every set consisting of 0.4n lines contains a line that contains at least√

n
2
|B|
n = |B|

2
√
n

elements of B. Now we are in a position to prove

Corollary 8.3 Every set S consisting of at least 0.4n lines contains a subset consisting of at most√
n lnn lines covering all but at most 10

√
n points.
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Proof: Initially, let B = V . As long as |B| ≥ 10
√
n, we may choose a line in S that contains

at least a 1
2
√
n

fraction of the points in B, and then remove those points from B. After at most
2
√
n ln[n/(10

√
n)] <

√
n lnn iterations, we will have reduced B to size at most 10

√
n. 2

To complete the proof of the Coloring Lemma, we take our set of lines to be the ones deleted
from P . Our color classes are the

√
n lnn lines promised by the preceding corollary as well as the

10
√
n singletons not covered by those lines. If a point belongs to more than one of those lines, then

we can choose its color class arbitrarily from among them. 2

Lemma 8.4 (First Bipartite) Assume that M is a nonempty matching on V . Let V be the disjoint
union of L and R where |R| ≥ 2, and assume we know that neither L nor R contains an edge of M .
We can learn M with a k-round algorithm that makes at most |M ||L|1/k log |R| tests per round.

Proof: The proof is by induction on k. If k = 1, then we can perform a parallel binary search for
each element of L to find its match, if any, in R. The number of tests performed is |L| log |R|.

Now let k ≥ 2 and assume we have a (k−1)-round algorithm that makes at most |M ||L|1/(k−1) log |R|
tests per round. Let t = |L|1/k. Partition L into t pieces L1, . . . , Lt of size |L|/t. In round one, test
Li ∪ R for each i. At most |M | of those sets can contain an edge, say Li1 ∪ R, . . . , Lim ∪ R where
m ≤ |M |. Apply the inductive hypothesis to the matching problems on those m sets. Let ej denote
the number of edges in Lij . The number of tests per round is at most∑

j

ej(|L|/t)1/(k−1) log |R| = |M ||L|1/k log |R|

2

Lemma 8.5 (Second Bipartite) Assume that M is a nonempty matching on V . Let V be the
disjoint union of L and R, and assume we know that neither L nor R contains an edge of M . Let
c be a real number such that 0 < c < 1, c|L|1/k ≥ 1. Let k ≥ 2. We can learn M with a k-round
algorithm that makes at most c|L|1/k tests in the first round and at most |M ||L|1/k log |R|/c1/(k−1)

tests in each subsequent round.

Proof: Let t = c|L|1/k. Partition L into t pieces L1, . . . , Lt of size |L|/t. In round one, test Li ∪R
for each i. At most |M | of those sets can contain an edge, say Li1 ∪R, . . . , Lim ∪R where m ≤ |M |.
Apply the First Bipartite Lemma to the matching problems on those m sets. Let ej denote the
number of edges in Lij . The number of tests performed in round one is t = c|L|1/k and in each
subsequent round it is at most∑

j

ej(|L|/t)1/(k−1) log |R| = |M ||L|1/k log |R|/c1/(k−1)

2

Theorem 8.6 For 3 ≤ k ≤ log n, there is a deterministic k-round algorithm for the matching
problem that asks O(n1+1/(2(k−1))(log n)1+1/(k−1)) queries per round.
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Proof: After adding o(n) virtual unmatched points we may assume that n is of the form p2 + p+ 1
where p is prime; these virtual points will be omitted from any actual tests. In round one, construct
a projective plane with n points, and perform one test for each line. Delete every line that contains
no edge of the matching. Construct G and its color classes as in the Coloring lemma. If (x, y) ∈M
then x and y must belong to distinct color classes of G. For each pair of color classes apply the
Bipartite Lemma with c = log n1/(k−1)/ log n and the number of rounds = k − 1. The number of
tests in round two is at most

O(

(√
n log n

2

)
c
√
n

1/(k−1)) = O(n1+1/(2(k−1))(log n)1+1/(k−1)).

The number of tests performed in any of the rounds 3 through k is bounded by

O((n/2)
√
n

1/(k−1) log
√
n/c1/(k−2)) = O(n1+1/(2(k−1))(log n)1+1/(k−1)).

2

Our 2-round deterministic algorithm uses finite projective spaces of dimension 4 in a somewhat
different way. It has the advantage of using queries whose size is approximately n1/4 or less.

Theorem 8.7 There is a deterministic 2-round algorithm that asks 5
4n

3/2(1 + o(1)) queries of size
at most n1/4 each.

Proof: Choose m ≈ n1/4 such that Kn is the disjoint union of approximately n3/2 copies of Km.
(Use a projective or affine space of dimension 4 where each line has length m.) (1) Ask one query
for each copy of Km. At most n/2 of them can contain an edge. (2) Use brute force to find those
edges. 2

9 Open Problems

• Determine the smallest possible constant c such that there is a deterministic nonadaptive
algorithm for the matching problem on n vertices that makes c

(n
2

)
(1 + o(1)) queries.

• Find more efficient deterministic k-round algorithms or prove lower bounds for the number of
queries in such algorithms.
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