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ABSTRACT 
A linear forest is a forest in which each connected component is a path. The 
linear arboricity la(G) of a graph G is the minimum number of linear forests 
whose union is the set of all edges of G. The linear arboricity conjecture asserts 
that for every simple graph G with maximum degree A = A(G), 

Although this conjecture received a considerable amount of attention, it has 
been proved only for A _-< 6, A = 8 and A = 10, and the best known general 
upper bound for la(G) is la(G) _-< [3A/5] for even A and la(G) _-< [(3A + 2)/5] 
for odd A. Here we prove that for every t > 0 there is a Ao = Ao(e) so that 
la(G) _-< (½ + e)A for every G with maximum degree A >_- Ao. To do this, we first 
prove the conjecture for every G with an even maximum degree A and with 
girth g > 50A. 

1. Introduct ion 

All g raphs  cons ide red  here  are  finite, u n d i r e c t e d  and  s imple,  i.e., have  no  

loops  a n d  no  mul t ip le  edges, unless o therwise  specified. A linear forest is a 

fores t  in wh ich  every  c o n n e c t e d  c o m p o n e n t  is a path .  T h e  linear arboricity 

la (G)  o f  a g raph  G is the  m i n i m u m  n u m b e r  o f  l inear  forests  in G,  whose  u n i o n  

is the  set o f  all edges o f  G. This  n o t i o n  was  i n t r o d u c e d  by  H a r a r y  in [HI as one  

o f  the  cove r ing  inva r i an t s  o f  graphs.  T h e  fo l lowing  conjec ture ,  k n o w n  as the  

linear arboricity conjecture, was ra ised in [ A E H  1]: 
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CONJECTURE 1.1 (The linear arboricity conjecture). The linear arboricity 
of every d-regular graph is [(d + 1)/2]. 

Notice that since every d-regular graph G on n vertices has nd/2 edges, and 
every linear forest in it has at most n - 1 edges, the inequality 

nd d 
la(G) > - -  > - 

2(n - 1) 2 

is immediate. Since la(G) is an integer this gives la(G)>_-~-(d + 1)/2]. The 
difficulty in Conjecture 1.1 lies in proving the converse inequality: la(G)=< 
[-(d + 1)/2]. Note also that since every graph G with maximum degree A is a 
subgraph of a A-regular graph (which may have more vertices, as well as more 
edges than G), the linear arboricity conjecture is equivalent to the statement 
that the linear arboricity of every graph G with maximum degree A is at most 
F(A + 1)/2]. 

Although the linear arboricity conjecture received a considerable amount of 
attention, it has been proved only in a few special cases. The conjecture was 
proved for d = 3, 4 by Akiyama, Exoo and Harary in [AEH 1 ], [AEH2] (see also 
[AC] for a short proof). The cases d = 5, 6 were solved independently by 
Enomoto [E], Peroche [P] and Tomasta [T] (only for d = 6). The case d -- 8 
was proved by Enomoto and Peroche [EP], and the case d = l 0 was proved by 
Guldan [G 1 ]. In the general case, as mentioned above, the linear arboricity of 
every d-regular graph is trivially at least [(d + 1)/2]. In [AEH2] it was shown 
that for each such G, la(G) _-_- V3[-d/2]/2]. This was improved in [P] to la(G) _-< 
V2d/3] for even dand  la(G) _-< V(2d + 1)/3] for odd d. A further improvement is 
given in [EP], where it is shown that la(G) ___< V5d/8] for even d and la(G) 
[-(Sd + 3)/8] for odd d. Presently, the best known general bound, proved in 
[G2], is la(G) _-< V3d/5] for even d and la(G) _-< V(3d + 2)/5] for odd d. 

In this paper we prove that for every e > 0 there is a do = do(e) such that for 
every d >_- do the linear arboricity of every d-regular graph is smaller than 
(½ + e)d. To establish this, we first prove that the linear arboricity conjecture 
holds for every graph with an even degree of regularity d and with girth 
g >_- 50d. Similarly, we establish the conjecture for every graph with an odd 
degree of regularity d and with girth g >_- 100d that contains a perfect matching. 

Our method differs considerably from the ones used in the previous works 
on the problem, and relies heavily on probabilistic arguments. 

The paper is organized as follows. In Section 2 we prove Conjecture 1.1 
for graphs with an even degree of regularity and sufficiently large girth. In 
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Section 3 we show that for every e > 0 and for every d-regular graph G, 
½d < la(G) < (½ + e)d provided d > do(e). In the final Section 4 we describe 
briefly various related results that can be proved using our method.  

2. Graphs with large girth 

In this section we show that Conjecture 1.1 holds for all graphs with an even 
degree of  regularity and with sufficiently large girth. Specifically, we prove the 
following result. 

THEOREM 2.1. Let G be a d-regular graph, where d is an even integer, with 
girth g > 50d. Then 

la(G) = _ d + 1. 
2 

Moreover, the edges of G can be covered by d/2 linear forests and one matching. 

REMARK 2.2. The constant 50 can be somewhat reduced; we make no 
at tempt in optimizing the constants here and in the following results. 

To prove Theorem 2.1 we need the following result, known as the Lov~isz 
Local Lemma, first proved in [EL]. We urge the readers who are unfamiliar 
with the extemely simple proof  of this useful result to consult [EL] or [S]. 

LEMMA 2.3 (Lov~isz Local Lemma). Let A~ ,A2 , . . . ,A ,  be events in a 
probability space. A graph T---(V(T), E(T)) on the set of  vertices V(T)= 
{1, 2 , . . . ,  n} is called a dependency graph for At . . . . .  A, i f  for all i, A~ is 
mutually independentof all A i with { i , j }  q~E(T). Assume there exist n numbers 
Xl, x2, • • •, x, E [0, 1) such that 

Pr(A,)<x~ II (1 - x j )  
{i,j}EE(T) 

for all i, 1 < i < n. Then 

n 

Pr ~4i > I'I ( 1 -  x,). 
i I i = l  

In particular, with positive probabifity no Ai occurs. [] 

Using the last lemma, we now prove the following Proposition, which is the 
main tool in the proof  of Theorem 2.1. 

PROPOSITION 2.4. Let H = (V, E) be a graph with maximum degreed, and 
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let V = V~ U V2 U • • • U Vr be a partition o f  V into r pairwise disjoint sets. 

Suppose each set V~ is o f  cardinality I V, I >-- 25d. Then there is an independent 

set of  vertices W c_ V, that contains at least one vertex from each V~. 

REMARK 2.5. The constant 25 can be somewhat reduced. As ment ioned 
above, we make no at tempt in optimizing the constants. It is, however, easy to 
find some simple examples showing that it cannot be reduced to ½ (or less). A 
version of Proposition 2.4 for hypergraphs can be formulated and proved, by 
an easy modification of the proof  below. For our purposes here, the present 
version suffices. 

PROOF OF PROPOSITION 2.4. Clearly we may assume that each set V~ is of 
cardinality precisely g = 25d (otherwise, simply replace each V~ by a subset of 
cardinality g of it, and replace H by its induced subgraph on the union of these 
r new sets). Put p = 1/25d, and let us pick each vertex of H,  randomly and 
independently, with probability p. Let W be the random set of all vertices 
picked. To complete the proof  we show that with positive probability W is an 

independent  set of vertices that contains a point from each V~. For each i, 
1 < i < r, let Si be the event that W n V~ = ~ .  Clearly Pr(S~) = (1 - p)g. For 
each edge f o f  H, let A s be the event that W contains both ends o f f .  Clearly, 
Pr(As) = p2. Moroever, each event S~ is mutually independent  of all the events 

{Sj: 1 <=j < r , j  # i} U {Af: f n Vi = . ~ } .  

Similarly, each event A s is mutually independent  of all the events 

{S j :S  i N f = ~ }  U {Af, : f '  N f =  ~ } .  

Therefore, there is a dependency graph for the events ( S i : l  < i-5_ r} U 

{As: f E E }  in which each S - n o d e  is adjacent to at most g .  dAr-nodes (and to 
no Sj-nodes), and each As-node is adjacent to at most  2 Sj-nodes, and at most  
2d - 2 At-nodes.  It follows from Lemma 2.3 that if we can find two numbers x 
a n d y ,  0 < x  < 1, 0 < y  < 1 so that 

(2.1) 

and 

(2.2) 

_ 1 ~2sa 
(1 - p ) g  = 1 -~-d} = Pr(S i )<X(1- -  y)gd = x (1 - -  y)2'a= 

1 p 2  m 
(25d) 2 

- Pr(As) < y ( 1  - y ) 2 d - 2  "(1  - -  X )  2 
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then Pr(Aiee d I A j __< i ~r S~) > 0. One can easily check that x = ½, y = 1 / 100d 2 
satisfy (2.1) and (2.2). Indeed 

1 ~25a2:> 1 (1 

and 

l ( 1 - - -  
100d ~ 

Therefore, 

25d 2 ] = 3 > 1 [1 _ _ > _ j z s d  1 

100dE/ 8 e \ 25d/ 

1 '~2d-2(1'~2 1 ( 5 ~ )  
lOOd2/ \~ /  >_- 400d 2 1 -  

P r ( A d i  A ~¢,)>0, 
f~E l< i~r  

l 

(25d) 2" 

i.e., with positive probability, none of the events S~ or A I hold for W. In 
particular, there is at least one choice for such W _c V. But this means that this 
W is an independent set, containing at least one vertex from each V,. This 
completes the proof. I-1 

PROOF OF THEOREM 2.1. Let G = (U, F) be a d-regular graph with girth 
g >_- 50d. By a well known theorem of Petersen ([Pe], see also [BM]), F can be 
partitioned into d/2 pairwise disjoint 2-factors F~, . . . ,  Fd/2. Each F~ is a union 
of cycles Cij, C~2 . . . . .  Ci~,. Let V1, V2, . . . ,  Vr be the sets of edges of all the 
cycles { Cis : 1 < i <= d/2, 1 <= j <-_ r~ }. Clearly VI, V2, • . . ,  Vr is a partition of the 
set F of all edges of G, and by the girth condition, I ~ I > g > 50d for all 
1 =< i _-< r. Let H b e  the line graph of G, i.e., the graph whose set of vertices is 
the set F of edges of G and two edges are adjacent iff they share a common 
vertex in G. Clearly H is 2d - 2 regular. As the cardinality of each ~ is at least 
50d _-> 2 5 ( 2 d -  2), there is, by Proposition 2.4, an independent set of H 
containing a member from each ~ .  But this means that there is a matching M 
in G, containing at least one edge from each cycle C o of the 2-factors 
F~, . . . ,  Fan. Therefore M, Fl \ M, F2 \ M . . . .  , Fdn \ M are d/2 + 1 linear for- 
ests in G (one of which is a matching) that cover all its edges. Hence 

la(G) < - d +  1. 
2 

As G has I UI "d/2 edges and each linear forest can have at most I UI - 1 

edges, 

la(G)> IUI ~ / ( I U l  - l)>d'2 
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Thus la(G) -- d/2 + 1, completeing the proof. [] 

Two easy corollaries of Theorem 2.1, which will be useful in the next section, 

are the following. 

COROLLARY 2.6. Let G be a graph with maximum degree A and girth 
g > 100 .[-A/2~. Then VA/2~ < la(G) < VA/2~ + 1. 

PROOF. The lower bound is obvious, as any linear forest contains at most 
two edges incident with a vertex of maximum degree in G. To prove the upper 
bound,  observe that it is always possible to add vertices and edges to G and get 
a 2VA/2-]-regular graph H with girth g. By Theorem 2.1, the linear arboricity of 

this new graph H is precisely VA/2q + 1. As G is a subgraph of  H we conclude 

that la(G) < la(n)  = I-A/2-1 + 1. [] 

COROLLARY 2.7. Let G = (V, E) be a graph with girth g and maximum 
degree A > 2, where 5000A >_- g2. Then 

A 200A 
(2.3) la(a)  =< ~ + 

L g 

PROOF. By the well known theorem ofVizing ([V], see also [BM]) the edges 
of  G can be partit ioned into A +  I pairwise disjoint matchings 
Ml, M2 . . . . .  Ma+ i. This (as well as many other trivial arguments) suffices to 
show that la(G) < A + 1  < 3A/2, which implies inequality (2.3) for every 
g < 200. Hence we may asume that g > 200. Put  r = 2[g/100J and split the set 
of  the A + 1 matchings Mi . . . .  , MA+~ into s = V(A + l)/r7 pairwise disjoint 
sets S ~ , . . . ,  S,, each containing at most r matchings. For 1 < i < s, let Gi be the 
subgraph of G consisting of all edges in I,.Jjes, M:. The s graphs Gt . . . .  , Gs 
cover all edges of G. Moreover, the maximum degree in each G,- is at most r, 
and its girth is at least g > 10fir/27. Therefore, by Corollary 2.6, the linear 

arboricity of each Gi is at most Vr/27 + 1 = [_g/100J + 1. Consequently 

( la(G) < la(Gi) < s ([g/100J + 1) < A + 1 t- + 1 
= x 2.[g/100J 100J 

_A+.A+I__ [~00] 3 < A  1 0 0 ( A + l )  g 3  
= 2  2[g/100J + +2----'2 + g + 100+-2 

A 100A g A 200A 
~ - + ~ +  + 2 ~ - + ~ ,  
- 2 g 100 2 g 
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where in the last three inequalities we used the fact that g _-> 200 and 
5000A > g2 imply that 

1 100 g 100A 
- -  < - -  and - - + 2  < _  
2Lg/100_J = g 100 g 

This completes the proof. [] 

We conclude this section with the following proposition, that shows that 
under  certain conditions Conjecture 1.1 holds for an odd degree of regularity, 
too. The proof  here is similar to that of Theorem 2. l, but is somewhat more 
complicated. 

PROPOSITION 2.8. Let G = (U, F) be a d-regular graph, where d = 2k + 1 
is an odd integer, and with girth g > 100d. Suppose,further, that G contains a 
perfect matching Fo. Then 

d + l  
la(G) = k + 1 - 

2 

PROOF. By applying Petersen's Theorem to the 2k-regular graph 

(U, F - Fo) we conclude that there is partition o f F i n t o  k + 1 pairwise disjoint 
sets Fo, F b . . . ,  Fk, where F0 is the given matching and each Fi is a 2-factor of 
G. For i, 1 < i <_- k, let Ci~, C~2 . . . . .  C~, be the cycles in F~. Let V~, . . . ,  Vr be 
the sets of  edges of  all the cycles {C~j : 1 =< i _-< k, 1 __<j __< r,}. Recall that by the 
girth condition ] V~ ] > g ->_ 100d for all 1 _-< i _-< r. We now construct a graph 
H = (V(H), E(H)) as follows. The vertex set V(H) of H is V~ U • • • U V~ -- 
F - F0. Two vertices e, f o f H  (which are simply two edges of  G that are not in 
the matching F0) are adjacent in Hif f there  is an edge of Fo which is adjacent (in 
G) with both of them. (In particular, if e andfsha re  a common  vertex in G they 
are adjacent in H.) One can easily check that H is (4d - @regular.  As the 
cardinality of  each V~ is a least 100d > 25(4d - 6), there is, by Proposition 2.4, 
an independent  set Win H, containing a member  from each V~. But this means 
that W is a set of  edges in F - F0, that contains at least one edge from each 
cycle of each of the 2-factors F~, . . . ,  Fk, and contains no two edges incident 
with the same edge of  F0. Consequently, F0 U W is a linear forest (with 
connected components  of  length 1 or 3 each), and F~ \ W, F2 \ W, . . . .  F k \ W 
are also linear forests. Hence la(G) __< k + 1 -- (d + 1)/2. This, together with 
the trivial inequality la(G) > d/2 shows that la(G) = (d + 1)/2, completing the 
proof. I-I 
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3. The general ease 

The main result of this section is the following theorem. 

THEOREM 3.1. For e > 0 there is a do = do(e) such that for all d > do, the 
linear arboricity of any d-regular graph G satisfies 

½d < la(G) < (½ + e)d. 

Notice that this theorem implies that for every e > 0 and every graph G with 
maximum degree A > A0(e) the inequality la(G) < (½ + e)A holds. 

To prove the theorem, we need the following lemma, which shows that every 
regular graph contains an almost regular spanning subgraph with relatively 

large girth. 

LEMMA 3.2. For all sufficiently large d, any d-regular graph G = (V, E) 
contains a spanning subgraph H = (V, F) with the following two properties: 

(i) The girth g of  H satisfies 

(3.1) g >___ log d/20 log log d. 

(Here and throughout the paper all logarithms are in base e.) 
(ii) For every vertex v E V, the degree dn(v) of  v in H satisfies 

(3.2) [-log ~° d - log 6 d] < du(v) < [_log I° d + log 6 d]. 

PROOF. In the proof  we assume, whenever it is needed, that d is sutficiently 

large. Define 

s = log d/20 log log d and 
p = dt/2s- 1 __ log l° d 

d 

Clearly 0 < p < 1. Let us pick each edge of G, randomly and independently, 
with probability p,  to get a random set F of all the edges picked. To complete 
the proof  we show, using, again, the Lov~isz Local Lemma (Lemma 2.3), that 
with positive probability H - ( V, F)  satisfies (3.1) and (3.2). For every cycle C 
of length at most  s in G, let Ac be the event that F contains C. Similarly, for 

every vertex v E V, let By be the event that 

[dn(v) - log ~° d[ > log 6 d. 

Clearly, for every cycle C of length k, where 3 -_< k _-< s 
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1 
(3.3) Pr(Ac) = pk =dl ,  n~-k < _ _  

- -  d k -  1/2 " 

Similarly, by the standard estimates for Binomial distributions (see, e .g . ,  [B]) ,  

for every v E V 

1 1 
(3.4) Pr(Bd < e -1°edl2 = < 

dslOlostoga dlOs " 

Let ~ denote the set of all cycles of length at most s in G. Define a 

dependency graph T on the set of vertices {Ac : C ~ ~ }  U {By : v ~ V} as 
follows. Ac and Ac, are adjacent iff the two cycles C and C'  share a common 
edge in G. By and B~, are adjacent iff v and v' are adjacent in G. Ac and B~ are 
adjacent iff v is a vertex in the cycle C. One can easily check that T is a 
dependency graph for (Ac : C ~ cg} U {B~ : v ~ V}. For each k, 3 < k < s, let 
~k be the set of all cycles of length k in G. Clearly cg = U { ~k : 3 < k < s }. 
Notice that since G is d-regular, the number  of cycles of length r that contain a 
given vertex of G is at most d r- ~, whereas the number  of cycles of length r that 
contain a given edge of G is at most d r-2. Consequently, every B,-node in Tis  
adjacent in T to at most d '-1 Ac-nodes with C ~  cgr. Also, every By-node is 
adjacent in T to precisely d other B,,-nodes. Similarly, if C ~  ~k, every 
Ac-node is adjacent in T to  at most k B,-nodes, and to at most kd r-2 Ac,-nodes 
corresponding to cycles C ' E  cgr. We next apply Lemma 2.3 with the real 
numbers 0 < Xc < 1 and 0 < y, < 1 defined as follows. For each v E V, y, = 
1/d s. For each C E CCk, XC = 1/d k-  1. In view of the last paragraph, inequalities 
(3.3) and (3.4) and Lemma 2.3, the inequality 

holds, provided the following inequalities (3.5) and (3.6) hold: 

1 1 1 1 kd,-~. 1-- ( 3 < k = < s ) ,  
(3.5) dk-U---S<d k-I r-3 d ' - Y  \ 

1 i s (  
(3.6) dlO----] < ~-~ r=[I3 1-- d r-Ill Y' ' ' (1  - - ~ \  . 

Recall that d is large and that s = log d/20 log log d. Therefore, for each 

fixed k, 3 < k < s, 
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1 f i(1 1 ~ ' - ~ ' ( 1 - - ~ ) k > - - I  (l _ k)  03 ( 1 -  k) 
dk_l = dk_ t ,-3 d"-l /  \ 

1 > m  
d k 

and inequality (3.5) holds. Similarly 

) (   ) lll l I 1 -  1 d,-,. 1 > . . . .  > - -  
d" r-3 d"- l d s 4 s 2 d l°'~' 

establishing (3.6). We conclude that with positive probability none of  the 

events Ac or By hold for H = ( V, F). In particular, there is at least one choice 
for such an H. But this means that H is a spanning subgraph of G that satisfies 
(3.1) and (3.2). This completes the proof. [] 

We can now prove the following Proposition, which clearly implies 
Theorem 3.1. 

PROPOSITION 3.3. There exists a constant c > 0, such that the linear arbori- 

city o f  any d-regular graph G = (V, E) satisfies 

6000d • log log d 
½d < la(G) < ½d + + c. 

log d 

PROOF. The lower bound is trivial, since G has I VId/2 edges, and each 
linear forest in G contains at most [ V I - 1 edges. 

To prove the upper bound we argue as follows. Let c~ be a constant so that 

the assertion of Lemma 3.2 holds for every d > cl. Let c2 be a constant so that 

for every d > c2 the following inequality holds: Put d = d - Vlog t° d - log 6 d], 

then 

6000 (d  log log d d log log ~. 4000(log l° d + log 6 d)log log d > log 6 d + \ l o g a  log d / log d 
(3.7) 

Note that it is not too difficult to check that such c2 exists. This is because if 

x log log x 
f ( x )  = 

log x 
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then, as x tends to infinity, 

f ' ( x )  - - -  

log log x 

log x 

1 1 1 
. . . .  (log log x ) . -  (log x) log x x x 

+ x  
log 2 x 

log log x 

log x 
- - ( 1  + o(1)). 

Therefore, by the mean-value theorem, for large d there is some d', d < d' < d 

so that the left-hand side of  (3.7) is 

6000(1 + o(1)). (d - d) .  log log d '  
log d '  

> (1 + o(1))6000(log l° d - log 6 d) log log d 
log d 

The last quantity is clearly bigger, for sufficiently large d, than the right-hand 
side of(3.7). Therefore there is a c2 > 0 so that for d >_- c2, (3.7) holds. We now 
prove the upper bound in Proposition 3.3 with c = max(100, c~, c2) by induc- 
t ion on d. For d _-< c the inequality is trivial. Thus we may assume the upper 
bound for all d' < d, and prove it for d, where d >_- c. Let G = (V, E) be a 
d-regular graph. Since d >_- Cl we may apply Lemma 3.2 to conclude that there 
is a spanning subgraph H = (V, F)  of G satisfying (3.1) and (3.2). H clearly 
satisfies the assumptions of Corollary 2.7, and hence, by that Corollary and by 
the bounds (3.1), (3.2) for the girth of H and its maximum degree: 

(3.8) la(H) _- < l°gl° d + log 6 d ~- 4000(log l° d + log 6 d)log log d 

2 log d 

Let T -- (V, E - F)  be the graph obtained from G by deleting from it the edges 
of  H.  By (3.2), the maximum degree in Tis  at most d = d - Flt~g t° d - log 6 d]. 
Therefore one can add, if necessary, edges and vertices to T to embed it in a d 
regular graph. By applying the induction hypothesis we get an upper bound for 
the linear arboricity of  this new graph, which is clearly also an upper  bound for 
the linear arboricity of T. This gives 

6000d log log d 
(3.9) la(T) < ½d + + c. 

log d 



322 N. ALON Isr. J. Math. 

Combining (3.8) and (3.9) we obtain 

la(G) < la(H) + la(T) 

6000d log log d log ~° d + log 6 d 
_-<½d+ + c +  

log d 2 

+ 
4000(log I° d + log 6 d)" log log d 

log d 

6000d log log d 
< ½ d +  + c ,  

log d 

where the last inequality follows from inequality (3.7), which holds since 

d > c2. This completes the proof of the induction step, and the assertion of 
Proposition 3.3 (as well as that of Theorem 3.1) follows. [] 

4. Related results 

(1) A d-regular digraph is a directed graph in which the indegree and the 
outdegree of every vertex is precisely d. A linear directed forest is a directed 
graph in which every connected component is a directed path. The di-linear 
arboricity dla(G) of a directed graph G is the minimum number of linear 
directed forests in G whose union covers all edges of G. In [NP] the authors 

conjecture that for every d-regular digraph G, dla(G) = d + 1, and prove this 
conjecture for d < 2. This easily implies that for every d-regular digraph G, 

d + 1 < dla(G) < 3Fd/27. 

The proofs of Theorems 2.1 and 3.1 can be easily modified to establish the 
following two propositions, whose detailed proof is omitted. 

PROVOSmON 4.1. Let G be a d-regular graph with no directed cycles of 
length smaller than 50d. Then dla(G) = d + 1. Moreover, the edges of  G can be 
covered by d linear directed forests and a matching. [] 

PRovosrrioN 4.2. For every e > 0 there is a do = do(e) such that for every 
d > do and every d-regular digraph G the inequality 

d + 1 < dla(G) < (1 + e)d 
holds. [] 

(2) In lAD], [AS] the authors consider the linear arboricity la(G) of a 
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loopless multigraph G, that is, the minimum number of linear forests in G 
whose union covers all edges of G. The analogue of Conjecture 1.1 here is that 
for every loopless multigraph G with maximum degree A and maximum edge- 

multiplicity # we have 

la(G) _-</---~/• 

By a simple modification of Theorem 3.1 one can prove the following result, 

whose detailed proof is omitted. 

PROPOSITION 4.3. For every f-txed it and e there is a Ao = Ao(it, e) so that for 
every A > Ao, the linear arboricity of  every loopless multigraph G with maxi- 
mum degree A and maximum edge multiplicity It is at most (~ + e)A. [] 

(3) A k-linear forest is a forest whose connected components are paths of 
length k or less. The k-linear arborieity lak(G) of a (simple, undirected) graph G 
is the minimum number of k-linear forests whose union is the set of all edges of 
G. This notion is introduced in [HP1] and studied in [HP2], [BFHP]. The 
analogue of Conjecture 1.1 for this case is raised in [HP1]. Applying our 
method we can prove here that for every graph G, with an even degree of 
regularity d, with girth g >= 50d and for every k >___ 100d lak(G) = la(G) = 
d/2 + 1. A somewhat complicated analogue of Theorem 3.1 for the function 
lak(G) can also be formulated and proved. 

(4) A star forest is a forest whose connected components are stars. The star 
arboricity st(G) of a graph G is the minimum number of star forests whose 
union is the set of all edges of G. This notion is introduced in [AK], where it is 
shown that the star arboricity of the complete graph on n vertices is rn/2-] + 1. 
In [Ao] it is shown that for every complete-multipartite graph G with equal 
color classes, the star arboricity does not exceed Fd/2] + 2, where d is the 
degree of regularity of G. Notice that trivially for every d-regular graph G, 
st(G) > d/2. In view of the two results stated above, and in analogy to the 
linear arboricity conjecture, one may be tempted to conjecture that for every 
d-regular graph G, d/2 < st(G) < d/2 + c for some constant c. However, as we 
show in a forthcoming paper [AA] this is not the case. There are d-regular 
graphs G for which st(G) > d/2 + f~(log d). On the other hand, by applying 
probabilistic methods in a similar way to the one done in this paper, we show 

in [AA] that for every e > 0 the star arboricity of any d- regular graph G does 
not exceed (½ + e)d, provided d > do(e). 



324 N. ALON Isr. J. Math. 

ACKNOWLEDGEMENT 

! would like to thank Y. Roditty for telling me about many of the papers 
dealing with linear arboricity. I am also grateful to Y. Caro for helpful 
comments. 

Note added in proof. By replacing Lemma 3.2 by another application of the 
Local Lemma we can improve the estimate in Proposition 3.3 to la(G) < ½d + 
O((d log d)2~3). Another recent result, related to Proposition 2.4, is: Let H = 
(F, Em U E2) be a graph, where E1 is a union ofd matchings, and E2 is a union of 
vertex disjoint cliques, of size 2 d each. Then the chromatic number of H is 2 d. 
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