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1. Introduction The primal-dual method is a powerful algorithmic technique that has proved to be
extremely useful for a wide variety of problems in the area of approximation algorithms. The method has
its origins in the realm of exact algorithms, e.g., for matching and network flow. In the area of approx-
imation algorithms the primal-dual method has emerged as an important unifying design methodology
starting from the seminal work of Goemans and Williamson [18].

The focus of this paper is on extending the primal-dual method to the setting of online algorithms
and competitive analysis. We study a wide range of online covering and packing optimization problems
and provide a unified approach, based on a clean primal-dual method, for the design of online algorithms
for these problems. In particular, our analysis uses weak duality rather than a tailor made (i.e., problem
specific) potential function. Thus, we believe our results further our understanding of the applicability
of the primal-dual method to online algorithms.

In an online problem the input is revealed in parts and the main issue is obtaining good performance
in the face of uncertainty. A standard measure for evaluating the performance of an online algorithm
is the competitive ratio, which compares the performance of an online algorithm to that of an offline
algorithm which is given the whole input sequence beforehand. For a given input sequence, consider the
ratio between the cost of the solution of an online algorithm and the minimum (optimum) cost solution.
The maximum ratio, taken over all input sequences, is defined to be the competitive ratio of the online
algorithm.

In an “offline” (fractional) covering problem the objective is to minimize the total cost given by a
linear cost function

∑n
i=1 c(i)x(i). The feasible solution space is defined by a set of m linear constraints

of the form
∑n

i=1 a(i, j)x(i) ≥ b(j), where the entries a(i, j) and b(j) are non-negative. The general online
fractional covering problem is an online version of the covering problem, described as a game between
an algorithm and an adversary. In this setting the cost function is known in advance, but the linear
constraints that define the feasible solution space are given to the algorithm one by one in an online
fashion. In order to maintain a feasible solution to the current set of given constraints, the algorithm is
allowed to increase the variables x(i). It may not, however, decrease any previously increased variable.
We also extend our study to cases where the value of each variable has an upper bound u(i), referred to
as a box constraint. The box constraints are known to the online algorithm in advance. This captures
online settings in which the amount of resources is limited. The performance of the online algorithm is
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compared against to the minimum cost cover of the given problem instance.

We show that the online covering problem is closely related to a dual online packing problem. In an
offline packing problem we are given n packing constraints of the type

∑m
j=1 a(j, i)y(j) ≤ c(i). The goal

is to find a feasible solution that maximizes a profit function
∑m

i=1 b(j)y(j). The general online fractional
packing problem is an online version of this problem. In the online setting the values c(i) (1 ≤ i ≤ n) are
known in advance, but the profit function and the exact packing constraints are not known in advance.
In the jth round a new variable y(j) is introduced to the algorithm, along with its set of coefficients
a(i, j) (1 ≤ i ≤ n). Note that other variables that were not yet introduced may also appear in the
packing constraints. This means that each packing constraint is gradually revealed to the algorithm.
The algorithm can only increase the value of a variable y(j) in the round in which it is given and cannot
change the values of any previously given variables. The performance of the algorithm is measured with
respect to the maximum possible profit of the packing problem instance. Although this online setting
seems a bit unnatural, it generalizes many well known online problems that we list in the sequel.

1.1 Our Results We study both the general online fractional covering problem (with and without
box constraints) and the general online fractional packing problem. We show that the two online problems
constitute a primal-dual pair and provide general deterministic primal-dual schemes that compute near-
optimal fractional solutions for each of the problems.

For the general packing problem we design a scheme that gets as input the desired competitive ratio
B > 0. It produces a solution violating the packing constraints by a factor of at most

O

((
log n + log max

i

ai(max)
ai(min)

)
/B

)
,

where n denotes the number of packing constraints in the instance, and:

(1) ai(max) =
m

max
k=1

{a(i, k)} (2) ai(min) =
m

min
k=1

{a(i, k)|a(i, k) 6= 0}.

In particular, when all coefficients a(i, j) ∈ {0, 1}, we show an O(log n)-competitive algorithm that does
not violate any of the constraints. We show that in general these results are tight for any B > 0.

The scheme for the covering problem is very similar. In fact, when each coefficient a(i, j) ∈ {0, 1}, the
same scheme is applicable to both problems. Unfortunately, the scheme designed for the packing problem
cannot be used for the general covering problem in which the coefficients a(i, j) ≥ 0 are not limited to
{0, 1}. For this problem we need to design a more complicated scheme. For any B > 0, our scheme is
O(log n/B)-competitive and covers each constraint up to a factor of 1/B (i.e.

∑n
i=1 a(i, j)x(i) ≥ b(j)/B).

A simple modification of the lower bounds in [2] proves that this result is tight as well. We also extend
the scheme to handle box constraints, which define an upper bound on the values of the variables.

The online fractional covering problem with a(i, j) ∈ {0, 1} was previously studied in the context
of online graph optimization problems [1, 2]. The scheme we propose for this case is simpler than the
algorithms of [1, 2], since we do not need to guess the value of the optimum solution, and thus avoid the
need for phases. More importantly, our scheme is more precise, and thus improves on the competitive ratio
of the algorithms od [1, 2]. Specifically, we get a competitive ratio of O(log d) instead of O(log n), where
d is the maximum number of variables in each given constraint (d ≤ n). This improvement immediately
reflects on the competitive ratio of the problems studied in [1, 2]. The competitive ratio for the online
set-cover improves from O(log m log n) to O(log d log n), thus replacing m, the total number of sets, by
d, the maximum number of sets that an element can belong to. In the connectivity problems studied in
[2], we improve the O(log m) factor, where m is the number of edges, to O(log C), where C is the size
of the maximum cut in the graph. Similarly, in the cut problems studied in [2] we improve the O(log m)
factor to O(log L), where L is the length of the longest simple path in the graph.

Finally, in Section 5 we show the applicability of our schemes to solving online integral versions of
covering and packing problems via randomized rounding. To do so, we use the fractional schemes as
a “black box”. We then focus on converting the randomized algorithm we obtain into a deterministic
algorithm. To this end, we suggest a method for rounding the fractional solution deterministically by
transforming an (offline) pessimistic estimator into an online potential function. We note that, in general,
the existence of an offline derandomization method does not necessarily yield an online deterministic
algorithm. In particular, while all randomized rounding methods in [2] can be derandomized offline, it is
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an open question whether online deterministic algorithms for these problems exist. Still, the perspective of
deterministic rounding motivates us to consider derandomization methods that were previously suggested
for various offline problems, and these enable us to obtain better deterministic online algorithms.

We demonstrate our derandomization method on two online problems, a covering problem and a
packing problem. We first consider the online unweighted set-cover problem [1] in Section 5.1. For this
problem we provide a better deterministic algorithm in terms of the competitive ratio. We draw on ideas
from the improved offline randomized rounding and derandomization methods of [29] and come up with
an improved potential function for the online problem. This yields a competitive ratio of O(log d log n

OPT )
instead of O(log d log n), where OPT is the optimal number of sets needed to cover the requested elements.
The improvement in the competitive ratio is significant when the number of sets needed for the cover is
large, and in particular when the sets are small.

We also consider the problem of throughput-competitive online routing of virtual circuits [5]. We
show that a deterministic algorithm equivalent to the one from [5] can be derived easily by combining
our scheme with the method of conditional expectations of the randomized rounding algorithm presented
in [28]. This is an interesting way of viewing the algorithm of [5], which also provides a systematic
method for deriving it. In particular, we note that our scheme produces in an online fashion a near-
optimal fractional solution to the problem that does not violate the capacity constraints. Producing such
a fractional solution, unlike an integral solution, is independent of the values of the edge capacities.

1.2 Related Work Covering and packing optimization problems, as well as their online versions,
have been studied extensively. Examples of such online covering optimization problems are the online
Steiner problem that was considered in [19] and the online generalized Steiner problem that was considered
in [4, 7]. Recently, Alon et al. [2] suggested a general two-phase approach for a wide class of online network
optimization problems. First, a fractional solution to the online problem is generated. The solution is
then rounded in an online fashion in the second phase. The two phases, although separated, are run
simultaneously. In [2], the first phase is performed by a general O(log n)-competitive method which is
applicable to a wide class of online graph optimization problems. The rounding phase, on the other hand,
is problem dependent. The approach was shown useful by the development of randomized algorithms
for many interesting integral graph optimization problems. Examples include the online group Steiner
problem and online non-metric facility location. The same approach was also implicity used in [1], where a
deterministic online O(log n log m)-competitive algorithm for the integral set cover problem was provided.
Our methods for generating fractional solutions for covering problems generalize and improve upon the
methods of [2].

Garg and Young [16] also considered an online flow control packing problem. Specifically, they consid-
ered a similar in spirit online fractional packing problem in which requests arrive online and the objective
of the algorithm is to converge to a maximum throughput multicommodity flow. However, in their model
an online algorithm is allowed to both increase and decrease flows of existing requests.

There is a long line of work on generating a near-optimal fractional solution for offline covering and
packing problems, e.g. [26, 23, 30, 15, 13, 22]. Generating such a solution for the offline covering problem
with upper bounds on the variables was considered in [12, 14]. All these methods take advantage of the
offline nature of the problems. We remark that several of these methods use primal-dual analysis, therefore
our framework can be viewed as an adaptation of these methods to the context of online computation.

Finally, our online rounding methods are based on their corresponding offline randomized rounding
methods. In particular, our integral routing algorithm derives ideas from the rounding methods in [28, 27].
For the design of our online set cover algorithm we derive ideas from the offline rounding in [29].

2. Preliminaries In this section we formally define our problems and discuss their dual nature. In
an “offline” (fractional) covering problem the objective is to minimize the total cost given by a linear
cost function

∑n
i=1 c(i)x(i). The feasible solution space is defined by a set of m linear constraints of

the form
∑n

i=1 a(i, j)x(i) ≥ b(j), where the entries a(i, j) and b(j) are non-negative. Given an instance
of a covering problem we first normalize each constraint to the form:

∑n
i=1 a(i, j)x(i) ≥ 1. Any primal

covering instance has a corresponding dual packing problem that provides a lower bound on any feasible
solution to the instance. A general form of a (normalized) primal covering problem along with its
(normalized) dual packing problem is given in Figure 1. Throughout the paper we refer to the covering
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Primal (Covering) Dual (Packing)
Minimize:

∑n
i=1 c(i)x(i) Maximize:

∑m
j=1 y(j)

Subject to: Subject to:
For each 1 ≤ j ≤ m:

∑n
i=1 a(i, j)x(i) ≥ 1 For each 1 ≤ i ≤ n:

∑m
j=1 a(i, j)y(j) ≤ c(i)

For each 1 ≤ i ≤ n: x(i) ≥ 0 For each 1 ≤ j ≤ m: y(j) ≥ 0

Figure 1: Primal (covering) and dual (packing) problems

problem as the “primal problem” and the packing problem as the “dual problem”.

The general online fractional covering problem is an online version of the covering problem. In this
setting the cost function is known in advance, but the linear constraints that define the feasible solution
space are given to the algorithm one-by-one, in rounds. In each round a new constraint is given and in
order to maintain a feasible solution to the current set of constraints, the online algorithm is allowed to
increase the value of the variables. It may not, however, decrease the value of any variable. We also define
an online version of the packing problem. In the general online fractional packing problem the values c(i)
(1 ≤ i ≤ n) are known in advance. However, the profit function and the exact packing constraints are
not known in advance. In the jth round a new variable y(j) is introduced to the algorithm, along with
its set of coefficients a(i, j) (1 ≤ i ≤ n)2. Note that other variables, that have not yet been introduced,
may also appear (in the future) in the packing constraints. This means that each packing constraint is
gradually revealed to the algorithm. The algorithm may increase the value of a variable y(j) only in the
round where it is given, and may not change the values of any previously given variables.

We observe that these two online settings form a primal-dual pair in the following sense: at any
time an algorithm for the general online fractional covering problem maintains a subset of the final
linear constraints. This subset defines a sub-instance of the final covering instance. The dual packing
problem of this sub-instance is a sub-instance of the final dual packing problem. In the dual packing
sub-instance, only part of the dual variables are known, along with their corresponding coefficients. The
two sub-instances form together a primal-dual pair. In each round of the general online fractional covering
problem a new constraint on the feasible solution space is given. The primal covering sub-instance is
updated by adding the new constraint. To update the dual sub-instance we add a new dual variable to
the profit function along with its coefficients that are defined by the new primal constraint. Note that
the dual update is the same as in the setting of the online fractional packing problem.

The schemes we propose maintain at each step solutions for both the primal and dual sub-instances.
When a new constraint is given to the online fractional covering problem, our scheme also considers
the new corresponding dual variable and its coefficients. When the scheme for the online fractional
packing problem receives a new variable along with its coefficients, it also considers the corresponding
new constraint in the primal sub-instance. In the rest of the paper we use the notion of primal and dual
sub-instances and the correspondence between dual variables and primal constraints.

3. The General Online Fractional Packing Problem In this section we describe an online
scheme for computing a near-optimal fractional solution for the general online fractional packing problem.
The scheme gets the desired competitive ratio B > 0 and returns a solution which is within a factor of
B of the optimal, and which does not violate the packing constraints by too much (to be made more
precise shortly). We prove that the scheme is optimal up to constant factors. Our scheme simultaneously
maintains primal (covering) and dual (packing) solutions for the primal and dual sub-instances.

Initially, each variable x(i) is initialized to zero. In each round a new variable y(j) is introduced
along with its coefficients a(i, j) (1 ≤ i ≤ n). In the corresponding primal sub-instance a new constraint
is introduced of the form

∑n
i=1 a(i, j)x(i) ≥ 1. Without loss of generality, we can assume that this

constraint has at least one non-zero coefficient, otherwise it means that there is no bound on the value
of y(j) and the profit function is unbounded. The algorithm increases the value of the new variable y(j)
and the values of the primal variables x(i) until the new primal constraint is satisfied. The augmentation
method is described here in a continuous fashion, but it is not hard to implement the augmentation in a
discrete way in any desired accuracy. In our continuous description the variables x(i) behave according
to a monotonically increasing function of y(j). To implement the scheme in a discrete fashion, one should

2We can always normalize the new variable such that its coefficient in the objective function is 1.
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find the minimal y(j) such that the new primal constraint is satisfied. Note that variable y(j) is being
increased only in the jth round and the values of the primal variables never decrease. In the following
we describe the jth round. The performance of the scheme is analyzed in Theorem 3.1.

(i) y(j) ← 0; For each x(i): ai(max) ← maxj
k=1{a(i, k)}.

(ii) While
∑n

i=1 a(i, j)x(i) < 1:

(a) Increase y(j) continuously.
(b) Increase each variable x(i) by the following increment function:

x(i) ← max

{
x(i),

1
nai(max)

[
exp

(
B

2c(i)

j∑

k=1

a(i, k)y(k)

)
− 1

]}
.

Theorem 3.1 For any B > 0, the above scheme is a B−competitive algorithm for the general online
fractional packing problem. Also, for the ith constraint it holds:

m∑

k=1

a(i, k)y(k) = c(i) ·O

 log n + log ai(max)

ai(min)

B


 ,

where, ai(max) = maxm
k=1{a(i, k)}, and ai(min) = minm

k=1{a(i, k)|a(i, k) 6= 0}.

When all entries a(i, j) ∈ {0, 1}, we do not need to update the value of ai(max) in Lines (i) and (ii)b,
thus simplifying the scheme. In this case, if we know in advance that each primal constraint consists of at
most ` non-zero coefficients, it is possible to improve on the competitive factor from O(log n) to O(log `).
This is done by replacing the value n in Line (ii)b by `. In addition, the same scheme is applicable to the
online fractional covering problem (with a(i, j) ∈ {0, 1}). The improvement of the competitive ratio to
O(log `) immediately reflects on the competitiveness of several corresponding integral covering problems
which are mentioned in Section 1.1. We state these observations in the following Theorem. The proof
follows along the same lines as the proof of Theorem 3.1.

Theorem 3.2 If the entries a(i, j) ∈ {0, 1}, then there exists an O(log `)-competitive algorithm for
the fractional packing problem which does not violate the constraints. The same algorithm is O(log `)-
competitive for the fractional covering problem.

Another useful property of our scheme is that it can handle an unbounded number of new dual variables
in each round, in the following sense. In some cases the new dual variables, as well as the new primal
constraints, do not appear explicitly. Instead, the scheme is only given an oracle for Line 2 that either
returns an unsatisfied primal constraint or states that there is no such constraint. It can easily be verified
that such an oracle suffices in order to implement the online scheme.

Proof. [Proof of Theorem 3.1] Let X(j) and Y (j) be the values of the primal and dual solutions,
respectively, obtained in round j. We prove the following claims on X(j) and Y (j):

(i) In each round j: Y (j) ≥ X(j)/B.

(ii) The primal solution produced by the scheme is feasible.

(iii) For any dual constraint:

m∑

k=1

a(i, k)y(k) ≤ c(i) ·
2 log

(
1 + nai(max)

ai(min)

)

B
= c(i) ·O


 log n + log ai(max)

ai(min)

B


 .

The proof of the theorem then follows directly from weak duality.

Proof of (1): Note first that when the value of ai(max) increases, the value of the primal solution
does not change. Thus, the value of the primal solution only increases when the dual solution increases.
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Initially, the values of the primal and dual solutions are zero. Consider the jth round in which y(j) is
being increased continuously. We prove that ∂X(j)

∂y(j) ≤ B ∂Y (j)
∂y(j) , concluding that X(j) ≤ B · Y (j).

∂X(j)
∂y(j)

=
n∑

i=1

c(i)
∂x(i)
∂y(j)

≤
n∑

i=1

c(i)Ba(i, j)
2c(i)

1
nai(max)

exp

(
B

2c(i)

j∑

k=1

a(i, k)y(k)

)
(1)

=
B

2

n∑

i=1

a(i, j)

[
1

nai(max)

(
exp

(
B

2c(i)

j∑

k=1

a(i, k)y(k)

)
− 1

)
+

1
nai(max)

]

≤ B

2

n∑

i=1

a(i, j)
[
x(i) +

1
nai(max)

]
≤ B

2
(1 + 1) = B = B · ∂Y (j)

∂y(j)
, (2)

where (1) follows by taking the derivative of x(i), and (2) follows since:

(i)
∑n

i=1 a(i, j)x(i) < 1.

(ii) x(i) ≥ 1
nai(max)

[
exp

(
B

2c(i)

∑j
k=1 a(i, k)y(k)

)
− 1

]
.

(iii) 1
n

∑n
i=1

a(i,j)
ai(max) ≤ 1.

The final equality follows since the value of the dual is
∑j

k=1 y(k), and so ∂Y (j)
∂y(j) = 1.

Proof of (2): This claim is trivial since we increase the primal variables until the current primal
constraint becomes feasible. We never decrease any variable x(i), so (feasible) constraints remain feasible.

Proof of (3): Consider the ith dual constraint of the form
∑j

k=1 a(i, k)y(k) ≤ c(i). Each time a
variable y(k) with coefficient a(i, k) > 0 is increased, the primal variable x(i) is increased too. Let
ai(min) = minm

k=1{a(i, k)|a(i, k) 6= 0} and ai(max) = maxm
k=1{a(i, k)} be as defined previously. During

the run of the algorithm, x(i) ≤ 1/ai(min), since if equality holds, then each primal constraint (1 ≤ j ≤ m)
with a(i, j) > 0 is already feasible. Thus, we get the following:

1
nai(max)

[
exp

(
B

2c(i)

j∑

k=1

a(i, k)y(k)

)
− 1

]
≤ x(i) ≤ 1/ai(min).

Simplifying, we obtain:
j∑

k=1

a(i, k)y(k) ≤
2 log

(
1 + nai(max)

ai(min)

)

B
· c(i).

¤

Discussion. The reader may wonder at this point how did we decide to choose the function used in
the algorithm for updating the primal and dual variables. We attempt to give here a systematic way of
deriving this function. To understand the basic idea it suffices to consider the simpler case in which the
variables a(i, j) ∈ {0, 1}, and the jth primal constraint is simply

∑
i∈S(j) xi ≥ 1, where S(j) is the set of

indices i for which a(i, j) = 1. Also, suppose that our goal is to maintain both primal and dual feasiblity.
Consider the point in time in which the jth primal constraint is given and assume that it is not satisfied.
Our goal is to bound the derivative of the primal cost (denoted by P ) as a function of the dual profit
(denoted by D). That is, show that

∂P

∂yj
=

∑

i∈S(j)

ci · ∂xi

∂yj
≤ α · ∂D

∂yj
,

where α is going to be the competitive factor. Suppose that the derivative of the primal cost satisfies:
∑

i∈S(j)

ci · ∂xi

∂yj
= A ·

∑

i∈S(j)

(
xi +

1
n

)
. (3)
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Then, since
∑

i∈S(j) xi ≤ 1,
∑

i∈S(j)
1
n ≤ 1, and ∂D

∂yj
= 1, we get that

A ·
∑

i∈S(j)

(
xi +

1
n

)
≤ 2A · ∂D

∂yj
.

Thus, α = 2A. Now, satisfying Equality (3) requires solving the following differential equation for each
i ∈ S(j):

∂xi

∂yj
=

A

ci
·
(

xi +
1
n

)
.

It is easy to verify that the solution is a family of functions of the following form:

xi = C · exp


A

ci

∑

` |i∈S(j)

y`


− 1

n
,

where C can assume any value. Next, we have the following two boundary conditions on the solution:

• Initially, xi = 0, and this happens when 1
ci

∑
j|i∈S(j) yj = 0.

• If 1
ci
· ∑j|i∈S(j) yj = 1, (i.e., the dual constraint is tight), then xi = 1. (Then, the primal

constraint is also satisfied.)

The first boundary condition gives C = 1
n . The second boundary condition gives us A = ln(n + 1).

Putting everything together we get the exact function used in the algorithm.

3.1 Lower Bounds In this section we prove two simple lower bounds showing that our scheme is
optimal (up to constant factors).

Lemma 3.1 There is an instance of the general fractional packing problem with a single constraint such
that

m∑

j=1

a(i, j)y(j) ≥ H(a(max)/a(min))
B

for any online B−competitive algorithm, where H(m) denotes the mth harmonic number, and
a(max)/a(min) is the ratio between the maximum and minimum non-zero entries in the constraint.

Proof. Consider the following instance, for any m:

max
m∑

j=1

y(j)

subject to:
m∑

j=1

(m− j + 1)y(j) ≤ 1.

Note that a(max)/a(min) = m. The variables y(j) arrive one by one. After the jth round (for each j), the
optimal offline value is 1/(m− j +1). Thus, the value of the objective function given by a B-competitive
algorithm must be at least 1/(B(m− j + 1)). This yields the following sequence of inequalities:

y(1) ≥ 1/(Bm)
y(1) + y(2) ≥ 1/(B(m− 1))

y(1) + y(2) + y(3) ≥ 1/(B(m− 2))
...

...
...

y(1) + y(2) + y(3) + . . . + y(m) ≥ 1/B

Summing up over all m inequalities we get the desired bound:
m∑

j=1

(m− j + 1)y(j) ≥ 1
B

m∑

j=1

1
m− j + 1

=
H(m)

B
.

¤
The proof of the next lemma is essentially the same as the proof of Lemma 4.1 in [5].



8 Buchbiner and Naor: Online Primal-Dual Algorithms
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

Lemma 3.2 There is an instance of the general online fractional packing problem with n constraints and
a(i, j) ∈ {0, 1}, such that for any B−competitive online algorithm there exists a constraint such that∑m

j=1 a(i, j)y(j) ≥ c(i) · log n
2B .

4. The General Online Fractional Covering Problem In this section we describe our online
scheme for computing a near-optimal fractional solution for the online fractional covering problem. As
stated in Theorem 3.2, if the coefficients a(i, j) ∈ {0, 1}, then the scheme in Section 3 is also applicable to
the online fractional covering problem. Unfortunately, the scheme is not applicable to the general online
fractional covering problem in case the coefficients a(i, j) ≥ 0 are not limited to {0, 1}. This happens
since the scheme described in Section 3 does not always produce a feasible dual solution that can bound
the primal solution efficiently. In this section we design a more elaborate scheme for the general online
fractional covering problem.

Our scheme for the general online fractional covering problem gets a parameter B > 0. With B > 0 the
competitive ratio of the scheme is O( log n

B ) and the following holds for each constraint:
∑n

i=1 a(i, j)x(i) ≥
1
B . The scheme works in phases: When the first constraint is introduced, the scheme generates the first
lower bound:

α(1) ← 1
B
·

n
min
i=1

{
c(i)

a(i, 1)

}
≤ OPT

B
.

During the rth phase, it is assumed that the lower bound on the optimum is α(r), as long as the total
primal cost does not exceed α(r). When the primal cost exceeds this bound, the scheme “forgets” about
all the values given to the primal and dual variables so far, and starts a new phase in which the lower
bound is doubled, i.e., α(r + 1) ← 2α(r). Nevertheless, the values of the “forgotten” variables are
accounted for in the total cost of the solution. That is, the algorithm maintains in each phase r a new set
of variables x(i, r). However, since the variables of the linear program are required to be monotonically
non-decreasing, the value of each variable x(i) is actually set to maxr{x(i, r)} (or alternatively

∑
r x(i, r)).

The cost of maintaining the variables of the linear program is, thus, at most the cost of maintaining the
new variables in each phase. When we start processing a new phase we also set to zero all dual variables,
and start processing again all primal constraints, starting from the first constraint. Thus, in each such
phase, our algorithm produces “fresh” primal and dual solutions.

In the following we describe one round of our scheme in the rth phase. Let
∑n

i=1 a(i, j)x(i) ≥ 1 be the
new primal constraint that is introduced and let y(j) be the corresponding dual variable. The values of
the primal and dual variables are increased as follows. Note that during each phase x(i) only increases.
The performance of the scheme is analyzed in Theorem 4.1.

(i) y(j) ← 0
(ii) While

∑n
i=1 a(i, j)x(i) < 1

B :

(a) increase y(j) continuously.
(b) Increase each variable x(i) by the following increment function:

x(i) ← α(r)
2nc(i)

exp

(
log 2n

c(i)

j∑

k=1

a(i, k)y(k)

)
.

Theorem 4.1 For any B > 0, the scheme for the general online fractional covering problem achieves a
competitive ratio of O( log n

B ), such that for each constraint
∑n

i=1 a(i, j)x(i) ≥ 1
B .

Proof. Let X(r) and Y (r) be the values of the primal and dual solutions, respectively, generated
during the rth phase. We prove the following claims on X(r) and Y (r):

(i) For each finished phase r: Y (r) ≥ Bα(r)
2 log 2n .

(ii) The dual solution generated during the rth phase is feasible.
(iii) The total cost of the primal solutions generated from the first phase until the rth phase is less

than 2α(r).
(iv) For any primal constraint given to the algorithm,

∑n
i=1 a(i, j)x(i) ≥ 1

B .
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From the first three claims, together with weak duality, we conclude that the total cost of the primal
solutions in all the phases up to phase r is at most:

2α(r) ≤ 4α(r − 1) ≤ 8 · log 2n

B
· Y (r − 1) ≤ 8 · log 2n

B
·OPT.

Notice that if the scheme finishes in the first phase, then the total cost is at most α(1) ≤ OPT
B .

Proof of (1): Initially, x(i) = α(r)
2nc(i) , and so X(r) is initially at most α(r)/2. The total profit of the

dual solution is initially zero. From then on, the primal cost increases only when some dual variable y(j)
is increased. When the phase ends, X(r) ≥ α(r). Thus, it suffices to prove that during the phase

∂X(r)
∂y(j)

≤ log 2n

B

∂Y (r)
∂y(j)

.

This follows since,

∂X(r)
∂y(j)

=
n∑

i=1

c(i)
∂x(i)
∂y(j)

=
n∑

i=1

c(i) log(2n)a(i, j)
c(i)

α(r)
2nc(i)

exp

(
log 2n

c(i)

j∑

k=1

a(i, k)y(k)

)

= log 2n

n∑

i=1

a(i, j)x(i) ≤ log 2n

B
=

log 2n

B
· ∂Y (j)

∂y(j)
, (4)

where (4) follows since
∑n

i=1 a(i, j)x(i) ≤ 1
B . The final equality follows since the value of the dual solution

is
∑j

k=1 y(k) and thus ∂Y (j)
∂y(j) = 1.

Proof of (2): Consider the ith dual constraint of the form
∑m

k=1 a(i, k)y(k) ≤ c(i). Each time variable
y(k) with coefficient a(i, k) > 0 is increased, the corresponding primal variable x(i) is increased too.
During the rth phase of the algorithm, x(i) ≤ α(r)

c(i) , since otherwise it would have contributed to the
cost of the primal solution more than α(r), and the current phase would have ended. Thus, we get the
following equation:

x(i) =
α(r)

2nc(i)
exp

(
log 2n

c(i)

j∑

k=1

a(i, k)y(k)

)
≤ α(r)

c(i)
.

Simplifying, we get the desired result:
m∑

k=1

a(i, k)y(k) ≤ c(i).

Proof of (3): We bound the total cost paid by the online algorithm. The total primal cost in the rth
phase is at most α(r). Since the ratio between α(k) and α(k − 1) is 2, we get that the total cost until
the rth phase is at most

∑r
k=1 α(k) ≤ 2α(r).

Proof of (4): The claim is trivial, since each round terminates only when the value of the left hand
side of the new primal constraint is at least 1/B. The value of each variable x(i) never decreases, thus
all previous primal constraints remain feasible. ¤

4.1 Adding Box Constraints In this section we extend our methods to handle upper bounds, or
box constraints, on the variables x(i). Let u(i) denote the upper bound on variable x(i). Note that upper
bounds on the variables may result in an infeasible instance of a covering problem. We next sketch the
main ideas and changes that are needed to deal with upper bounds. Adding box constraints to a covering
problem results in new negative variables z(i), 1 ≤ i ≤ n, in the dual program. The primal covering with
box constraints and the new corresponding dual program are described in Figure 2. The performance of
the scheme is analyzed in Theorem 4.2.
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Primal (Covering) Dual (Packing)
Minimize:

∑n
i=1 c(i)x(i) Maximize:

∑m
j=1 y(j)−∑n

i=1 u(i)z(i)
Subject to: Subject to:
∀j : 1 ≤ j ≤ m:

∑n
i=1 a(i, j)x(i) ≥ 1 ∀i : 1 ≤ i ≤ n:

∑m
j=1 a(i, j)y(j)− z(i) ≤ c(i)

∀i : 1 ≤ i ≤ n: 0 ≤ x(i) ≤ u(i) ∀i, j: y(j), z(i) ≥ 0

Figure 2: Primal (covering) with box constraints and its dual (packing) problem.

Theorem 4.2 For any B > 0, the scheme for the general online fractional covering problem with box
constraints achieves a competitive ratio of O( log n

B ), such that for the jth constraint,
∑n

i=1 a(i, j)x(i) ≥ 1
B ,

and for the ith variable, x(i) ≤ u(i)
B .

Our proposed scheme works in phases, similarly to Section 4, where each phase has an upper bound
on the total cost. When variable x(i) reaches the value of u(i)

B , we start increasing its corresponding
dual variable z(i). Increasing z(i) stops the increase of primal variable x(i). Let X be the set of tight
variables with value u(i)

B . If all variables in some unsatisfied constraint are tight, the scheme returns that
no feasible solution exists. A single round during the rth phase is described in the following:

(i) y(j) ← 0
(ii) While

∑n
i=1 a(i, j)x(i) < 1

B :

(a) Increase y(j) continuously.
(b) For each variable x(i) ∈ X (i.e., x(i) = u(i)/B), increase z(i) at rate a(i, j)y(j).
(c) Increase each variable x(i) by the following increment function:

x(i) ← min
{

u(i)
B

,
α(r)

2nc(i)

}
· exp

(
log 2n

[
1

c(i)

j∑

k=1

a(i, k)y(k)− z(i)

])
.

Note that during each phase r the initial value of variable x(i) is min{u(i)
B , α(r)

2nc(i)} and it can only

increase during the phase. It is also easy to verify that during the run of the algorithm x(i) ≤ u(i)
B is

maintained (due to the augmentation of z(i)). We next provide the proof of Theorem 4.2.

Proof. [Proof of Theorem 4.2] The proof is essentially along the same lines as the proof of Theorem
4.1. We prove that:

(i) For each finished phase r: Y (r) ≥ Bα(r)
2 log 2n .

(ii) The dual solution generated during the rth phase is feasible.
(iii) The total cost of the primal solutions generated from the first phase until the rth phase is less

than 2α(r).
(iv) For any primal constraint given to the algorithm,

∑n
i=1 a(i, j)x(i) ≥ 1

B .

Proof of (1): The proof is the same as in Theorem 4.1. However, in this case we should consider
variables that are tight (i.e. x(i) = u(i)

B ), and hence are not increased anymore. The derivative of the
dual profit becomes:

∂Y (r)
∂y(j)

= 1−
∑

x(i)∈X

u(i)a(i, j).

Note that since
∑n

i=1 a(i, j)x(i) < 1
B , and x(i) ≤ u(i)

B , then the derivative is always non-negative. If all
the primal variables belong to X, it means that

∑n
i=1 a(i, j)u(i)

B < 1
B , and so there is no feasible solution

to the original instance. Otherwise, similarly to the proof of Theorem 4.1, we get:

∂X(r)
∂y(j)

=
n∑

i=1

c(i)
∂x(i)
∂y(j)
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=
∑

x(i)/∈X

c(i) · (log 2n) · a(i, j)
c(i)

α(r)
2nc(i)

exp

(
log 2n

c(i)

j∑

k=1

a(i, k)y(k)− z(i)

)

= log 2n
∑

x(i)/∈X

a(i, j)x(i)

≤ log 2n

B


1−

∑

x(i)∈X

a(i, j)u(i)


 =

log 2n

B

∂Y (r)
∂y(j)

, (5)

where Inequality (5) follows since
∑

x(i)/∈X

a(i, j)x(i) <
1
B
−

∑

x(i)∈X

a(i, j)x(i) =
1
B
−

∑

x(i)∈X

a(i, j)
u(i)
B

.

Proof of (2): Consider the ith dual constraint of the form
∑j

k=1 a(i, k)y(k) − z(i) ≤ c(i). If the
corresponding primal variable is tight, then the value of the left hand side of the constraint remains the
same, since the variable z(i) is increased. Until that time variable x(i) is increased in the same way
as in the case where there are no box constraints. In particular, each time some y(k) with coefficient
a(i, k) > 0 is increased, the corresponding primal variable x(i) is increased too. During the rth phase of
the algorithm, x(i) ≤ α(r)

c(i) , since otherwise it contributes to the cost of the primal solution more than
α(r), and the current phase ends. Thus, we get the following equation:

x(i) =
α(r)

2nc(i)
exp

(
log 2n

[
1

c(i)

j∑

k=1

a(i, k)y(k)− z(i)

])
≤ α(r)

c(i)
.

Simplifying we get the desired result:
j∑

k=1

a(i, k)y(k)− z(i) ≤ c(i).

The rest of the proof is essentially the same as the proof of Theorem 4.1. ¤

5. Integral Online Problems: Derandomization In this section we show the applicability of
our fractional schemes to the solution of online integral problems. To do so, we use the schemes as a
“black box” and deterministically round the fractional solutions obtained. The deterministic rounding
is obtained by transforming an (offline) pessimistic estimator into an online potential function. This
idea appeared implicity in [1]. We note that the existence of an offline derandomization method does
not necessarily yield an online deterministic rounding algorithm. For example, derandomizing (online)
algorithms for problems like the online multicast problem on trees and the online group Steiner problem
considered in [2] is still an open problem. (They all do have offline derandomizations.) Thus, we remark
that the ability to transform a (offline) pessimistic estimator into an online potential function is quite
surprising.

We demonstrate our derandomization method on two online problems. We first consider the online
unweighted set-cover problem [1]. For this problem we provide a better deterministic algorithm in terms
of the competitive ratio. In particular the algorithm we design is O(log d log(n/OPT ))-competitive, where
d is the maximum frequency of an element (i.e., the maximum number of sets an element belong to),
and n is the number of elements. The previous algorithm in [1] is O(log m log n)-competitive, where m is
the number of sets. To do so, we draw on ideas from the improved offline rounding and derandomization
methods of [29] to generate an improved potential function. We then consider the online problem of
throughput-competitive routing of virtual circuits. We show that the algorithm presented in [5] can be
derived by a deterministic rounding of the fractional solution produced by our packing scheme.

The above approach provides us with the following insight to the competitive factors obtained by [5].
The O(log m) competitive factor follows from an online generation of a fractional solution. The minimum
edge capacity determines the scaling of the fractional solution that is needed in order to guarantee a
high probability of success in the rounding phase. In contrast, we note that producing a near-optimal
fractional solution that does not violate capacity constraints can be done independently of the values of
the edge capacities.
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5.1 Improved Competitive Ratio for Online Unweighted Set Cover We define the online
unweighted set cover problem as follows. Let X = {e1, . . . , en} be a ground set of n elements, and let S be
a family of subsets of X, |S| = m. A cover is a collection of sets such that their union is X. Clearly, this
problem belongs to the covering-packing framework described in Figure 1, where for each i, 1 ≤ i ≤ m,
c(i) = 1, and a(i, j) = 1 if and only if element j belongs to subset i of S. The goal is to find a cover of
minimum cardinality.

In an online setting, the elements, or covering constraints, are given one-by-one by an adversary. For
each new element given, the algorithm has to cover it by some set of S containing it. Denote by X ′ ⊆ X
the set of elements given by the adversary. In general, the algorithm does not know in advance the set
of elements X ′ given by the adversary, i.e., X ′ may be a strict subset of X, however, our assumption is
that the set cover instance (i.e., X and S) is known in advance. Using the techniques of Section 3 we can
get online a fractional solution which is O(log d)-competitive. Recall that d is the maximum frequency
of an element (i.e., the maximum number of sets an element belongs to). Let C denote the family of sets
in S that the algorithm chooses, and let C denote the set of elements covered by sets belonging to C.

We show how to get online an integral solution which is O(log d log(n/OPT ))-competitive. We assume
that the value OPT is known in advance. This assumption is justified since we can guess the value of
OPT by doubling. We start by guessing OPT = 1, and then run the algorithm with this value of the
optimal solution. If it turns out that the cardinality of the optimal solution is already at least twice
our current guess for it, (that is, the cardinality of C exceeds Θ(OPT log d log(n/OPT ))), then we can
“forget” about all the sets chosen so far to C, update the value of OPT by doubling it, and restart the
algorithm. Of course, any set that was already chosen is not thrown away in reality. Therefore, the sum
of costs in all rounds is an upper bound on the real cost of the algorithm. It can be easily verified that
this can only change the competitive ratio by a constant factor.

Our main technique is transforming the pessimistic estimator that appears in [29] into an online
potential function. Denote by w(s) the fractional weight of set s as given by the algorithm of Section 3.
(Recall this weight is monotonically increasing over time). For each element ei (1 ≤ i ≤ n) define:

f(ei) = min



1, exp


−α + α

∑

s|ei∈s

w(s)






 .

Define the potential function Φ = Φ1 + Φ2, where:

Φ1 =
[
1−∏

ei|ei /∈C(1− f(ei))
]

and Φ2 = exp
(∑

s∈S ((ln 2) · χC(s)− αw(s))−OPT
)
.

The function χC(s) = 1 if s ∈ C, and χC(s) = 0 otherwise. The parameter α = O(log(n/OPT )) will
determine our competitive ratio. The first term of the potential function guarantees that each element
that is given to the algorithm is covered. The second term is used to bound the cardinality of the solution.

We now run the online algorithm presented in Section 3 to produce a fractional solution. Note that
since all coefficients a(i, j) ∈ {0, 1}, the simpler scheme in Section 3 is applicable (Theorem 3.2). The
above potential function Φ is used to determine which sets to pick to the cover:

• Each time the weight of a set s is augmented in Line 2(b) of the algorithm, add s to the cover C
if its addition does not increase the value of the potential function Φ.

At this point it is not even clear whether the above algorithm produces a feasible integral solution.
We prove this fact along with the competitive ratio in Lemma 5.2. In the next lemma we prove crucial
properties of the potential function that are useful for proving Lemma 5.2.

Lemma 5.1 The potential function Φ satisfies the following properties:

(i) At start Φ ≤ 1, and at any time during the run of the algorithm Φ > 0.

(ii) When a set is augmented, then either taking it to C, or excluding it, does not increase Φ.

Proof. We prove the two claims:
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Proof of (1): Since for each element ei, 0 ≤ f(ei) ≤ 1, the value of the product in the term Φ1 is at
most 1, yielding that Φ1 ≥ 0. The term Φ2 is trivially positive. Initially, for each set s, w(s) = 0. We
choose

α = max
{

1, ln
( rn

OPT

)}
= O

(
log

( n

OPT

))
,

where r = e ln(e/e− 1). Thus, the value of the potential function initially is:

Φ = 1− (1− e−α)n + exp(−OPT ) ≤ 1− exp(−dne−α) + exp(−OPT ) ≤ 1,

where the inequalities follow since α ≥ 1 and α ≥ ln( dn
OPT ).

Proof of (2): We use a probabilistic argument. Consider a point in time where w(s) is augmented
by 0 ≤ δs ≤ 1. Consider the event of adding set s to the cover with probability 1 − exp(−αδs). We
prove that choosing the set with such probability does not increase the expected value of Φ, and thus
the claim follows. Let Φstart = Φstart

1 + Φstart
2 and Φend = Φend

1 + Φend
2 be the respective values of the

potential function Φ before and after the probabilistic experiment. Consider first the term Φ2. We bound
the expected value of Φ2 after the probabilistic experiment. If s is already in C then Φ2 only decreases.
Otherwise:

E
[
Φend

2

]
= Φstart

2 ([1− exp(−αδs)] exp (ln 2− αδs) + exp(−αδs) exp(−αδs))

= Φstart
2 exp(−αδs) ([1− exp(−αδs)] 2 + exp(−αδs))

= Φstart
2 exp(−αδs) (2− exp(−αδs)) ≤ Φstart

2 ,

where the last inequality follows since x(2− x) ≤ 1 for all x.

Next consider the term Φ1 of the potential function. If s is in C then Φ1 does not change. Otherwise,
let N(s) be the elements that are covered by s (and were augmented during this round). Let f(e) and
f ′(e) be the contribution of element e to Φ1 before and after the weight augmentation step, respectively.
Let 0 ≤ A ≤ 1 be the product of the still uncovered elements that are not covered by s. The contribution
of these elements to Φ1 remains the same before and after the weight augmentation. We prove that Φ1

decreases, by induction on the number of elements in N(s). If |N(s)| = 1 (i.e. s covers only one additional
element e) then:

E
[
Φend

1

]
= [1− exp(−αδs)] (1−A) + exp(−αδs)(1−A(1− f ′(e))

= 1−A(1− exp(−αδs)f ′(e)) ≤ 1−A(1− f(e)) = Φstart
1 .

We next assume that the claim holds for |N(s)| = k and prove it for |N(s)| = k + 1 Assume that the
additional elements s covers are e1, e2, . . . , ek+1, then:

E
[
Φend

1

]
= [1− exp(−αδs)] (1−A) + exp(−αδs)(1−A

k+1∏

i=1

(1− f ′(ei)))

= [1− exp(−αδs)] (1−A) + exp(−αδs)(1−A

k∏

i=1

(1− f ′(ei)))

+A · exp(−αδs)f ′(ek+1)
k∏

i=1

(1− f ′(ei))

≤ 1−A
k∏

i=1

(1− f(ei)) + A · exp(−αδs)f ′(ek+1)
k∏

i=1

(1− f ′(ei)) (6)

≤ 1−A

k∏

i=1

(1− f(ei)) + A · f(ek+1)
k∏

i=1

(1− f(ei)) (7)

= 1−A

k+1∏

i=1

(1− f(ei)) = Φstart
1 , (8)
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Primal Dual
Minimize:

∑
e∈E u(e)x(e) +

∑
ri

Z(ri) Maximize:
∑

ri

∑
P∈P(ri)

f(ri, P )
Subject to: Subject to:
∀ri ∈ R, P ∈ P(ri):

∑
e∈P x(e) + Z(ri) ≥ 1 ∀ri ∈ R:

∑
P∈P(ri)

f(ri, P ) ≤ 1
∀e ∈ E:

∑
ri∈R,P∈P(ri)|e∈P

∑
ri

f(ri, P ) ≤ u(e)

Figure 3: The splittable routing problem (Maximize) and its corresponding primal problem.

where Inequality (6) follows from the induction hypothesis and Inequality (7) follows from the properties
of the function f(e). ¤

Lemma 5.2 The online algorithm satisfies the following:

(i) Each element that is given to the algorithm is covered.

(ii) The cardinality of C is at most OPT ·O(log d log(n/OPT )).

Proof. To prove the first claim, note first that each element ei that is given to the algorithm is
fractionally covered (as guaranteed in Section 3). Thus, by definition f(ei) = 1. If ei is not covered and
thus ei /∈ C, then Φ1 = 1. Since Φ2 > 0, then Φ > 1, contradicting Lemma 5.1 if ei is not covered.

To prove the second claim note that Φ1 > 0 always holds. Since by Lemma 5.1 Φ ≤ 1, we conclude
that also Φ2 ≤ 1. Thus, we get that:

exp

(∑

s∈S
(ln 2 · χC(s)− αw(s))−OPT

)
≤ 1.

Simplifying, we get that:
∑

s∈S
χC(s) ≤ 1

ln 2
· α ·

∑

s∈S
w(s) +

1
ln 2

·OPT = O(log d log(n/OPT )) ·OPT,

where the inequality follows from the value of α and the guarantee on the competitiveness of the fractional
algorithm. ¤

5.2 Throughput-Competitive Online Routing of Virtual Circuits The online problem of
maximizing the throughput of scheduled virtual circuits was studied in [5]. In its simplest version we are
given a graph with capacities u(e) defined on the edge set. A set of requests ri = (si, ti) (1 ≤ i ≤ n) arrive
in an online fashion. To serve a request, the algorithm chooses a path between si and ti and allocates
a bandwidth of 1 on this path. The total bandwidth allocated on any edge is not allowed to exceed
its capacity. The total profit of the algorithm is the number of requests served and the performance is
measured with respect to the maximum number of requests that could have received service (offline).

In a fractional version of the problem the allocation of bandwidth to a request is not restricted to be
from {0, 1}; instead, each request can be allocated a fractional bandwidth in the range [0, 1]. In addition,
the bandwidth allocated to a request can be divided between several paths. This is an online version of
the maximum multi-commodity flow problem. We describe the problem as a packing problem in Figure
3. For ri = (si, ti), let P(ri) be the set of simple paths between si and ti. For each P ∈ P(ri), the variable
f(ri, P ) corresponds to the amount of flow (service) given to request ri on the path P . The first set of
constraints guarantees that each client gets at most a fractional flow (bandwidth) of 1. The second set of
constraints guarantees the capacity constraints on the edges. In the primal problem we assign a variable
Z(ri) to each request ri and a variable x(e) to each edge e in the graph. The primal problem is a special
case of the general online fractional covering problem with a(i, j) ∈ {0, 1}. We note that our methods can
generate a fractional solution to an extension of the problem with any non-negative coefficients a(i, j).
The extension can be viewed as giving each edge a different capacity with respect to the clients that are
using it. This models a more complex relationship between clients and network capacities.

A competitive algorithm for the problem was proposed in [5]. We provide here an alternate algorithm
that achieves the same competitive factor as [5]. We build our algorithm systematically by using the two
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phase approach. First, we use our scheme to generate a feasible fractional solution which is a factor of
O(log P (max)) away from the optimum, where P (max) is the length of the longest path in the graph.
Next, we convert the standard pessimistic estimator designed for the offline version of the problem into
an online potential function. A randomized method to achieve a feasible integral solution is to scale down
all the flows by some factor B ≥ 1. We then choose to route the flow on a path P , carrying a fractional
flow of f(P ), with probability f(P )/B. This can be done, for example, by mapping the values f(P )/B
given to a request to the interval [0, 1], and then choosing a random number that would determine which
path to choose (or to reject the request altogether).

When B is large enough, there is a positive probability that no edge capacity is violated, and the total
integral flow is large enough [28]. This algorithm was derandomized using the method of conditional
expectations via a pessimistic estimator [27]. We transform this pessimistic estimator into an online
potential function. When the flow corresponding to a request is increased, the algorithm serves the
request (integrally) on a path if by doing so the following potential function does not increase. In what
follows we prove that there is always a good choice of either a path for a request, or a rejection of a
request, that would not increase the potential function. Our online potential function Φ = Φ1 +Φ2 is the
sum of the following two functions:

Φ1 =
1
2

exp






∑

ri

∑

P∈P(ri)

f(ri, P )
2B

− ln 2 ·
∑
ri

χ(ri)








Φ2 =
1

2m

∑

e∈E

exp





(
1 +

ln 2m

u(e)

)
χ(e)−

∑

P |e∈P

∑
ri

f(ri, P )



,

where χ(ri) is the characteristic function of request ri (i.e. χ(ri) = 1 iff it is serviced), χ(e) is the total
number of paths that use the edge, and m is the number of edges. Choosing B = exp{(1 + ln 2m

u(min) )} − 1,
where u(min) is the minimum capacity of an edge, suffices to prove Lemma 5.3, which in turn is used to
prove Lemma 5.4. Note also that B ≥ 1 always holds.

Lemma 5.3 Initially, Φ ≤ 1, and throughout the algorithm Φ > 0. In addition, each time the flow for a
request is increased, then either serving the request on some flow path or rejecting the request altogether
does not increase the potential function Φ.

Proof. It is easy to verify that initially Φ = 1. Also, since Φ is a sum of exponential functions it is
always positive.

To prove the second part of the claim we use a probabilistic argument. Specifically, we consider a
single round in which the flow to some request ri is increased on several paths, such that

f(ri) ,
∑

P∈P(ri)

f(ri, P ).

Then we consider the following random trial: we map the values f(ri, P )/B to the interval [0, 1] and
then choose a random number in [0, 1]. We choose to fully serve the request ri through the path that
comes up in the trial. If the random number we chose falls outside the flow values, we choose to reject
the request. Note that the probability that we served the request is exactly f(ri)/B. Also, for each edge
the probability that we use it to serve the request is exactly the amount of flow that is going through
the edge divided by B. We prove that the expected value of Φ does not increase in this random trial.
This means that either there exists a path such that serving the request on this path does not increase
the potential function, or rejecting the request does not increase the potential function. By linearity of
expectation we can analyze each term in the potential function separately.

Consider the first term of the potential function. Let Φstart
1 and Φend

1 be the respective start and end
values of Φ1, before increasing the flow and after the random trial. By the above observation the expected
value of Φend

1 is:

E
[
Φend

1

]
=

f(ri)
B

·
(

Φstart
1 · exp

{
f(ri)
2B

− ln 2
})

+
(

1− f(ri)
B

)
·
(

Φstart
1 · exp

{
f(ri)
2B

})
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= Φstart
1 ·

[
f(ri)
2B

· exp
{

f(ri)
2B

}
+

(
1− f(ri)

B

)
· exp

{
f(ri)
2B

}]

= Φstart
1 · exp

{
f(ri)
2B

}
·
[
1− f(ri)

2B

]
≤ Φstart

1 ,

where the last inequality follows since for any x ≥ 0, 1− x ≤ e−x.

We next analyze the expected value of each term in Φ2. Let Φstart
2 and Φend

2 be the respective start and
end values of Φ2, before increasing the flow and after the random trial. Consider a term corresponding
to an edge e. Let f(ri, e) be the total flow through the edge e that serves request ri. By the properties
of the random trial the probability that we serve request ri through edge e is exactly f(ri,e)

B . Thus, the
expected value of this term is:

E
[
Φend

2

]
=

f(ri, e)
B

·
(

Φstart
2 · exp

{(
1 +

ln 2m

u(e)
− f(ri, e)

)})

+
(

1− f(ri, e)
B

)
· (Φstart

2 · exp {−f(ri, e)}
)

= Φstart
2 · exp {−f(ri, e)} ·

[
f(ri, e)

B
· exp

{
1 +

ln 2m

u(e)

}
+

(
1− f(ri, e)

B

)]

= Φstart
2 · exp {−f(ri, e)} ·

[
f(ri, e)

B
·
(

exp
{

1 +
ln 2m

u(e)

}
− 1

)
+ 1

]

≤ Φstart
2 · exp {−f(ri, e)} · [f(ri, e) + 1] ≤ Φstart

2 .

The last inequalities follow since B = exp
{

1 + ln 2m
u(min)

}
− 1 ≥ exp

{
1 + ln 2m

u(e)

}
− 1, and since for any

x ≥ 0, 1 + x ≤ ex. ¤

Lemma 5.4 The algorithm is O(log P (max) ·
[
exp{(1 + 2 ln m

u(min) )} − 1
]
)-competitive and does not violate

the capacity constraints.

We remark that when u(min) ≥ log n we get that the algorithm is O(log P (max))-competitive. The
competitiveness is exactly as in [5].

Proof. To see that the algorithm does not violate the capacity constraints we consider the second
part of the potential function. From Lemma 5.3 each term in the potential function Φ is at most 1.
Therefore, for each edge e:

1
2m

exp





(
1 +

ln 2m

u(e)

)
χ(e)−

∑

P |e∈P

∑
ri

f(ri, P )



 ≤ 1.

Since the fractional solution is feasible, we get that
∑

P |e∈P

∑
ri

f(ri, P ) ≤ u(e). Therefore, simplifying
the inequality we get that

χ(e) ≤ u(e) ·
ln 2m +

∑
P |e∈P

∑
ri

f(ri, P )

ln 2m + u(e)
≤ u(e).

To see that the algorithm is competitive consider Φ1. By Lemma 5.3 Φ1 ≤ 1. Therefore, we get that:

1
2

exp






∑

ri

∑

P∈P(ri)

f(ri, P )
2B

− ln 2 ·
∑
ri

χ(ri)






 ≤ 1.

Simplifying we get that: ∑
ri

∑

P∈P(ri)

f(ri, P )
2B

− ln 2 ·
∑
ri

χ(ri) ≤ ln 2,

which means that:
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∑
ri

χ(ri) ≥ −1 +
1

2B ln 2
·
∑
ri

∑

P∈P(ri)

f(ri, P ).

Since the fractional algorithm guarantees that
∑
ri

∑

P∈P(ri)

f(ri, P ) ≥ 1
O(log P (max))

·OPT ,

we get the desired bound. ¤

6. Conclusions and Further Results We have developed in this paper a general recipe for the
design and analysis of online algorithms, applicable to a wide range of interesting online problems. The
competitive analysis is direct and without the use of a potential function appearing “out of nowhere”.
Also, the competitiveness of our online algorithms is shown to be with respect to an optimal fractional
solution. We note that the use of a linear program for online problems helps detecting the difficulties of
the problem in hand.

Since the preliminary version of this paper appeared in [9], several new applications of the online
primal-dual method were discovered, establishing it as an important paradigm for the design of online
algorithms.

Covering Problems: The online set-cover problem [1], along with the graph optimization problems
in [2], naturally fall within the framework of online covering problems. In fact, these problems motivated
our work and were its starting point. It was shown in [11] that classic online problems such as the ski
rental problem and the dynamic TCP-acknowledgement problem [20] can be viewed as online covering
problems, and the well known randomized competitive algorithms for these problems can be derived via
the primal-dual framework presented here. The parking permit problem studied by Meyerson [25] can
also be cast as an online covering problem. Thus, the randomized algorithm presented in [25] can be
obtained using the two phase approach: first, a fractional solution which has a logarithmic competitive
factor is generated using the primal-dual framework. Then, by randomized rounding, an integral solution
is obtained similarly to [25]. More recently, an extension of the ideas that appear in our work were used to
obtain a randomized O(log k)-competitive algorithm for the weighted paging problem [6], where k is the
cache size. This is the first randomized o(k)-algorithm for the problem. We note that weighted paging is
a special case of the more general k-server problem (see [8] for more details).

Packing Problems: The problems of throughput-competitive online routing of virtual circuits and
online load balancing studied in [5, 3] can be viewed as online packing problems. In this work we showed
that an alternate routing algorithm (achieving the same competitive factor as the algorithm presented
in [5]) can be derived systematically using our approach. A more delicate algorithm, also based on a
primal-dual approach, was recently used to derive improved routing goals in many settings [10]. (In
particular, [10] considered the fairness goals studied previously by Goel et al. in [17].) Recently, it was
shown in [11] that the online (fractional) bipartite matching problem [21] and the more general problem
of allocating ad-auctions [24] can also be solved using the primal-dual framework. This yields optimal as
well as simple online algorithms for these problems and their extensions.

Acknowledgments. We thank Yossi Azar for many helpful discussions. We would like to thank the
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