
A Regularization Approach to Metrical Task Systems

Jacob Abernethy1, Peter Bartlett1, Niv Buchbinder2, and Isabelle Stanton1

1 UC Berkeley - {jake,bartlett,isabelle}@eecs.berkeley.edu
2 Microsoft Research - nivbuchb@microsoft.com

Abstract. We address the problem of constructing randomized online algorithms
for the Metrical Task Systems (MTS) problem on a metric δ against an oblivious
adversary. Restricting our attention to the class of “work-based” algorithms, we
provide a framework for designing algorithms that uses the technique of regular-
ization, in which the algorithm’s distribution on a given round is chosen as the
solution to an objective that involves a curved regularization function. For the
case when δ is a uniform metric, we exhibit two algorithms that arise from this
framework, and we prove a bound on the competitive ratio of each. We show that
the second of these algorithms is lnn + O(log logn) competitive, which is the
current state-of-the art for the uniform MTS problem. We discuss a novel method
for potentially solving the optimal MTS algorithm for general metrics.
*This paper is eligible for the E.M. Gold award for Isabelle and Jacob

1 Introduction

Consider the problem of driving on a congested multi-lane highway with the goal of
getting home as fast as possible. You are always able to estimate the speed of all of the
lanes, and must pick some lane in which to drive. At any time you are able to switch
lanes, but pay an additional penalty for doing so proportional to the distance from your
current lane. How should you pick lanes and when should you switch?

This is a concrete example of the metrical task system (MTS) problem, first intro-
duced by Borodin, Linial and Saks [1]. The problem is defined on a space of n states
with an associated distance metric function. The input to the problem is a series of cost
vectors c ∈ Rn+. An MTS algorithm must choose a state i after seeing each c and must
pay the service cost ci. In addition, the algorithm pays a cost for switching between
states that is equal to their distance in the given metric. An alternative model, and the
focus of the present work, is to imagine a randomized algorithm that maintains a dis-
tribution over the states on each round, and pays the expected switching and servicing
cost.

Metrical task systems form a very general framework in which many well-known
online problems can be posed. The k-server problem on an n-state metric [2], for ex-
ample, can be modeled as a metrical task system problem with

(
n
k

)
states although this

reduction of making each k-subset a state leads to non-optimal bounds. Another exam-
ple is process migration over a compute cluster - in this view each node is a state, the
distance metric represents the amount of time it takes for a process to migrate from one
node to another and the cost vector represents the current load on the machine.

The randomized MTS problem looks strikingly similar to one much more familiar
to the learning community: the “hedge” or “expert” setting [3]. The hedge problem also

requires choosing a distribution on [n] on each of a sequence of rounds, witnessing a
cost vector, and paying the associated expected cost of the selected distribution. The two
primary distinctions are that (a) no switching cost is paid in the hedge problem and (b)
the MTS comparator, i.e. the offline strategy that the only algorithm competes against,
is given much more flexibility. In the hedge problem, the algorithm is only compared
to an offline algorithm that must fix its state throughout the game, whereas the MTS
offline comparator may choose the cheapest sequence of states knowing all service cost
vectors in advance.

The most common measure of the quality of an MTS algorithm is the competitive
ratio, which takes the performance of the online algorithm on a worst-case sequence
of cost vectors a nd divides this by the cost of the optimal offline comparator on the
same sequence. This is a notable departure from the notion of regret, which measures
the difference between the worst-case online and offline cost, and is a much more com-
mon metric for evaluating learning algorithms. This extension is necessary because the
complexity of the MTS comparator grows over time.

Prior Work

Borodin, Linial and Saks [1] showed that the lower bound on the competitive ratio of
any deterministic algorithm over any metric is 2n − 1. They also designed an algo-
rithm, the Work-Function algorithm, that achieves exactly this bound. This algorithm
was further analyzed by Schafer and Sivadasan using the smoothed analysis techniques
of Spielman and Teng to show that the average competitive ratio can be improved to
o(n) when the topological features of the metric are taken into account [4].

Results improve dramatically when randomization is allowed. The first result for
general metrics was an algorithm that achieved a competitive ratio of e

e−1n−
1
e−1 , [5]

by Irani and Seiden. In a breakthrough result, Bartal, Blum, Burch and Tompkins [6]
gave the first poly-logarithmic competitive algorithm for all metric spaces. This algo-
rithm uses Bartal’s result for probabilistically embedding general metric spaces into hi-
erarchically well-separated trees [7, 8]. Fiat and Mendel [9] improved this result further
to the currently best competitive algorithm that isO(log2 n log log n). Recently, Bansal,
Buchbinder and Naor [10] proposed another algorithm for general metrics based on a
primal-dual approach that is only O(log3 n)-competitive, but has an optimal competi-
tive factor with respect to service costs. The best known lower bound on the competitive
ratio for general metrics is Ω(log n/ log2 log n) [11]. This improves upon the previous

bound ofΩ(
√

log n/ log2 log n) [12]. A widely believed conjecture is that anO(log n)-
competitive algorithm exists for all metric spaces.

Better bounds are known for some special metrics. For example, for the line metric
a slightly better result of O(log2 n) is known [9]. Other metrics for which better results
are known are the weighted star metric for which an O(log n)-competitive algorithm is
known [9, 13]. The best understood, and most extensively studied metric space is the
uniform metric. For the uniform case, Bartal, Linial and Saks [1] showed a lower bound
on the competitive ratio for any algorithm of Hn, the nth harmonic number. They [1]
also designed an algorithm, Marking, that has competitive ratio 2Hn. An alternate algo-
rithm, Odd-Exponent [6], bears some similarity to one of the algorithms in this paper,

and has a 4 log n + 1 competitive ratio on the uniform metric. This upper bound was
further improved by the Exponential algorithm [5] to Hn + O(

√
log n). Recently, the

Wedge algorithm [14] was introduced with competitive ratio of 3
2Hn − 1

2n . They claim
that this achieves a better competitive ratio when n < 108. Bansal, Buschbinder and
Naor [15, 16] designed an algorithm for the uniform metric that is based on a previous
primal-dual approach and has near optimal competitive ratio.

Our Contributions We make several contributions to the randomized metrical task
system problem. In Section 2, we propose a clear and coherent framework for devel-
oping and analyzing algorithms for the MTS problem. We appeal to the class of work-
based algorithms for which the probability distribution is chosen as a function of the
work vector, to be defined in the Preliminaries. We provide the most comprehensive set
of analytical tools for bounding the competitive ratio of work-based algorithms.

In Section 3, we develop an approach to the MTS problem using a regularization
framework. This provides a generic template for constructing randomized MTS algo-
rithms based on certain parameters of the regularized objective. For the case of the
uniform metric, we employ the entropy function as a regularizer and exhibit two novel
algorithms. The second of these achieves the current state-of-the-art competitive ratio
of Hn + O(log log n). We discuss potential methods for constructing general-metric
algorithms as well.

1.1 Preliminaries

The set [n] := {1, . . . , n} is a metric space if there exists a distance metric δ : [n] ×
[n] → R+. The primary feature of metrics that we will use is that they satisfy the
triangle inequality.

Given two distributions p1,p2 ∈ ∆n, where ∆n is the n-dimensional probability
simplex, we define the Earth Mover Distance, or Wasserstein Distance, distδ(p1,p2),
as the least expensive way to transition between p1 and p2. Precisely, it is the solution
to

min
∑
i,j∈[n] δ(i, j)xi,j

subject to 1>n [xi,j] = p1

[xi,j]1n = p2

xi,j ≥ 0 ∀i, j ∈ [n]

In one case, the Earth Mover Distance is rather easy to compute. In fact, for the uniform
metric, the Earth Mover Distance is exactly the variational distance. The proof of the
following Lemma is straightforward.

Lemma 1. Assume we are given p1,p2 ∈ ∆n with the property that p1 dominates p2

at every coordinate but i, that is p1
j ≥ p2

j whenever j 6= i. Then

distδ(p1,p2) =
∑

j∈[n]\{i}

(p1
j − p2

j)δ(i, j)

The Randomized Metrical Task Systems problem The Metrical Task Systems (MTS)
problem is formally defined as follows. Given n states and a metric δ over [n], a ran-
domized algorithm is given a sequence of service cost vectors c1, c2, . . . , cT ∈ Rn+ as
input and must choose a sequence of distributions p1,p2, . . . ,pT ∈ ∆n as a response.
The cost of some algorithm A is the total expected servicing cost plus the total moving
cost, i.e.

costA(c1, . . . , cT) :=
T∑
t=1

(
pt · ct + distδ(pt,pt−1)

)
where p0 is set to some default distribution, which we assume to be 〈1, 0, . . . , 0〉 by
convention.

An offline MTS algorithm may select pt with knowledge of the entire sequence of
cost vectors c1, . . . , cT . We refer to the optimal offline algorithm by OPT(c1, . . . , cT).
In this Section we discuss how OPT can be computed easily with a simple dynamic
program.

An online MTS algorithm can select pt with knowledge only of c1, . . . , ct. Notice
that, unlike in the usual “expert setting”, we let an online algorithm have access to the
cost vector ct before the distribution pt is chosen and the cost pt · ct is paid.

We measure the performance of an online algorithm by its Competitive Ratio (CR),
which is the ratio of the cost of this algorithm relative to the cost of the optimal offline
algorithm on a worst-case sequence. More precisely, the CR is the minimal valueC > 0
for which there is some b such that, for any T and any sequence c1, c2, . . . , cT ,

costA(c1, c2, . . . , cT) ≤ C · costOPT(c1, c2, . . . , cT) + b

The additive term b, which can depend on the fixed parameters of the problem, is in-
cluded to deal with potential fixed “startup costs”. Indeed, without affecting the defini-
tion of competitive ratio we can assume that b is o(costOPT(c1, . . .)), although here (and
in most work) b is assumed to be constant.

The Work Function We observe that the offline algorithm OPT need not play in a
randomized fashion because the optimal distributions pt will occur at the corners of the
simplex. Hence, computing OPT is not difficult, and can be reduced to a simple dynamic
programming problem. The elements of this dynamic program are fundamental to all of
the results in this paper, and we now define it precisely. Given a sequence c1, . . . , cT ,
we define the work function vector Wt at time t by the following recursive definition:

W0 := 〈0,∞, . . . ,∞〉
W t
i := min

j∈[n]

{
W t−1
j + δ(i, j) + ctj

}
The work function value W t

i is exactly the smallest total cost incurred by an offline
algorithm for which pt = ei, i.e. one which must be at location i at time t. Indeed, if
we define

W t
min := min

i
W t
i ,

then we see that OPT(c1, . . . , cT) = WT
min.

If we think of the work vector Wt as a function from [n] to R, where Wt(i) := W t
i ,

then it is easily checked that Wt is 1-Lipschitz with respect to the metric δ. That is, for
all i, j ∈ [n], |W t

i − W t
j | ≤ δ(i, j). We define a notion of a supported state which

occurs when this Lipschitz constraint becomes tight.

Definition 1. Given some work vector Wt with respect to a metric δ, the state i is
supported if there exists a j 6= i such that W t

i = W t
j + δ(i, j).

Throughout this text, when it is unnecessary, we will drop the superscript t from
Wt, W t

i , pt and pti.

2 The Work-Based MTS Framework

In this Section we lay out a framework for designing randomized MTS algorithms. This
framework imposes a number of significant restrictions on the algorithm, and makes
relatively strong assumptions about the types of inputs the algorithm will observe.

The Simplified MTS Framework

1. The algorithm will be “work-based”, that is, we choose pt = p(Wt) for some
fixed function p regardless of the sequence of cost vectors that resulted in W.

2. All cost vectors are “elementary”: every ct has the form αei for some α > 0 and
some i

3. The algorithm will be “reasonable”: whenever Wi = Wj + δ(i, j) for some j, i.e.
i is a supported state, then it must be that pi(W) = 0.

4. The cost vectors will be “reasonable” as well: Given a current work vector W, if
a cost c = αei is received then α ≤Wj −Wi + δ(i, j) for all j

5. The algorithm will be “conservative”: whenever a cost c = αei is received given
current work vector W, then for each j 6= i we have pj(W) ≤ pj(W + αei) –
that is, the probabilities at other locations can not decrease.

This paper focuses entirely on the construction of work-based algorithms, where
the algorithm can forget about the sequence of cost vectors c1, . . . , ct and simply use
Wt to choose pt. This algorithmic restriction has been used as early as [1] and appears
elsewhere. It has not been shown, to the best of our knowledge, that this restriction is
made without sacrificing optimality. We conjecture this to be true.

Conjecture 1. There is an optimal randomized MTS algorithm that is work-based. In
other words, there is an optimal algorithm such that, after receiving c1, . . . , ct, the
probability pt need only depend on the resulting work vector Wt.

Strictly speaking, we need not settle this conjecture to proceed with developing al-
gorithms within this restricted class. However, if it were settled in the affirmative this
would suggest that the algorithmic design problem can be safely restricted to this smaller
class of algorithms. Indeed, by making this assumption we gain a number of other sim-
ple and appealing properties as we discuss below.

For the remaining assumptions/restrictions in our simplified framework, each has
been previously justified in other works–that is, each is made without loss of generality.

The restriction of using elementary cost vectors is discussed by Irani and Seiden in [5],
which was first published in 1995. They argue that this is an equivalent formulation
of the problem. Once we make the work-based assumption, the fact that our algorithm
must satisfy the reasonableness property is straightforward – whenever this property is
broken an adversary can induce an unbounded competitive ratio [6]. Again, making the
work-based assumption, it is shown by [9] that it is sufficient to consider reasonable cost
sequences – any unreasonable cost vectors can be truncated without changing either the
online algorithm’s cost or the cost of OPT. The conservative property is used throughout
the literature and is easy to justify.

Before proceeding, we mention one useful fact that results from our framework,
whose proof we omit but can be easily checked.

Lemma 2. Under the assumption that the sequence of cost vectors c1, . . . , ct is rea-
sonable, the work vector is precisely Wt = c1 + . . .+ ct.

2.1 Relationship to the Experts Setting

Before proceeding, let us show why the proposed framework brings us much closer to
a much more well-understood problem: the so-called “expert” or “hedge” setting [3].
Here, the algorithm must choose a probability distributions pt ∈ ∆n on each round t,
and an adversary then chooses a loss vector lt ∈ [0, 1]n. Let us write Lt =

∑t
s=1 ls.

Then the goal of the algorithm is to minimize
∑T
t=1 pt · lt relative to the loss of the

“best expert”, i.e. mini Lti.
Within our MTS framework, the story is quite similar. The algorithm and adversary

choose pt and ct on each round, with the goal of minimizing
∑T
t=1

(
pt · ct + distδ(pt,pt−1)

)
.

By Lemma 2, WT =
∑T
t=1 ct, and the algorithm’s goal is to pay as little as possible

relative to miniW t
i .

These problems have a strong resemblance, yet there are several critical differences:

– The MTS algorithm has one-step lookahead, i.e. it can select pt with knowledge of
ct

– An additional penalty distδ(pt−1,pt) for moving is added to the objective for MTS
– The algorithm must be “reasonable”, requiring that the probability pti must vanish

under certain conditions of Wt

While the first point would appear quite advantageous for MTS, this benefit is
spoiled by the latter two. As is well-known in the expert setting, we can ensure that
the average cost of the algorithm approaches the comparator mini Lti using an algo-
rithm like Hedge, whereas in the MTS setting a lower bound shows that this ratio is
at least Ω(log n/ log2 log n) for the work function comparator [11]. At a high level,
this is because charging the algorithm for adjusting its distribution and requiring that
the probability vanishes on certain states causes the algorithm to pay a huge amount in
transportation.

In Section 3, we borrow some tools from the hedge setting such as entropy regu-
larization and potential functions. Algorithms from the hedge setting have been used
on the MTS problem before, most notably by [17]. Their approach is quite different

from the one we take. They imagine competing against a “switching expert” and mod-
ify known results developed by [18]. Their approach, while quite interesting, is not a
work-based algorithm and does not achieve an optimal bound.

2.2 Bounding Costs using Potential Functions

We turn our attention to bounding the cost of a work-based MTS algorithm p on a
worst-case sequence of costs. First, we make a simple observation about work-based
algorithms that adhere to our framework. Given a work vector W, consider the cost to
the algorithm when vector c = εei is received and the work vector becomes W1 =
W + εei. The probability distribution transitions to p(W1), and the service cost is
p(W1) · c = εpi(W

1). By the conservative assumption, we compute the switching
cost by appealing to Lemma 1. Hence, the total cost is

p(W1) ·c + distδ(p(W),p(W1)) = εpi(W
1)+

∑
j∈[n]\{i}

(pj(W
1)− pj(W))δ(i, j).

(1)
In the present work, we will consider designing algorithms with p(W) which are both
continuous and differentiable. With this in mind, we can take (1) a step further and let
ε→ 0 to get the instantaneous increase in cost to the algorithm as we add cost to state i.
Using continuity, we see that W1 →W as ε → 0, which gives that the instantaneous
cost at W in the direction of ei as

pi(W) +
∑

j∈[n]\{i}

∂pj(W)
∂Wi

δ(i, j)

Ultimately, we need to bound the total cost of the algorithm on any sequence. The
typical way to achieve this is with a potential function that maintains an upper bound on
the worst case sequence of cost vectors that results in the current W. There is a natural
“best” potential function Φ∗p(w) for a given algorithm p, which we now construct.

For any measurable function I : R+ → [n], we can define a continuous path through
the space of work vectors by WI(s) =

∫ s
0

eI(α)dα. This is exactly the continuous ver-
sion of Lemma 2. The function I(s) specifies which coordinate of WI(s) is increasing
at time s. Let ρ(W) be the set of all functions I which induce paths starting at 0 that
lead to W. We now construct a potential function,

Φ∗p(W) = sup
I∈ρ(W)

∫ T :WI(T)=W

0

pI(s)(WI(s)) +
∑
j 6=I(s)

∂pj(WI(s))
∂WI(s)

δ(i, j)

 ds.

This potential function measures precisely the worst case cost of arriving at a work
vector W.

Lemma 3. For any sequence of reasonable elementary vectors c1, c2, . . . , cT with
W =

∑
t c
t, the cost to algorithm p is no more than Φ∗p(W). Furthermore, Φ∗p(W)

is the supremal cost over all possible cost sequences {ct} that lead to W.

Proof. This fact is straightforward and we sketch the proof. For c = εei and any W,
the cost to the algorithm is stated in Equation (1). On the other hand, if we apply the
cost to state i in a continuous fashion, then the cost is

∫ ε

0

pi(W + sei) +
∑
j 6=i

∂pj(W + sei)
∂Wi

δ(i, j)

 ds.

By the conservative property, this is clearly an upper bound on Equation (1). In addition,
for any sequence of ct’s, we can construct an associated smooth path to W in the same
way. But Φ∗p(W) was defined as the supremum cost over such paths. Thus, both the
lower and upper bound follow.

Once we have Φ∗p , the competitive ratio of p has the following characterization.

Lemma 4. The competitive ratio of algorithm p is the infimal valueC such thatΦ∗p(W)−
CWmin is bounded away from +∞ for all W.

Certain work-based algorithms, which we will call shift-invariant algorithms, sat-
isfy p(W) = p(W + c1) for any W and any c.

Lemma 5. The competitive ratio of a shift-invariant algorithm is 1 · ∇Φ∗p(W) for any
W.

Finding the optimal Φ∗p for the algorithm p may be difficult. To prove an upper
bound on the competitive ratio, however, we need only construct a valid Φ. Precisely,
define Φ(W) to be valid with respect to the algorithm p if, for all W and all i, we have

∂Φ(W)
∂Wi

≥ pi(W) +
∑
j 6=i

∂pj(W)
∂Wi

δ(i, j)

Lemma 6. Given any p and any valid potential Φ, C is an upper bound on the com-
petitive ratio if Φ(W)− CWmin is bounded away from +∞.

In the following Section, we show how to design algorithms and construct potentials
for the case of uniform metrics using regularization techniques.

3 Work-Based Algorithms via Regularization

We begin this Section by providing a general tool for the construction of work-based
MTS algorithms. We present a regularization approach, very common in the adversarial
online learning community, which we modify to ensure the required conditions for the
MTS setting. We then present two algorithms for the uniform metric that arise from this
framework, with associated potential functions, and we prove a bound on the competi-
tive ratio of each. We finish with a discussion on how to extend this approach to general
metric spaces.

3.1 Regularization and Achieving Reasonableness

We now turn our attention to the problem of designing competitive work-based algo-
rithms for the case when δ is the uniform metric. The uniform metric is such that all
states are the same distance from each other–that is, we assume without loss of gener-
ality δ(i, j) = 1 whenever i 6= j and 0 otherwise.

To obtain a competitive work-based algorithm, we need to find a function p and
construct an associated potential function Φ with the following properties:

– (Conservativeness) We require that
∂pj(W)

∂Wi
≥ 0 for any W and ∀j 6= i

– (Reasonableness) The probability pi(W) must vanish whenever i is a supported
state for W, i.e. when Wi = Wj + δ(i, j) for some j

– (Valid Potential) For any W, i, the potential Φ must satisfy ∂Φ(W)
∂Wi

≥ pi(W) −
∂pi(W)
∂Wi

Notice that the term −∂pi(W)
∂Wi

has replaced
∑
j 6=i

∂pj(W)

∂Wi
δ(i, j) in the last expression.

These two quantities are equal when δ is the uniform metric, precisely because for any
j we have

∑
i
∂pi(W)
∂Wj

= 0 since
∑
i pi(W) = 1.

In order to obtain an algorithm with a low competitive ratio, we must construct a
slowly-changing p(W) and a valid potential Φ(W) that controls the motion of p(W)
as W varies in each direction. In other words, we would like to enforce a level of stabil-
ity in p(W). Stability is a central concept within both the batch-learning and the adver-
sarial online-learning literature. The most common and thoroughly analyzed approach
is to employ regularization. To describe this approach, let us return our attention to the
experts setting discussed in Section 2.1. Recall that, at time t, a distribution pt ∈ ∆n

is to be chosen with knowledge of l1, . . . , lt−1. This can be achieved by solving the
following regularized objective,

pt = argmin
p∈∆n

(R(p) + λ

t−1∑
s=1

p · ls) (2)

where generally the “regularizer” R is selected as some smooth convex function and
λ is a learning parameter. Exactly how to select the correct regularizer is a major area
of research, but for the experts setting the most common is the negative of the entropy
function, R(p) :=

∑
i∈[n] pi log pi. This choice leads to the well-known exponential

weights:

pti =
exp

(
−λ
∑t−1
s=1 l

s
i

)
∑
j exp

(
−λ
∑t−1
s=1 l

s
j

) (3)

Regularization in online learning appears in the literature at least as early as [19] and
[20], and more modern analyses can be found in [21] and [22].

In this paper, we use the regularization framework to produce an algorithm p(W).
It is tempting to suggest solving the equivalent objective of Equation (2), where we treat
W as the cumulative costs; this leads to setting

p(W) = argmin
p

(R(p) + λp ·W). (4)

This approach can indeed guarantee stability with the correct R, and it’s easy to check
that the objective induces a conservative algorithm. Unfortunately, it does not enforce
the reasonableness property that we require. (It has been shown that an unreasonable
work-based algorithm must admit an unbounded competitive ratio [17].)

The question we are thus left with is, how can we adjust the objective to maintain
stability and ensure reasonableness? Recall, when δ is the uniform metric, the reason-
ableness property requires that pi(W) → 0 whenever 1 +Wj −Wi approaches 0 for
any j, or equivalently when 1 + Wmin − Wi → 0. To guarantee this behavior, we
propose replacing the term p ·W in Equation (4) with

∑
i pifi(W, λ) where the func-

tion fi(W, λ) will be a Lipschitz penalty: for any metric δ on [n] and any 1−Lipschitz
vector W with respect to δ, we say that fi(W, λ) is a Lipschitz penalty function if
fi(W, λ)→∞ as minj

(
Wj −Wi + δ(i, j)

)
→ 0. λ is a learning parameter that may

be tuned. Hence, we propose the following method to find p(W):

p(W) = argmin
p

(R(p) +
∑
i

pifi(W, λ)). (5)

For both algorithms in the following Section, we employ the entropy function for
our regularizer R(p).

3.2 Two Resulting Algorithms for the Uniform Metric

We will consider the following two Lipschitz penalty functions, and analyze the result-
ing algorithms:

(Alg 1) fi(W, λ) = −λ log(1 +Wmin −Wi)
(Alg 2) fi(W, λ) = − log(eλ(1+Wmin−Wi) − 1)

The analysis of both algorithms proceeds by solving the regularization function to
find pi as a function of W and then using the potential function technique of Section
2.2 to bound the switching and servicing costs regardless of which state receives cost.
For both, we separate the analysis into two cases: when increasing Wi causes Wmin =
minjWj to increase, and when increasing Wi does not affect Wmin.

Algorithm 1
1: Input: W, λ
2: Set

pi =
(1 +Wmin −Wi)

λPn
j=1(1 +Wmin −Wj)

λ

Theorem 1. Algorithm 1 results from regularizing with fi(W, λ) = −λ log(1+Wmin−
Wi) with λ = log n and has a competitive ratio of e log n+ 1 for the uniform metric.

Proof. The algorithm that results from regularizing with fi(W, λ) = −λ log(1 +
Wmin −Wi) is:

pi =
(1 +Wmin −Wi)

λ∑n
j=1(1 +Wmin −Wj)λ

We will show that each of the components of the cost of the algorithm is bounded by a
multiple of the following potential function:

Φ(W) = cWmin − log
n∑
i=1

(1 +Wmin −Wi)
λ

The parameters will be set so that c = e(log n − 1) + 1 and λ = log n. We will show
that these have been tuned optimally.

As discussed in the beginning of this section, we must show that pi −
∂pi
∂Wi
≤ ∂Φ

∂Wi

for all i. We will vary from that slightly and show that when i 6= min, pi −
∂pi
∂Wi

≤
(1 + 1

λ) ∂Φ
∂Wi

and if i = min then pmin −
∂pmin
∂Wmin

≤ ∂Φ
∂Wmin

. Combining these facts, the

competitive ratio will be upper bounded by (1 + 1
λ)c.

First, we will show that if i 6= min, pi −
∂pi
∂Wi
≤ (1 + 1

λ) ∂Φ
∂Wi

.

pi −
∂pi
∂Wi

=
(1 +Wmin −Wi)

λ∑
j(1 +Wmin −Wj)λ

+
λ(Wmin −Wi + 1)λ−1

(
∑
j(1 +Wmin −Wj)λ)2

≤ (1 +Wmin −Wi)
λ−1(λ+ 1 +Wmin −Wi)∑

j(1 +Wmin −Wj)λ

≤ (λ+ 1)(Wmin −Wi + 1)λ−1∑
j(1 +Wmin −Wj)λ

=
λ+ 1
λ

∂Φ

∂Wi

Next, we consider pmin −
∂pmin
∂Wmin

≤ ∂Φ
∂Wmin

. Notice that pmin = 1
Z where Z =

∑
j(1 +

Wmin −Wj)
λ. We have

pmin −
∂pmin

∂Wmin

=
1
Z

+
1
Z2

∂Z

∂Wmin

≤ 1 +
1
Z2

∂Z

∂Wmin

In addition, we see that
∂Φ

∂Wmin

= c− 1
Z

∂Z

∂Wmin

In order to show that pmin −
∂pmin
∂Wmin

≤ ∂Φ
∂Wmin

, using the above two statements it is
equivalent to show that

1
Z

∂Z

∂Wmin

+
1
Z2

∂Z

∂Wmin

≤ c− 1

We now show this fact. First, let αj := 1 +Wmin −Wj . Now we need to maximize(
1 +

1
1 +

∑
j 6=min α

λ
j

)
λ
∑
j 6=min α

λ−1
j

1 +
∑
j 6=min α

λ
j

This expression is maximized when αj = (λ−1
n−1)1/λ and attains a maximum value

of λ+1
λ (λ−1)(n−1)1/λ(λ−1)−1/λ. This can be seen by first noting that it is maximized

when all αj are some value α and then taking the derivative with respect to α and setting
it equal to 0.

We note that as λ → ∞, (λ − 1)−1/λ → 1, as does λ+1
λ . Thus, we only concern

ourselves with the limit of (n− 1)1/λ. Let this quantity be L. By L’Hopital’s rule:

lim
n→∞

logL = lim
n→∞

log(n− 1)
λ

= lim
n→∞

1
n−1
dλ
dn

If we let λ = log n then we have 1
(n−1)/

1
n → 1. Thus, L = e and pmin −

∂pmin
∂Wmin

≤
∂Φ

∂Wmin
if c− 1 > (λ− 1)(n− 1)1/λ = e(log n− 1). Therefore, c = e(log n− 1) + 1.

Finally, we note that we have both requirements, pmin −
∂pmin
∂Wmin

≤ ∂Φ′

∂Wmin
and pi −

∂pi
∂Wi
≤ ∂Φ′

∂Wi
for Φ′ = (1 + 1

λ)Φ. Therefore, the total cost of this algorithm is bounded

by (1 + 1
λ)cOPT = (1 + 1

logn)(e(log n− 1) + 1)OPT ≤ (e log n+ e+ 1)OPT.

The previous algorithm demonstrates our analysis technique for a very simple and
natural Lipschitz-penalty function. However, it has a somewhat unsatisfying compet-
itive ratio of e log n. Even the very simple Marking algorithm has a better compet-
itive ratio of 2Hn. Next, we will show that a different Lipschitz penalty function,
fi(W, λ) = log(exp(λ(1 + Wmin −Wi)) − 1), produces an algorithm that achieves
the current best competitive ratio for the uniform MTS problem.

Algorithm 2
1: Input: W, λ
2: Set

pi =
eλ(1+Wmin−Wi) − 1P

j

“
eλ(1+Wmin−Wj+1) − 1

”

Theorem 2. Algorithm 2 results from the Lipschitz penalty fi(W, λ) = − log(exp(λ(1+
Wmin −Wi))− 1) with λ = log n+ 2 log log n and has a competitive ratio of log n+
O(log log n) for the uniform metric.

Proof. Solving the regularization problem when fi(W, λ) = log(exp(λ(1 +Wmin −
Wi))− 1) results in

pi =
eλ(1+Wmin−Wi) − 1∑
j e
λ(Wmin−Wj+1) − 1

We will show that the switching and servicing costs are bounded by the following po-
tential function:

Φ(W) = cWmin −
1 + λ

λ
log

n∑
i=1

(eλ(1+Wmin−Wi) − 1).

This analysis requires tuning the parameter λ, which we will do at the end.
In the same vein as the previous proof, we will show that pi−

∂pi
∂Wi
≤ ∂Φ

∂Wi
. We will

break this up into two steps, one where i 6= min and when i = min.
Let us consider the case when i 6= min. Let Z =

∑
j(e

λ(1+Wmin−Wj) − 1), the
normalization term of the above distribution. For any i 6= min, we see that

pi −
∂pi
∂Wi

= pi +
λeλ(1+Wmin−Wi)

Z
+

1
Z2

∂Z

∂Wi

(eλ(1+Wmin−Wi) − 1) +
λ

Z
− λ

Z

= pi +
λ(eλ(1+Wmin−Wi) − 1)

Z
+
λ

Z
+ pi

1
Z

∂Z

∂Wi

= (1 + λ+
1
Z

∂Z

∂Wi

)pi +
λ

Z
≤ (1 + λ)pi +

λ

Z

Notice that the final inequality follows since ∂Z
∂Wi
≤ 0.

Then, we consider ∂Φ
∂Wi

.

∂Φ

∂Wi

=
λ+ 1
λ

1
Z

∂Z

∂Wi

=
λ+ 1
λ

1
Z

(λeλ(Wmin−Wi+1))

=
1 + λ

Z
eλ(Wmin−Wi+1) +

1 + λ

Z
− 1 + λ

Z
= (1 + λ)(pi + 1/Z)

pi −
∂pi
∂Wi
≤ ∂Φ

∂Wi
follows immediately.

Now let i = min. Notice that pmin = eλ−1
Z , so we have

pmin −
∂pmin

∂Wmin

= pmin + (eλ − 1)
1
Z2

∂Z

∂Wmin

= pmin

(
1 +

1
Z

∂Z

∂Wmin

)
Furthermore,

∂Φ

∂Wmin

= c− 1 + λ

λ

1
Z

∂Z

∂Wmin

We compute

1
Z

∂Z

∂Wmin

=
λ

Z

∑
j 6=min

eλ(Wmin−Wj+1) =
λ

Z

∑
j 6=min

(eλ(Wmin−Wj+1) − 1) + λ
n− 1
Z

= λ

(
1− pmin +

n− 1
Z

)
Putting the last three statements together, we can restate pmin −

∂pmin
∂Wi

≤ ∂Φ
∂Wmin

as

pmin

(
1 + λ

(
1− pmin +

n− 1
Z

))
≤ c− (1 + λ)

(
1− pmin +

n− 1
Z

)
⇐⇒ n− 1

Z
(1 + λ+ λpmin) + 1 + λ(1− p2

min) ≤ c

Noting that Z ≥ eλ− 1 and λpmin ≤ λ, it is equivalent to show that (2λ+1)n
eλ−1

+ 1 +
λ ≤ c. Setting λ = log n+ 2 log log n gives that the first term is o(1), and we can then
set c = λ+1+o(1). Thus the competitive ratio of this algorithm is log n+O(log log n),
the best achieved thus far.

3.3 Extending to general metrics

While it may appear that the entropy function was chosen out-of-the-blue as a regular-
ization, it has been well established that entropy is ideal when we want to control the L1-
stability of our hypothesis and, for the uniform metric, distδ(p1,p2) = ‖p1 − p2‖1/2.
But notice that the algorithmic template we propose in (5) does not rely on the uniform
metric, and can be posed in general. Trying to immediately extend our approach to gen-
eral metrics unfortunately does not lead to an algorithm with an O(log n)-competitive
ratio, the major goal since the randomized MTS problem was introduced nearly 20
years ago.

For other metrics, it is clear that entropy is not at all the correct regularizer. Instead,
what is needed is a regularization function that controls the stability of p with respect
to the norm induced by the Earth Mover Distance distδ(·, ·). It would be of particular
interest if such a function existed and could be constructed.

Conjecture 2. For any metric δ on [n], there is some regularization function R(·) such
that the algorithm resulting from Equation (5) is O(log n)-competitive.

The choice of Lipschitz penalty fi(·, ·) may need to be tuned as well.

4 Conclusions and Open Problems

We have introduced a framework for developing and analyzing algorithms for the met-
rical task system problem. This framework presupposes that an optimal algorithm that
is a function of the work vector exists and we conjecture that this is true. Given this
framework we are able to use the popular entropy regularization approach to develop
state-of-the-art algorithms. We believe this system gives good insight into how to de-
velop algorithms for the general metric case.

Our work leaves open several important questions. The most obvious are the an-
swers to our conjectures - is it actually true that assuming that the algorithm will be
work vector based does not preclude optimality? All of the current algorithms for gen-
eral metrics rely on embedding the metric into a hierarchical search tree and then using
MTS algorithms for this metric space and none are known to be based on the work
vector.

There is also an open question with regards to the regularization approach. It is
known that entropy is a good regularizer when the movement cost is measured by the L1
norm. However, in the general case, the switching costs are measured according to the
Earth Mover Distance. What is the correct regularization function for general distance
metrics? We believe that an algorithm for the general metric with even a polylog n
bound on the competitive ratio that is worse than the current results achieved by metric
embedding would be interesting due to it’s potential relative simplicity.

Acknowledgements We would like to thank Sylvain Arlot for his thoughtful comments
and discussion and the anonymous reviewers.

References

1. Borodin, A., Linial, N., Saks, M.: An optimal on-line algorithm for metrical task system.
JACM: Journal of the ACM 39(4) (1992) 745–763

2. Manasse, M., McGeoch, L., Sleator, D.: Competitive algorithms for server problems. J.
Algorithms 11 (1990) 208–230

3. Freund, Schapire: A decision-theoretic generalization of on-line learning and an application
to boosting. JCSS: Journal of Computer and System Sciences 55 (1997)

4. Schafer, G., Sivadasan, N.: Topology matters: Smoothed competitiveness of metrical task
systems. TCS: Theoretical Computer Science 341 (2005)

5. Irani, S., Seiden, S.: Randomized algorithms for metrical task systems. Theoretical Com-
puter Science 194 (1998)

6. Bartal, Y., Blum, A., Burch, C., Tomkins, A.: A polylog(n)-competitive algorithm for
metrical task systems. In: Symposium on Theory Of Computing (STOC). (1997) 711–719

7. Bartal, Y.: On approximating arbitrary metrics by tree metrics. In: Symposium Theory Of
Computing (STOC). (1998) 161–168

8. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics
by tree metrics. In: Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing (STOC). (2003) 448–455

9. Fiat, A., Mendel, M.: Better algorithms for unfair metrical task systems and applications.
SIAM Journal on Computing 32 (2003)

10. Bansal, N., Buchbinder, N., Naor, S.: Metrical task systems and the k-server problem on
hsts. In: Manuscript. (2009)

11. Bartal, Y., Bollobás, B., Mendel, M.: A ramsey-type theorem for metric spaces and its appli-
cations for metrical task systems and related problems. In: IEEE Symposium on Foundations
of Computer Science (FOCS). (2001) 396–405

12. Blum, A., Karloff, H., Rabani, Y., Saks, M.: A decomposition theorem and lower bounds for
randomized server problems. SIAM Journal on Computing 30 (2000) 1624–1661

13. Bansal, N., Buchbinder, N., Naor, J.: A primal-dual randomized algorithm for weighted
paging. In: IEEE Symposium on Foundations of Computer Science (FOCS). (2007)

14. Bein, W., Larmore, L., Noga, J.: Uniform metrical task systems with a limited number of
states. IPL: Information Processing Letters 104 (2007)

15. Bansal, N., Buchbinder, N., Naor, S.: Towards the randomized k-server conjecture: A primal-
dual approach. In: ACM-SIAM Symposium on Discrete Algorithms (SODA). (2010)

16. Buchbinder, N., Naor, S.: The design of competitive online algorithms via a primal-dual
approach. Foundations and Trends in Theoretical Computer Science 3 (2009) 93–263

17. Blum, A., Burch, C.: On-line learning and the metrical task system problem. Machine
Learning 39 (2000) 35–58

18. Herbster, M., Warmuth, M.K.: Tracking the best expert. Machine Learning 32 (1998) 151
19. Kivinen, J., Warmuth, M.: Exponentiated gradient versus gradient descent for linear predic-

tors. Information and Computation (1997)
20. Gordon, G.: Regret bounds for prediction problems. In: Proceedings of the twelfth annual

conference on Computational learning theory, ACM New York, NY, USA (1999) 29–40
21. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University

Press, New York, NY, USA (2006)
22. Rakhlin, A.: Lecture Notes on Online Learning DRAFT. (2009)

