
A General Approach to Online Network

Optimization Problems

NOGA ALON

Schools of Mathematics and Computer Science, Tel Aviv University, Tel Aviv, Israel

BARUCH AWERBUCH

Computer Science Dept., Johns Hopkins University, Baltimore, MD

YOSSI AZAR

School of Computer Science, Tel Aviv University, Tel Aviv, Israel

NIV BUCHBINDER

Computer Science Dept., Technion, Haifa, Israel

and

JOSEPH (SEFFI) NAOR

Computer Science Dept., Technion, Haifa, Israel

A preliminary version of this paper appeared in the Proceedings of the 15th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), New Orleans, Louisiana (2004), pp. 570-579.
The work of the first author was supported in part by a US-Israel BSF grant, by the Israel Science
Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.
The work of the second author was supported in part by Air Force Contract TNDGAFOSR-
86-0078, ARPA/Army contract DABT63-93-C-0038, ARO contract DAAL03-86-K-0171, NSF
contract 9114440-CCR, DARPA contract N00014-J-92-1799, and a special grant from IBM. The
work of the third author was supported in part by the Israel Science Foundation and by the IST
Program of the EU. The work of the fifth author was supported in part by US-Israel BSF grant
2002276 and by EU contract IST-1999-14084 (APPOL II).

Authors’ addresses: N. Alon, Schools of Mathematics and Computer Science, Raymond and Bev-
erly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel, email: no-
gaa@post.tau.ac.il; B. Awerbuch, Computer Science Dept., Johns Hopkins University, Baltimore,
MD 21218. email: baruch@blaze.cs.jhu.edu; Y. Azar, School of Computer Science, Raymond and

Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel, email:
azar@post.tau.ac.il; Niv Buchbinder, Computer Science Dept., Technion, Haifa 32000, Israel,
email: nivb@cs.technion.ac.il; J. (S) Naor, Computer Science Dept., Technion, Haifa 32000, Israel,
email: naor@cs.technion.ac.il.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2001 ACM 1529-3785/2001/0700-0111 $5.00

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001, Pages 111–132.

112 · Noga Alon et al.

We study a wide range of online graph and network optimization problems, focusing on problems

that arise in the study of connectivity and cuts in graphs. In a general online network design
problem, we have a communication network known to the algorithm in advance. What is not
known in advance are the connectivity (bandwidth) or cut demands between vertices in the network
which arrive online.

We develop a unified framework for designing online algorithms for problems involving con-
nectivity and cuts. We first present a general O(log m)-competitive deterministic algorithm for
generating a fractional solution that satisfies the online connectivity or cut demands, where m is
the number of edges in the graph. This may be of independent interest for solving fractional on-
line bandwidth allocation problems, and is applicable to both directed and undirected graphs. We
then show how to obtain integral solutions via an online rounding of the fractional solution. This
part of the framework is problem dependent, and applies various tools including results on ap-
proximate max-flow min-cut for multicommodity flow, the Hierarchically Separated Trees (HST)
method and its extensions, certain rounding techniques for dependent variables, and Räcke’s new
hierarchical decomposition of graphs.

Specifically, our results for the integral case include an O(log m log n)-competitive randomized
algorithm for the online non-metric facility location problem and for a generalization of the prob-
lem called the multicast problem. In the non-metric facility location problem, m is the number
of facilities and n is the number of clients. The competitive ratio is nearly tight. We also present
an O(log2

n log k)-competitive randomized algorithm for the online group Steiner problem in trees
and an O(log3

n log k)-competitive randomized algorithm for the problem in general graphs, where
n is the number of vertices in the graph and k is the number of groups. Finally, we design a de-
terministic O(log3

n log log n)-competitive algorithm for the online multi-cut problem.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Com-

plexity]: Nonnumerical Algorithms and Problems; F.1.2 [Modes of Computation]: Online
computation

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Online network optimization, competitive analysis, facility
location, group Steiner, multi-cuts, randomized rounding

1. INTRODUCTION

We study a wide range of graph and network optimization problems, focusing on
problems that arise in the study of connectivity and cuts in graphs. Such prob-
lems are associated with an input graph G = (V, E) (directed or undirected), a
cost function c : E → R

+, and a requirement function f (to be defined for each
problem separately). The goal is to find a minimum cost subgraph that satisfies
the requirement function. Our model is online; that is, the requirement function
is not known in advance and it is given “step by step” to the algorithm, while the
input graph is known in advance.

Network design problems are typically defined by a requirement function that
specifies for each cut in the graph the minimum “coverage” required for it. Since
we are considering an online version of network design problems we concentrate
on the following subclass which we call generalized connectivity. The requirement
function is a set of demands of the form D = (S, T), where S and T are subsets of
vertices in the graph such that S ∩T = ∅. A feasible solution is a set of edges, such
that for each demand D = (S, T) there is a path from a vertex in S to a vertex
in T . Examples of problems belonging to this class are Steiner trees, generalized
Steiner trees, and the group Steiner problem. Less obvious examples are the set

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

Online Network Optimization Problems · 113

cover problem and the non-metric facility location problem, described below.
Cut problems in graphs involve separating sets of vertices from each other. We

concentrate on a family of cut problems which we call generalized cuts. The re-
quirement function is a set of demands of the form D = (S, T), where S and T are
subsets of vertices in the graph such that S ∩ T = ∅. A feasible solution is a set
of edges that separates for each demand D = (S, T), any two vertices s ∈ S and
t ∈ T . Examples of problems belonging to this class are the multiway cut problem
and the multicut problem (see e.g., [Vazirani 2001]).

There is a natural linear programming relaxation for the problems that we are
considering. For generalized connectivity problems, a feasible fractional solution
associates a fractional weight (capacity) with each edge, such that for each demand
D = (S, T) a unit of flow can be sent from S to T , where the flow on each edge does
not exceed its weight. For generalized cuts, a feasible fractional solution associates a
fractional weight (length) with each edge, which we interpret as inducing a distance
function. The constraint is that for each demand D = (S, T), the distance between
any two vertices s ∈ S and t ∈ T is at least 1. Since many of the problems that
we are considering are NP-hard, this linear programming relaxation is very useful
for computing (offline) an approximate solution. Please refer to [Vazirani 2001]
for more details. We note that fractional solutions have a motivation of their own
in certain network design problems and bandwidth allocation problems (see, for
example, [Plotkin et al. 1995]).

1.1 Previous work

Network optimization problems in an online setting have been studied extensively.
The online Steiner problem was considered in [Imase and Waxman 1991] who gave
an O(log n)-competitive algorithm and showed that in a general metric space this is
indeed best possible. The generalized Steiner problem was considered in [Awerbuch
et al. 1996], where an O(log2 n)-competitive algorithm is given. This was improved
to an O(log n)-competitive ratio algorithm by [Berman and Coulston 1997]. The
online version of the metric facility location problem was also considered recently.
Meyerson [Meyerson 2001] gave a randomized O(log n)-competitive algorithm which
was improved to a deterministic Θ(log n

log log n)-competitive algorithm by Fotakis [Fo-

takis 2003]. Recently, a deterministic O(log n log m)-competitive algorithm for the
online set cover problem was given by [Alon et al. 2003] where n is the number
of elements and m is the number of sets. An almost matching lower bound of
Ω(log n log m

log log m+log log n) on the competitive factor was also shown for any deterministic

algorithm for the online set cover problem [Alon et al. 2003].
There is a vast literature on efficient (offline) approximation algorithms for prob-

lems involving connectivity and cuts. The reader is referred to [Hochbaum 1997;
Vazirani 2001] for more details.

1.2 Results

We study generalized connectivity and cuts problems in a unified framework. The
basic idea is to first compute a fractional solution online and then round this solution
to an integral one in an online fashion. We provide a general deterministic procedure
that computes a near-optimal fractional solution to any problem belonging to our

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

114 · Noga Alon et al.

class of problems. The fractional solution is competitive with respect to an optimal
fractional solution. Specifically, the competitive ratio that we achieve is O(log m),
where m is the number of edges in the graph. This algorithm can easily be extended
to the vertex counterparts of the problems, where the cost function is defined on the
vertices of the graph rather than the edges, and to directed graphs. We also show
a matching lower bound of Ω(log m) on the competitive ratio of any deterministic
or randomized algorithm for this problem.

We next describe our results on converting a fractional solution into an integral
solution. This rounding is problem dependent and we describe the rounding for
each of the special cases considered. Note that the rounding phase should also be
done in an online fashion. Since the fractional solution produced by our algorithm is
competitive with respect to an optimal fractional solution, the competitive ratio of
the algorithms we propose for all the online integral graph problems is also analyzed
with respect to an optimal fractional solution. The cost of the optimal fractional
solution bounds from below the cost of any integral solution.

The first problem we consider is the non-metric facility location. In this problem
we are given a set of possible facilities, each with a setup cost, and a set of clients,
each with a connection cost to the facilities. The goal is to find a solution that
minimizes the sum of the setup costs and the service costs. In the online version
of the non-metric facility location, clients arrive online. The online algorithm may
choose to open additional facilities in order to serve all currently asked clients.
However, the online algorithm is not allowed to close any previously opened facility.
The set cover problem is a special case of this problem in which the facilities are
sets and the connection cost is either zero or infinite, depending on whether or not
an element belongs to a set.

Next, we consider the multicast problem that generalizes the non-metric facility
location problem. In the multicast problem we are given a set of weighted rooted
trees containing a set of clients. Each client is associated with at most one vertex
in each tree. The goal is to find a minimum weight set of subtrees that contain all
the clients, where a subtree must contain the root of the tree it belongs to. In the
online case, the clients arrive online, and upon arrival of a client it is necessary to
connect the client to some root of a tree containing it. The online algorithm may
choose additional edges to its solution, but may not remove any previously chosen
edges from the solution. The non-metric facility location is a special case of the
multicast problem. Each facility corresponds to a tree of depth two. A tree has one
edge emanating from the root with weight equal to the setup cost of the facility,
and then there are edges to the leaves, where each leaf corresponds to a client, and
the weight of an edge is equal to the connection cost of the client to the facility.

Finally, in the realm of generalized connectivity, we consider the group Steiner
problem on trees as well as on general graphs [Garg et al. 2003]. In the group Steiner
tree problem on a rooted tree we are given a weighted rooted tree T = (V, E, r),
and groups g1, g2, . . . gk ⊂ V . The goal is to find a minimum weight rooted subtree
T ′ = (V ′, E′, r) that contains at least one vertex from each group. In the online
version of the problem, the groups arrive online and, again, the algorithm may not
remove any previously chosen edges from its solution. The multicast problem is
a special case of the group Steiner problem on rooted trees. Given an instance of

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

Online Network Optimization Problems · 115

the multicast problem, the roots of the trees can be connected to a joint root using
edges of zero weight. A group contains all the vertices associated with a particular
terminal. Notice that this reduction creates a special instance of the group Steiner
tree problem in which any two paths from the root to vertices belonging to the
same group are disjoint.

In the multicut problem we are given an undirected graph with costs (capacities)
and a set of source-sink pairs. The goal is to find a minimum cost set of edges that
disconnects each source-sink pair. In the online version of the problem, the source-
sink pairs arrive online, and upon arrival of a pair it is necessary to disconnect it.
Again, the algorithm is not allowed to cancel the choice of any previously chosen
edge. We show an online algorithm for the multicut problem using the constructive
version of a remarkable result of Räcke [Räcke 2002] for the hierarchical decom-
position of graphs ([Bienkowski et al. 2003] and [Harrelson et al. 2003]) together
with an approximate max-flow min-cut theorem on trees [Garg et al. 1997]. This
decomposition is used along with an online primal-dual algorithm for the problem
on trees. We note that our algorithm for the online multicut problem is not based
on an online rounding of a fractional solution.

We summarize the results obtained:

—A randomized O(log m logn) competitive algorithm for the online multicast prob-
lem on trees, where m is the number of edges, and n is the number of requested
terminals.

—A randomized O(log m log n) competitive algorithm for the online non-metric
(and metric) facility location problem, where m is the number of possible facilities
and n is the number of clients.

—A randomized O(log2 n log k)-competitive algorithm for the online group Steiner
problem on trees, where k is the number of groups, and n is the number of
leaves in the tree. This implies a randomized O(log3 n log k)-competitive algo-
rithm for general graphs using hierarchically well-separated trees [Bartal 1996;
Fakcharoenphol et al. 2003]

—A deterministic O(log3 n log log n) competitive algorithm for the online multicut
problem in general graphs. Improved bounds are obtained for planar graphs and
for trees.

Our algorithms draw on ideas taken from the algorithm of [Alon et al. 2003]
for the online set cover problem. We note that the idea of generating a fractional
solution online and then rounding it is implicit in the work of [Alon et al. 2003].
However, unlike [Alon et al. 2003], we provide a tighter analysis of the algorithms
comparing their performance to an optimal fractional solution as opposed to an
optimal integral solution.

1.3 Organization

In Section 2 we formally define the problems and the online setting. In Section 3 we
provide a deterministic algorithm for computing a near-optimal fractional solution
for both generalized connectivity (Section 3.1) and generalized cuts (Section 3.2).
Matching lower bounds for both problems are given in Section 3.3.

In Section 4 we present a general approach for solving online integral connectivity

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

116 · Noga Alon et al.

and cuts problems. In the context of connectivity problems we study the online
non-metric facility location problem and the multicast problem in Section 4.1. We
then study the group Steiner problem on trees in Section 4.2. The group Steiner
problem on general graphs is considered in Section 4.3. In section 4.4 we design a
deterministic algorithm for the online multicut problem . Finally, in Section 5 we
conclude and discuss a few open questions.

2. PRELIMINARIES

In this section we formally define our problems. Let G = (V, E) be a graph (directed
or undirected) with cost function c : E → R

+ associated with the edge set E.
Suppose further that there is a weight function (or capacity function) w : E → R

+

associated with the edge set E. The cost of w is defined to be
∑

e∈E wece.
Let A ⊂ V and B ⊂ V be subsets of V such that A∩B = ∅. Let G′ be the graph

obtained from G by adding a super-source s connected to all vertices in A and a
super-sink t connected to all vertices in B. The edges from s to A are directed into
A and have infinite weight, and the edges from B to t are directed into t and have
infinite weight. We say that there is a flow from A to B of value α if there exists
a valid flow function that sends α units of flow from s to t satisfying the capacity
function w. The shortest path from A to B is defined to be the shortest path
with respect to w from any vertex u ∈ A to any vertex v ∈ B (i.e. the minimal
distance between any pair of vertices in A and B). A requirement function is a
set of demands of the form Di = (Si, Ti), 1 ≤ i ≤ k, where Si ⊂ V , Ti ⊂ V and
Si ∩ Ti = ∅.

We first define the generalized connectivity problem. The input for the problem
is a graph G = (V, E) with cost function c : E → R

+ and a requirement function.
A feasible integral solution is an assignment of weights (capacities) w from {0, 1}
to E, such that for each demand Di = (Si, Ti), 1 ≤ i ≤ k, there is a flow from Si

to Ti of value at least 1. A feasible fractional solution is an assignment of weights
(capacities) w from [0, 1] to E, such that for each demand Di = (Si, Ti), 1 ≤ i ≤ k,
there is a flow from Si to Ti of value at least 1. We note that the flow constraint
has to be satisfied for each demand (Si, Ti) separately. The cost of a solution is
defined to be the cost of w.

We now define the generalized cuts problem. The input for this problem is again
a graph G = (V, E) with cost function c : E → R

+ and a requirement function. A
feasible integral solution is a set of edges E ′ ⊆ E that separates for each demand
Di = (Si, Ti) any two vertices a ∈ Si and b ∈ Ti. Alternatively, we can think of
each edge e ∈ E′ as having weight w(e) = 1. Thus, the weight function w induces
a distance function on the graph such that the distance between vertices separated
by E′ is at least 1. A feasible fractional solution is an assignment of weights w
from [0, 1] to E, such that for each demand Di = (Si, Ti), 1 ≤ i ≤ k, the distance
induced by w between each a ∈ Si and b ∈ Ti is at least 1. The cost of a solution
is defined to be the cost of w.

In an online setting, the graph G = (V, E) along with the cost function c is known
to the algorithm (as well as to the adversary) in advance. The set of requests of the
form Di = (Si, Ti) is then given one-by-one to the algorithm in an online fashion.
Upon arrival of a new demand, the algorithm must satisfy it by increasing the

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

Online Network Optimization Problems · 117

weights of edges in the graph. However, the algorithm is not allowed to decrease
the weight of an edge. Thus, previous demands remain satisfied. The performance
of the algorithm is measured with respect to the ratio between the cost of the
solution produced by the algorithm and the cost of an optimal fractional solution
that satisfies the given demands with minimum cost. The competitive ratio of the
algorithm is defined to be the supremum of this ratio, taken over all possible input
sequences. The optimal fractional solution, which bounds from below the optimal
integral solution, is also used to analyze the competitive ratio of the algorithms we
propose for integral problems. We next define the special cases that we consider in
the context of generalized connectivity.

The multicast problem in trees is defined as follows: Let X = {c1, c2, . . . , cn} be
a ground set of clients, and let T = {T1, T2, . . . , Tm} be a family of rooted trees
with a cost function c : E → R

+ associated with the edges of each tree in T . Each
tree leaf is associated with a subgroup of the clients, where any client ci belongs
to at most one leaf in each of the trees. Note that we may assume without loss
of generality that only leaves of the trees are associated with clients. This can be
achieved easily by connecting each vertex in the trees which is associated with a
client to a new leaf with a zero cost edge. To see that the multicast problem is a
special case of the generalized connectivity problem, connect all the roots of the
trees in T to a joint root r with zero cost edges. A request for a client c is of the
form (r, Uc), where Uc is the set of leaves associated with client c.

Let X ′ ⊆ X be the set of requested clients. A cover is a collection of rooted
subtrees T ′ = {T ′

1, T
′
2, . . . , T

′
m}, where T ′

i ⊆ Ti (1 ≤ i ≤ m), such that the union of
the subgroups of the leaves in T ′ is the set X ′. The cost of a cover is the sum of
the costs of the edges in the subtrees in T ′. The goal is to find a cover of minimum
cost. In the online setting the algorithm is allowed at any step to choose additional
edges to its solution in order to serve the clients. It may not, however, remove any
previously chosen edge from its solution. We note that the multicast problem in
trees has an (offline) O(log n)-approximation algorithm.

The multicast problem generalizes the set cover problem. To see this, think of
each set as being represented by a tree containing only one edge, where one vertex
is a root and the other vertex is a leaf. The cost of each edge equals the cost of
the set and the leaf is associated with the elements belonging to the set. The non-
metric facility location problem is also special case of the multicast problem. In
the non-metric facility location problem there are m possible locations for opening
facilities denoted by F = {f1, f2, . . . , fm}. There is a setup cost for opening each
of the facilities. There are also n clients C = {c1, c2, . . . , cn} and a connection cost
function c : F ×C → R

+ denoting the cost of connecting each client to each facility.
A feasible solution is a subset F ′ ⊆ F and a mapping of the clients to the facilities
in F ′. The goal is to minimize the cost of the solution, which is defined to be the
setup cost of the facilities in F ′ plus the sum of the connection cost of the clients,
as defined by the mapping of clients to the open facilities. The online algorithm is
allowed to open new facilities, but it cannot close any previously opened facility.
The non-metric facility location problem is a special case of the multicast problem.
Think of each facility as being represented by a tree of depth two. The cost of the
“root” edge is equal to the setup cost of the facility, and the cost of each “leaf” edge

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

118 · Noga Alon et al.

corresponding to a client equals the cost of connecting the client to the facility.
The group Steiner tree problem in a rooted tree is defined as follows. We are

given a rooted tree T = (V, E, r) with non-negative cost function c : E → R
+, and

groups g1, g2, . . . gk ⊂ V . Let r denote the root of the tree T . The objective is
to find a minimum cost rooted subtree T ′ that contains at least one vertex from
each of the groups gi, 1 ≤ i ≤ k. That is, using the terminology of the generalized
connectivity problem, each request is of the form (r, gi). The group steiner problem
is a generalization of the multicast problem. Given an instance of the multicast
problem, as before, we connect the roots of all the multicast trees using zero cost
edges to a joint root r. The group gi, 1 ≤ i ≤ k, is defined to be the set of leaves
associated with the client ci. Note that this reduction creates a special instance of
the group Steiner tree problem, in which any two paths from the root to vertices
belonging to the same group are disjoint. In the online setting of the group steiner
problem the groups arrive one by one in an online fashion. The algorithm has to
choose additional edges to its solution such that the solution contains at least one
vertex from each group. The algorithm may not cancel the choice of any previously
chosen edge.

The group Steiner tree problem has an O(log n log k) approximation algorithm,
where k is the number of groups, and n is the number of leaves in the tree [Garg
et al. 2003]. In general (i.e., undirected) graphs, the best approximation factor
known for the group Steiner problem is O(log2 n log k) by combining [Garg et al.
2003] with [Fakcharoenphol et al. 2003].

The multicut problem in undirected graphs is a special case of the previously
defined generalized cuts problem, where the requirement function consists of source-
sink pairs {si, ti}, 1 ≤ i ≤ k. The pairs arrive one by one in an online fashion, and
the algorithm has to disconnect each pair upon arrival. The online algorithm is
not allowed to cancel the choice of any previously chosen edge. The best offline
approximation factor for this problem is O(log k) [Garg et al. 1996].

3. COMPUTING A FRACTIONAL SOLUTION ONLINE

In this section we describe our online algorithm for computing a near-optimal frac-
tional solution for both the generalized connectivity and the generalized cuts prob-
lems. We first describe the algorithm for the generalized connectivity problem
(Section 3.1) and then explain the changes needed for the generalized cuts problem
(Section 3.2). Let |V | = n and |E| = m. The competitive ratio of our algorithm
is O(log m) and it is defined with respect to an optimal offline fractional solution.
We note that our method is applicable to both vertex and edge versions of our
problems, as well as for directed and undirected graphs.

Let us denote the cost of an optimal fractional solution, OPT, by α. We first
claim that by using the doubling technique, we can assume that the value of α is
known up to a factor of 2. Initially, we can start guessing α = mine∈E ce, and then
run the algorithm with this bound on the optimal solution. If, during the run of
the algorithm, it turns out that the value of the optimal solution is larger than our
current guess for α, (that is, the cost of the fractional solution exceeds Θ(α log m)),
or we are unable to satisfy some demand, then we can “forget” about all weights
given so far to the edges, update the value of α by doubling it, and continue on. The

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

Online Network Optimization Problems · 119

constants hidden inside the Θ(α log m) are known through the competitive analysis
of the performance of the algorithm that uses the value α (Section 3.1). Recall
that the online algorithm is not allowed to decrease the weights already given to
the edges. Thus, by “forgetting” the weights of the edges, we mean that in any
iteration the algorithm only uses the current set of weights for the edges in order
to satisfy the demands. However, at any point of time, the actual weight of each
edge is the maximal weight that it has received in any iteration up to the current
one. We note that the fractional cost of the weights of the edges that we have
“forgotten” about can increase the cost of our solution by at most a factor of 2,
since the value of α is doubled in each step.

We next claim that since the value α is known, we may also assume that all edges
have cost between 1 and m. To achieve this property we observe that in a fractional
optimal solution, no edge with cost larger than α gets a positive weight. Assume to
the contrary that in an optimal solution, edge e has weight w(e) > 0 while c(e) > α.
Note that w(e) < 1, since otherwise the cost of the solution is larger than α. We
now show how to obtain a new feasible solution w′ with cost strictly less than α,
contradicting the optimality of OPT. For edge e, let w′(e)← 0, and for e′ 6= e, let

w′(e′)← w(e′)
1−w(e) . It is not hard to see that this yields a feasible fractional solution

having cost:

α− c(e)w(e)

1− w(e)
<

α(1− w(e))

1− w(e)
= α.

Thus, our algorithm may “ignore” all edges with cost greater than α without in-
creasing the value of the optimum. For the generalized connectivity problem, ignor-
ing means that we do not use these edges to connect vertices, and hence these edges
are removed from the graph. For the generalized cuts problem ignoring means that
such edges do not participate in a cut, and hence we merge the two endpoints of
any such edge. Next we take to our solution all edges having cost less than α/m
paying at most an additive factor of α. Thus, the cost of all the edges that are left
in the graph is between α/m and α, and the costs can further be normalized so
that the minimum cost is 1 and the maximum cost is at most m.

3.1 Generalized Connectivity

We describe an online algorithm with competitive factor O(log m). All logarithms
are to the base 2. Initially, the algorithm gives each edge a fractional weight of
1/(m2), and thus the total initial cost is less than 1. Assume now that the algorithm
is given a new demand (S, T). The following is performed in this case.

(1) If the maximum flow from S to T is at least 1, then do nothing.

(2) Else: While the flow between S and T is less than 1, perform a weight
augmentation:
—Compute a minimum weight cut C between S and T .
—For each edge e ∈ C, we ← we(1 + 1

ce
).

We now analyze the performance of the algorithm upon termination, i.e., when the
algorithm gets the full requirement function.

Lemma 1. When the algorithm terminates, all connectivity demands are satis-

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

120 · Noga Alon et al.

fied.

Proof. Follows immediately from the algorithm.

Lemma 2. The number of weight augmentation steps performed during the run
of the algorithm is at most

2α log2 m + α = O(α log m).

Proof. Obviously, for each edge e ∈ E, we ≤ 1 + 1
ce

always holds, since an
edge with weight exceeding 1 cannot be part of a minimum weight cut having total
weight less than 1. Consider the following potential function:

Φ =
∑

e∈E

cew
∗
e log2(we)

where w∗
e is the weight of edge e in OPT. We show three properties of Φ:

—The initial value of the potential function is: −2α log2 m.

—The potential function never exceeds α.

—In each weight augmentation step, the potential function increases by at least 1.

The first property follow directly from the initial value of the variables. The second
property follows by the observation that no edge gets a weight of more than 2.
Consider an iteration in which the adversary gives a connectivity demand (S, T)
and a weight augmentation of a cut C is performed. The total weight assigned by
OPT to edges in C is at least 1. Thus, the increase of the potential function in a
single weight augmentation is at least:

∆Φ =
∑

e∈C

cew
∗
e log2

(

we

(

1 +
1

ce

))

−
∑

e∈C

cew
∗
e log2 we

=
∑

e∈C

cew
∗
e log2

(

1 +
1

ce

)

≥
∑

e∈C

w∗
e ≥ 1

Theorem 3. The algorithm is O(log m)-competitive for the fractional general-
ized connectivity problem.

Proof. It suffices to show that the following is maintained throughout the run
of the algorithm:

∑

e∈E

wece ≤ 2α log2 m + α + 1 = O(α log m).

Consider an iteration in which a connectivity demand (S, T) is given. Let C be a
cut whose weight is augmented. The weight of C is less than 1, i.e.,

∑

e∈C we < 1.
The weight of each edge e ∈ C increases by we/ce in each weight augmentation step.
Thus, the total increase of the quantity

∑

e∈E wece in a single weight augmentation

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

Online Network Optimization Problems · 121

step does not exceed
∑

e∈C

we

ce
ce =

∑

e∈C

we < 1.

Initially,
∑

e∈E wece ≤ m · 1
m2 ·m = 1, and the theorem thus follows from Lemma

2 that bounds the number of weight augmentation steps.

We remark again that the above analysis assumes that the value of α is fixed. To
get the total cost of the algorithm, taking into account the doubling process, one
should multiply the cost by 2.

3.2 Generalized Cuts

We now present an O(log m)-competitive algorithm for the generalized cuts prob-
lem. It is essentially the same as the algorithm for the generalized connectivity
problem presented in the previous section. We highlight the changes needed.

Initially, the algorithm assigns each edge a length of 1/(m2) and thus the total
initial cost is less than 1. Assume now that the algorithm is given a new request
(S, T). The following is performed in this case.

(1) If the length of the shortest path from S to T is already at least 1, then
do nothing.

(2) Else: While the length of the shortest path from S to T is less than 1
perform a length augmentation:
—Compute the shortest path P between S and T .
—For each edge e ∈ P , we ← we(1 + 1

ce
).

Clearly, the above algorithm produces a feasible fractional solution to the prob-
lem. Proving the competitive factor in this case follows closely the proof of Theorem
3. Hence we conclude:

Theorem 4. The algorithm is O(log m)-competitive for the fractional general-
ized cut problem.

3.3 Lower Bounds

In this section we show that our algorithm for the fractional generalized connectivity
and generalized cuts problems is optimal up to constant factors. To this end we
prove two lemmas. The first one provides a lower bound on the competitive ratio
of either a deterministic or a randomized algorithm for the generalized connectivity
problem. The lemma also holds with respect to an integral optimal solution. The
second lemma provides the same lower bound on the generalized cuts problem. In
the randomized case, our lower bounds hold with respect to an oblivious adversary.
An oblivious adversary must construct the request sequence in advance based on the
description of the randomized algorithm, but without knowing the actual random
choices made by the algorithm.

Lemma 5. For any deterministic or randomized algorithm for the online frac-
tional connectivity problem, the competitive ratio is at least Ω (log m) with respect
to both an integral optimal solution and a fractional optimal solution. This holds
even when the graph is an undirected star.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

122 · Noga Alon et al.

Proof. Let A be any deterministic or randomized online algorithm. Consider
a star with n = 2k leaves (and edges) v1, v2, . . . , vn and a root r. We describe the
strategy of the adversary. In iteration 0 the demand is S = {r}, T = (v1, v2, . . . , vn).
The algorithm must increase the flow from the root to all the leaves to at least 1.
Therefore, the expected flow to either the first n/2 vertices or the last n/2 vertices
is at least 1/2. In the next iteration the adversary changes T to be the set with the
smaller expected flow value between (v1, v2, . . . , vn/2) and (v(n/2)+1, . . . , vn). In the
kth iteration, if the previous demand was ({r}, {vi, vi+1, . . . , vj}), j > i, then the
next demand is either ({r}, {vi, . . . , v i+j

2

}) or ({r}, {v i+j

2
+1, . . . , vj}) choosing the

set with the smaller expected flow. Thus, it is not hard to see that the expected
cost of the algorithm is at least,

log n
∑

i=1

1

2
= Ω(log n) = Ω(log m).

An optimal integral solution can assign a weight of 1 only to the edge adjacent to
the last vertex asked, completing the proof of the lower bound.

Lemma 6. For any deterministic or randomized algorithm for the online frac-
tional cuts problem, the competitive ratio is at least Ω (log m) with respect to both an
integral optimal solution and a fractional optimal solution. This holds even when
the graph is a line and the cut demands are sets of size 1.

Proof. Let A be any deterministic or randomized online algorithm. Let G be a
line with vertices v1, v2, . . . , vn (n = 2k + 1). We next describe the strategy of the
adversary. In iteration 0 the adversary asks the demand ({v1}, {vn}). The algo-
rithm must increase the distance from v1 to vn to be 1. Thus, the expected distance
from either v1 to v(n+1)/2 or from v(n+1)/2 to vn is at least half. In the next iteration
the adversary continues with either ({v1}, {v(n+1)/2}) or ({v(n+1)/2}, {vn}), choos-
ing the path with the shorter expected distance. The adversary can continue doing
so until it asks two consecutive vertices. It is not hard to see that the expected cost
of the algorithm is at least,

log(n−1)
∑

i=1

1

2
= Ω(log n) = Ω(log m)

The optimal integral solution can assign a length of 1 to the edge separating the
last two vertices, completing the proof of the lower bound.

Note that the adversary we described in the proof of Lemma 5 produces demands
that are sets of vertices. Indeed, the proof of the lower bound actually applies to
any generalization of the fractional set cover problem, e.g., online fractional versions
of the non-metric facility location problem, the multicast problem, and the group
Steiner problem. However, the fractional online Steiner tree problem, as well as the
fractional online generalized Steiner tree problem, do not generalize the set cover
problem, and therefore our lower bounds are not applicable to these problems. A
lower bound on the competitive ratio for any deterministic or randomized online
algorithm for these problems follows in a straightforward manner from the lower
bound shown for the (integral) online Steiner tree problem in [Imase and Waxman
1991].

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

Online Network Optimization Problems · 123

4. APPLICATIONS - INTEGRAL CONNECTIVITY AND CUTS PROBLEMS

We can use the algorithms described in the previous section as a basis for an
efficient randomized online algorithm for special cases of the integral connectivity
and cuts problems. This can be done by an online rounding of the fractional solution
generated by the algorithm described in the previous section. This is the heart of
our general approach to online network optimization problems. The algorithms we
propose in this section use the online algorithms for generating a fractional solution
as a “black box”. We present here four problems for which such an online rounding
is applicable.

In Section 4.1 we consider the multicast problem and the non-metric facility
location problem. In Section 4.2 we consider the group Steiner problem on a tree.
Then, in Section 4.3 we consider the group Steiner tree problem in general graphs.
We conclude with the online multicut problem in Section 4.4. In the online multicut
problem we only use the above approach implicity to solve the problem for trees. For
general graphs we propose a different algorithm that leads to a better competitive
ratio.

4.1 Multicast and Non-metric Facility Location Problems.

In this section we describe a randomized algorithm for the non-metric facility lo-
cation problem and the multicast problem. As the non-metric facility location
problem is a special case of the multicast problem, we only describe the algorithm
for the multicast problem. Our algorithm first uses the algorithm presented in sec-
tion 3.1 to generate a fractional solution in an online fashion. A fractional solution
to the multicast problem is an assignment of weights to the edges of the trees. For
each client that is requested, a feasible fractional solution guarantees that the total
amount of flow that can be sent separately from the roots of the trees in T to the
vertices that are associated with the client is at least 1. Furthermore, the total cost
of the solution it generates is at most O(log m) times the optimal fractional cost.
The fractional weights given to the edges by the online algorithm may only increase
during the run of the algorithm.

To produce a feasible integral solution, we show how to round the fractional solu-
tion in an online fashion. We propose a randomized rounding method having a small
expected cost that will cover with high probability every requested client. Specif-
ically, each requested client will be covered by our randomized rounding method
with probability at least 1 − 1/(n′)2, where n′ is the number of clients. In case
some client is not covered by the randomized algorithm, we serve the client by the
cheapest path from a root of any tree in T to the client. This path is a lower
bound on the value of the optimum. Since this event happens with probability at
most 1/n′2 for each client, the total effect on the expected cost of the algorithm is
negligible. In the following we propose an online randomized rounding method and
analyze its performance.

Initially, the algorithm starts with an empty cover C = ∅. The algorithm keeps
for every tree Ti ∈ T , 2dlog(n′ + 1)e random independent variables, X(Ti, j), 1 ≤
j ≤ 2dlog(n′+1)e, distributed uniformly in the interval [0, 1]. The number of clients

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

124 · Noga Alon et al.

that have arrived so far is denoted by n′. Define the threshold of a tree Ti to be:

θ(Ti) =
2dlog(n′+1)e

min
j=1

{X(Ti, j)}.

The algorithm includes in the solution C all edges e with we > θ(Te), where Te is
the tree containing edge e. That is, we take to the solution an edge e if its weight
exceeds the threshold of the tree containing it. As the value of n′ increases, the
algorithm also increases the number of random variables. Thus, the threshold of a
tree may decrease during the run of the algorithm. In the latter case, the algorithm
reconsiders all previously considered edges in the trees, and adds edges that now
exceed the (new) threshold. Let α be the value of an optimal fractional solution
to the instance given so far. The next lemma analyzes the expected cost of the
randomized algorithm and its success probability.

Lemma 7. The following holds throughout the run of the algorithm:

(1) The expected cost of the solution produced by the algorithm is O(α log n′ log m).

(2) Any client that is covered fractionally is also covered by the randomized algo-
rithm with probability at least 1− 1/n′2.

Proof. We start with the first part of the lemma. For each edge e and index
j, 1 ≤ j ≤ 2 log n, let Y (e, j) be the indicator of the event that we > X(Te, j), i.e.,
edge e is chosen to the solution due to the random variable X(Te, j). Since X(Te, j)
is chosen uniformly in the interval [0, 1], the probability and the expectation of the
indicator Y (e, j) is at most we. Note that each edge could be chosen to the solution
due to several random variables. Thus, we can bound the expected cost of the
solution as follows:

Exp

[

∑

e∈C

ce

]

≤
∑

e∈E

2dlog(n′+1)e
∑

j=1

ce · Exp[(Y (e, j)] (1)

≤
∑

e∈E

2dlog(n′+1)e
∑

j=1

cewe (2)

≤ 2dlog(n′ + 1)e(4α log m + 2α + 2) (3)

= O(α log n′ log m).

Where, Inequality (1) follows by a simple union bound, Inequality (2) follows by
the bound we stated on the expectation of the indicator Y (e, j), and Inequality (3)
follows from the guarantee on the performance of the online fractional algorithm.

We now prove the second part of the lemma. Consider a client c. The fractional
solution guarantees that the total amount of flow that can be sent from the roots
of the trees in T to the leaves that are associated with c is at least 1. Let fT (c) be
the flow to the leaf associated with client c in tree T . Note that the weight of each
edge on the path to the leaf is at least fT (c). Thus, the probability that client c is
not covered is bounded from above by the probability that the threshold of each of
the trees T that contain c is larger than fT (c).

For each tree T and index j, 1 ≤ j ≤ 2dlog(n′ +1)e, the probability that the flow
to the leaf associated with c in T is at most X(T, j) is 1− fT (c). Since the random

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

Online Network Optimization Problems · 125

variables X(T, j), for fixed j, are independent, the probability that client c is not
covered by any of the trees due to index j is at most

∏

T∈T

(1− fT (c)) ≤ e−
∑

T∈T
fT (c) ≤

1

e
.

The last inequality follows from the fact that
∑

T fT (c) ≥ 1 for each requested
client. Since the random variables X(T, j), for fixed T and 1 ≤ j ≤ 2dlog(n′ + 1)e,
are independent, the probability that client c is not covered due to any of these

random variables is less than
[

1
e

]2 log(n′+1)
≤ 1/n′2.

By the above analysis, including the change made to the algorithm to guarantee
its feasibility, we get the following theorem:

Theorem 8. There is an O(log n′ log m) competitive randomized algorithm for
the online multicast problem in trees.

Since the non-metric facility location problem is a special case of the multicast
problem we also get:

Theorem 9. There exists an O(log n logm) competitive randomized algorithm
for the non-metric facility location, where m is the number of facilities and n is the
number of clients.

We remark that both the online multicast problem in trees and the online non-
metric facility location are generalizations of the online set-cover problem intro-
duced in [Alon et al. 2003]. Thus, the lower bound of Ω(log n log m

log log m+log log n) proved in

[Alon et al. 2003] for any deterministic algorithm for the online set-cover problem
applies to these problems as well.

4.2 The Group Steiner Problem on Trees

In this section we describe a randomized algorithm for the online group Steiner
problem on trees. We first generate a fractional solution to the problem online. We
now explain how the rounding of the fractional solution is performed in an online
fashion. To this end, we use an online variation on the method of [Garg et al. 2003].

The randomized rounding method we propose covers each group with probability
Ω(1/ logN), where N is the maximum size of any group. In addition, its expected
cost is at most the cost of the fractional solution. We then run O(log k log N)
independent trials of this randomized rounding method in parallel, where k is the
number of groups asked by the adversary. The algorithm takes to the solution each
edge that was selected in any of the trials. Using simple probabilistic analysis we
get that our algorithm has a competitive ratio of O(log n log k log N) and each of the
groups is covered with probability at least 1− 1/k. In order to guarantee that the
algorithm produces a feasible solution, we can use the shortest path to a group in
case the algorithm fails to cover the group. The cost of this path is certainly a lower
bound on the optimal solution, and since this event happens with probability at
most 1/k, it changes the expected competitive ratio of the algorithm by a negligible
factor. Since we do not know in advance the value of k we may increase the number
of trials gradually as more groups are asked, similarly to Section 4.1. Next, we
propose an online randomized rounding method and analyze its performance.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

126 · Noga Alon et al.

Initially, the algorithm starts with an empty cover C = ∅. Applying the technique
of [Garg et al. 2003] requires that the fractional weights on a path from the root
to any vertex are monotonically decreasing. However, the fractional solution that
our algorithm computes may not necessarily satisfy this property. Therefore, we
define the weight of each edge to be the maximum flow that can be routed through
this edge to any vertex in in its subtree. In the following we abuse notation and
let we denote the flow on edge e, instead of the actual weight of e. Since the flow
routed on each edge is at most its weight, we note that this can only decrease the
fractional value of the solution serving as our baseline for bounding the competitive
analysis.

Consider an iteration in which the fractional weight of some edges is augmented.
Since the weight of an edge is the maximum flow that can be routed through it, the
fractional weight of an edge can be augmented when the algorithm augments the
weights of other edges as well. If the weight of several edges is augmented at the
same iteration, the rounding algorithm considers the edges one by one, according
to a topological ordering, starting from the edges closer to the root. Let we and
w′

e = we + δe be the weight of edge e before and after the weight augmentation,
respectively. Let δe be the change in the weight of e. Let e(p) be the edge adjacent
to e and closer to the root r. This definition is, of course, only relevant if the edge e
is not incident on the root r. The rounding algorithm randomly chooses the edges
to the solution by the following scheme.
Consider all edges for which δe > 0 in any topological order:

—If w′
e > 1, add e to C.

—If e is incident on r, or w′
e(p) > 1, add e to C with probability δe/(1− we).

—If e(p) ∈ C, add e to C with probability δe/(w′
e(p) − we).

Note that for each edge e that is not incident on the root, δe/(w′
e(p) − we) ≤

δe/(w′
e − we) = 1, since w′

e ≤ w′
e(p). Thus, the probabilities are well defined.

Furthermore, note that C induces a connected subtree of T . This follows since
the edges that were augmented at the same iteration are considered in topological
order and each edge may be added to C only if the path connecting it to the root
r is already in C. The following lemma proves a basic important property of the
randomized rounding method.

Lemma 10. For each edge e, at the end of each iteration, the probability that
e ∈ C is w′

e. If we > 1, then e ∈ C with probability 1.

Proof. The second part of the lemma is trivial since the rounding algorithm
adds each edge e with weight we > 1 to C. We prove the first part of the lemma by
induction on the iterations of the algorithm.
Induction Basis: Before the first iteration the weight of all edges is zero and C is
empty.
Inductive Step: Suppose the lemma holds for the first i iterations and consider
now iteration i + 1. Any edge whose weight did not change during iteration i + 1
is added to the solution with probability 0, and so the lemma holds for such edges
by the induction hypothesis. Consider an edge e whose weight changed during
iteration i+1. Let δe = w′(e)−w(e). If w′(e) ≥ 1, then the edge e is chosen to the

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

Online Network Optimization Problems · 127

solution with probability 1. Assume the weight of edge e at the end of iteration i+1
is strictly less than 1. The weights of edges on each path emanating from the root
are monotonically decreasing, therefore the edges with weight exceeding 1 form a
connected subtree A. The subtree A is taken to the solution, by the topological
ordering, before any other edge (with weight strictly less than 1) is considered by
the algorithm in iteration i+1. Let e(0), e(1), . . . e(k) = e be the path from subtree
A to edge e. All the edges on the path have weights w′(e(i)) < 1 and their weights
are monotonically decreasing.

The algorithm process the edges on this path according to a topological order
starting from the edges closer to the root. By the induction hypothesis, the proba-
bility that each edge e(i) (1 ≤ i ≤ k)was chosen to the solution before iteration i+1
is w(e(i)). We wish to prove that each edge on the path is chosen to the solution
at the end of iteration i + 1 with probability w′(e(i)). We can prove this claim by
a direct argument, but it is easier to prove the claim by induction on the length of
the path.

According to the algorithm, the probability that e(0) ∈ C at the end of iteration
i + 1 is:

we(0) +
δe(0) · (1− we(0))

(1− we(0))
= we(0) + δe(0) = w′

e(0).

The first term is the probability that e(0) is already in the solution before iteration
i + 1, while the second term is the probability that edge e(0) did not belong to
the solution before iteration i + 1, yet was chosen to the solution in iteration i + 1.
We now assume inductively that edge e(k − 1) is in the solution at the end of
iteration i + 1 with probability w′(e(k − 1)). Since the algorithm considers the
edges in topological order this assumption holds at the time edge e(k) is considered
in iteration i + 1. Thus, just before edge e(k) is considered in iteration i + 1, the
probability that e(k) /∈ C and e(k− 1) ∈ C is w′

e(k−1) −we(k). The probability that

e(k) belongs to the solution at the end of iteration i + 1 is therefore:

we(k) +
δe(k) · (w

′
e(k−1) − we(k))

(w′
e(k−1) − we(k))

= we(k) + δe(k) = w′
e(k).

The first term is the probability that e(k) was added to C before iteration i + 1,
while the second term is the probability that e(k) did not belong to the solution
before iteration i + 1, yet ek−1 belongs to C, and e(k) is added to C in iteration
i + 1.

The next lemma follows from linearity of expectation.

Lemma 11. At the end of each iteration, the expected cost of the edges in C is
at most

∑

e∈T cew
′
e, where w′

e is the weight of edge e at the end of the iteration.

Let N be the maximum size of a group g = {{v1, v2, . . . , vk}. Let wg be the
total flow that can be routed to the vertices in g simultaneously. The next lemma
bounds from below the probability that any group g with wg > 1 is covered.

Lemma 12. In any iteration, if, for a group g = {v1, v2, . . . , vk}, wg ≥ 1, then
the probability that there exists vi ∈ C (1 ≤ i ≤ k) is Ω(1/ log N).

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

128 · Noga Alon et al.

Proof. Our proof uses [Garg et al. 2003, Thm. 3.4, p. 72]. This requires proving
that in our rounding, the probability of the “good” events and the dependency
between them remains the same as in the offline rounding of [Garg et al. 2003].
The first claim follows from Lemma 10. In order to prove the second claim we need
to show that the probability of two “good” events is the same as in Theorem 3.4
of [Garg et al. 2003]. Let e(1) and e(2) be two edges in the tree. Let e be the
least common ancestor edge of e(1) and e(2) (with respect to the root). If there is
no such edge e, then the events that e(1) and e(2) are chosen to the solution are
independent. Otherwise, the probability that e(1) ∈ C given that e ∈ C is we(1)/we,
and the probability that e(2) ∈ C given that e ∈ C is we(2)/we. Given that e is
chosen to the solution, the events e(1) ∈ C and e(2) ∈ C are independent. Thus,
the probability that e(1) and e(2) are in C is we(1)we(2)/we, and we are done.

Actually, in order to use the original proof of [Garg et al. 2003], we are required
to prove a stronger assertion about the independence of the corresponding events.
However, this is not needed, since the proof of [Garg et al. 2003] can be modified
so that only the second moment of the variable, which is the number of paths from
the root to a vertex in g, needs to be computed. This follows from the assertion
of [Alon and Spencer 2000, Sec. 4.8, Ex. 1]. Therefore, the above independence
result suffices.

To conclude, we state the performance of the randomized algorithm for the online
group steiner on trees.

Theorem 13. There is a randomized online algorithm for the group Steiner
problem in trees with a competitive ratio of O(log2 n log k).

4.3 The Group Steiner Problem on General Graphs

In this section we consider the group Steiner tree problem on general graphs. The
algorithm for the group Steiner tree problem on general graphs uses hierarchically
well-separated trees (HST-s) [Bartal 1996; Fakcharoenphol et al. 2003]. A set of
metric spaces S over V is said to α-probabilistically approximate a metric space
M over V , if: (1) for every x, y ∈ V and S ∈ S, dS(x, y) ≥ dM(x, y) and (2) there
exists a probability distribution D over the metric spaces in S such that for all
x, y ∈ V , E [dD(x, y)] ≤ αdM(x, y). We define α to be the stretch factor. Recently,
the following theorem was proved in [Fakcharoenphol et al. 2003], improving upon
the initial result of [Bartal 1996].

Theorem 14. Every weighted connected graph G on n vertices can be α-probabilistically
approximated by a set of weighted trees, where α = O(log n). The probability dis-
tribution can be computed in polynomial time.

We use this theorem to obtain an online randomized algorithm for the group Steiner
tree problem on general graphs with the following competitive ratio.

Theorem 15. There is a randomized online algorithm for the group Steiner
problem in general graphs with a competitive ratio of O(log3 n log k).

Proof. We first use Theorem 14 to randomly choose a tree T from the distribu-
tion D. Then, we run the online algorithm from Section 4.2 on the tree T . When
a new vertex v is being connected to the root r, we just connect it in the graph

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

Online Network Optimization Problems · 129

via its closest neighbor in the tree that is already connected to the root. Since
the tree is an HST, the cost of this path in the tree is only twice the connection
cost of v to the least common ancestor of v and its closest previously connected
neighbor. Thus, on the average, we are paying at most twice the stretch factor α
of the paths, and the theorem follows directly from Theorem 14, and the guarantee
on the performance of the algorithm in Section 4.2.

4.4 The multicut problem

In this section we consider the online multicut problem in undirected graphs. The
algorithm we propose for the online multicut problem on trees fits our general ap-
proach. However, for general graphs we propose a different algorithm that deviates
from the general framework developed in the paper.

In [Räcke 2002], Räcke describes a procedure for finding a hierarchical decom-
position of any undirected graph G = (V, E) with capacities on the edges. An
efficient procedure for finding such a decomposition tree TG appears in [Bienkowski
et al. 2003] and [Harrelson et al. 2003]. This remarkable decomposition enables us
to transform the problem from a general graph to a tree. We later on present an
online algorithm for the multicut problem on trees with competitive ratio α, where
α may depend on the height of the tree.

The vertices of the decomposition tree TG correspond to a laminar family of
subsets of V 1. There is a 1-1 correspondence between V and the leaves of the
tree. The edges of TG correspond to cuts in G and each tree edge is associated with
a capacity (or cost) which is equal to the capacity (or cost) of the corresponding
cut in G. The tree TG has the property that for any choice of source-sink pairs,
any feasible multi-commodity flow in TG can be routed in G causing a congestion
of at most β. The current best value of β is O(log2 n log log n) for general graphs,
and O(log n log log n)) for planar graphs, and it is given by [Harrelson et al. 2003]
together with a polynomial-time construction of TG.

Thus, the multicut problem in G translates into a multicut problem in the de-
composition tree TG, where the goal is to separate between the leaves containing
the source-sink pairs. We run an α-competitive online algorithm for the (online)
multicut problem in TG. A multicut in TG is a set of edges which translate back
in G into a set of cuts having at most the capacity of the multicut in TG. Clearly,
this translation can be done online.

Theorem 16. There is a deterministic polynomial-time algorithm for the online
multicut problem that achieves a competitive ratio of:

—O(log3 n log log n) for general graphs.

—O(log2 n log log n) for planar graphs.

—O(log2 n) for trees.

Proof. Let Conl(G) and Conl(TG) denote the multicut found by the online al-
gorithm in G and in TG, respectively. Let Copt(TG) denote the optimal multicut
in TG, and let MCFopt(TG) be the maximum multi-commodity flow in TG between

1A collection of subsets of V forms a laminar family if no two sets in the collection cross.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

130 · Noga Alon et al.

the source-sink pairs. By [Garg et al. 1997], in a tree, Copt(TG) ≤ 2 ·MCFopt(TG).
Hence,

Conl(G) ≤ Conl(TG) ≤ α · Copt(TG)

≤ 2α ·MCFopt(TG).

Let f∗ be a maximum multi-commodity flow between the source-sink pairs in TG.
Let MCFopt(G) denote a maximum multi-commodity flow in G between the source-
sink pairs. Since f∗ can be routed in G with a congestion of at most β, we get
that,

MCFopt(G) ≥
1

β
MCFopt(TG),

yielding that

Conl(G) ≤ 2αβ ·MCFopt(G).

Since MCFopt(G) lower bounds the optimal multicut in G, we get that our algorithm
is (2αβ)-competitive. Substituting the appropriate values for β, and setting α =
O(log n), the claimed bounds follow.

We now proceed and show an online algorithm for the multicut problem in trees.
First, note that there is a simple reduction from the online multicut problem in
trees to the online set cover problem. Each pair of vertices in the tree corresponds
to an element; each edge of the tree corresponds to a set. A set contains an element
if the corresponding edge separates the two vertices corresponding to the element.
Hence, by the main result of [Alon et al. 2003], (which follows the basic general
approach developed here), there is a deterministic O(log2 n)-competitive algorithm
for the online minimum multicut tree problem.

The above reduction applies to any tree. However, when considering the decom-
position trees produced by [Harrelson et al. 2003], we observe that their height is
only O(log n). We use this to improve on the competitive ratio by providing an
O(h)-competitive online algorithm for any tree, where h denotes the height. The
online algorithm essentially follows the primal-dual 2-approximation algorithm of
[Garg et al. 1997]. However, in an online setting, we cannot choose the order of
the source-sink pairs and we cannot apply the “cleaning” stage at the end. Thus,
applying the standard primal-dual scheme on the multicut problem on a tree yields
an O(h)-approximation factor that translates to an O(h)-competitive online al-
gorithm. The O(h)-approximation factor follows since the primal complementary
slackness condition is preserved, and a relaxed dual condition with a 2h factor is
trivially preserved. An alternative description of the algorithm is via the local ratio
technique: reduce from the cost of all the edges on the unique path between the
new source-sink pair the minimum cost of an edge on the path, and then take into
the cut all zero-cost edges.

5. CONCLUDING REMARKS

We described a general method for generating fractional solution for connectiv-
ity and cuts problems in an online fashion. This, together with online versions

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

Online Network Optimization Problems · 131

of randomized rounding, yields competitive online algorithms for many integral
connectivity problems.

Specifically, we described randomized online algorithms for the non-metric facility
location problem, the multicast problem, and the group Steiner problem. The
question of providing deterministic algorithms for these problems remains open.
In the offline case, all the randomized rounding methods that were proposed for
these problems can be derandomized using the method of conditional expectations.
However, in the online setting we do not know whether it is possible to obtain
deterministic algorithms for these problems. We believe that this should be possible,
at least for the non-metric facility location problem.

For many offline problems, randomized rounding methods were not studied since
they involve high computational time complexity, mainly due to the necessity to
solve a linear program. For example, generating an O(log n) approximation to the
set cover problem via randomized rounding is possible, but it is certainly “cheaper”
to apply the usual greedy approach. Our approach for the design of online al-
gorithms motivates the study of randomized rounding methods for such problems
since they might serve as a basis for online algorithms.

REFERENCES

Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N. and Naor, J. 2003. The online set cover
problem. In 35th Annual ACM Symposium on the Theory of Computation. 100–105.

Alon, N. and Spencer, J. H. 2000. The Probabilistic Method. John Wiley and Sons, Inc., 2nd
Edition, 2000.

Awerbuch, B., Azar, Y., and Bartal, Y. 2001. On-line generalized Steiner problem. In 7th

Annual ACM-SIAM Symposium on Discrete Algorithms. 68–74.

Bartal, Y. 1996. Probabilistic approximation of metric spaces and its algorithmic applications.
In 37th Annual IEEE Symposium on Foundations of Computer Science. 184–193.

Berman, P. and Coulston, C. 1997. On-line algorithms for Steiner tree problems. In 29th

Annual ACM Symposium on the Theory of Computation. 344–353.

Bienkowski, M., Korzeniowski, M., and Räcke, H. 2003. A practical algorithm for construct-
ing oblivious routing schemes. In 15th ACM Symposium on Parallelism in Algorithms and

Architectures. 24–33.

Fotakis, D. 2003. On the competitive ratio for online facility location. In 30th International

Colloquium on Automata, Languages and Programming. 637–652.

Fakcharoenphol, J., Rao, S., and Talwar, K. 2003. A tight bound on approximating arbitrary
metrics by tree metrics. In 35th annual ACM Symposium on Theory of Computation. 448–455.

Garg, N., Konjevod, G., and Ravi, R. 2003. A Polylogarithmic approximation algorithm for
the group Steiner tree problem. Journal of Algorithms 37, 66–84.

Garg, N., Vazirani, V. V., and Yannakakis, M. 1996. Approximate max-flow min-(multi)cut
theorems and their applications. SIAM J. on Computing 25, 235–251.

Garg, N., Vazirani, V. V., and Yannakakis, M. 1997. Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18, 3–20.

Harrelson, C., Hidrum, K., and Rao, S. 2003. A polynomial time tree decomposition to

minimize congestion. In 15th ACM Symposium on Parallelism in Algorithms and Architectures.
34–43.

Hochbaum, D. S. 1997. Approximation Algorithms. PWS Publishing Company, 1997.

Imase, M. and Waxman, B. M. 1991. Dynamic Steiner tree problem. SIAM J. on Discrete Math

4, 369–384.

Meyerson, A. 2001. Online facility location. In 42nd Annual IEEE Symposium on Foundations

of Computer Science. 426–431.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

132 · Noga Alon et al.

Plotkin, S. A., Shmoys, D., and Tardos, E. 1995. Fast approximation algorithms for fractional

packing and covering problems. Mathematics of Operations Research 20, 257–301.

Räcke, H. 2002. Minimizing congestion in general networks. In 43rd Annual IEEE Symposium

on Foundations of Computer Science. 43–52.

Vazirani, V. V. 2001. Approximation Algorithms. Springer-Verlag, 2001.

received ; revised ; accepted

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

