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Abstract—We consider the power control problem in a time-
slotted wireless channel, shared by a finite number of mobiles
that transmit to a common base station. The channel between
each mobile and the base station is time varying, and the
system objective is to maximize the overall data throughput. It
is assumed that each transmitter has a limited power budget,
to be sequentially divided during the lifetime of the battery.
We deviate from the classic work in this area, by considering
a realistic scenario where the channel quality of each mobile
changes arbitrarily from one transmission to the other.

Assuming first that each mobile is aware of the channel quality
of all other mobiles, we propose an online power-allocation
algorithm, and prove its optimality under mild assumptions. We
then indicate how to implement the algorithm when only local
state information is available, requiring minimal communica-
tion overhead. Notably, the competitive ratio of our algorithm
(nearly) matches the bound obtained for the (much simpler)
single-transmitter case [2], albeit requiring significantly different
algorithmic solutions.

I. INTRODUCTION

A. Background and Motivation

The multiple access nature of wireless networks introduces
a fundamentally different resource allocation problem as com-
pared to wired networks, which often provide a dedicated
channel for each user. Indeed, the shared nature of the wireless
domain implies that the rate obtained by a user depends
not only on its own transmission parameters, but also on
the transmission characteristics of other users. Specifically,
when considering an uplink scenario, the rate that a user
can sustain depends on the transmission power of all users,
and at the same time on their respective channel qualities (or
gains). Naturally, the channel gains are time-varying (an effect
known as channel fading), making the rate allocation task
(as determined by the power assignment) a dynamic control
problem. Adequate algorithmic solutions for power allocation
are crucial, especially for limited-battery devices, for which
inefficient use of power might be devastating.

Much research has been devoted within the information
theory community to the study of the optimal power allocation
problem in the face of varying channel conditions. The most

commonly studied objective is maximizing the sum-rate of
the system, under an average power constraint per user (see
[6] for a detailed survey). An underlying assumption in this
line of research is that the channel gain variation between
mobile users and a base station satisfies a probabilistic rule,
known to all parties. In practice, however, such information
on the channel-gain distribution may not be available, hence
calling for adaptive schemes for estimating it. Even worse, the
probability rule governing the channel state processes might
change over time, due to non-stationary network elements
affecting transmission quality (e.g., mobility, line of sight,
etc.). Accordingly, our goal is to investigate how well can
power be allocated in an uplink scenario under arbitrarily
varying channel conditions for each and every mobile.

Our model consists of multiple mobiles transmitting to a
single base station over a time-slotted wireless channel. The
channel between each mobile and the base station is arbitrarily
time varying, and the system objective is to maximize the
overall data throughput. A distinctive property of our model is
that transmitters have a limited battery that can be recharged
only occasionally. Hence, instead of satisfying a long-term
power average constraint (as traditionally considered in related
research), each transmitter has to be aware of its actual
remaining energy. Due to the arbitrarily changing channel con-
ditions, we study the problem within the framework of online
computation [3], with the objective of devising online power-
allocation algorithms with proven bounds on the competitive
ratio. A second objective is to establish lower bounds on
the worst-case performance of any online algorithm operating
under arbitrarily varying channel conditions, hence providing
a benchmark for the quality of our proposed solutions.

The technological relevance of our work lies, for example,
in ad-hoc and sensor networks, where the battery of each
mobile is limited and can be charged only occasionally (e.g.,
by solar energy). Sensors that are required to send informative
data, may do so in a relatively slow pace, with the objective
of maximizing their overall throughput. Due to the low rate of
transmission, the assumption of arbitrary channel conditions is
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commensurate with the unknown changes (e.g., environmen-
tal) that take place between subsequent transmissions.

B. Related Work

The information theory community has considered the case
where the transmitter and the receiver operate with incomplete
knowledge of the probability law governing the channel over
which a transmission takes place. The focus of the related
research is in designing encoders and decoders which achieve
reliable communication and in analyzing the capacity over
such channels (see [4] for a survey). The problem that we
consider here is fundamentally different, as we concentrate
on the sequential power-allocation problem, constrained by
limited power budgets.

Recently, there has been growing interest in jamming games
(e.g., [1]), where a malicious adversary, equipped with its own
power budget, aims at deteriorating system performance by
allocating its own power (affecting the throughput of other
users) in a harmful way. Our study differs from the jamming
game framework in several respects. Our focus is on worst-
case analysis, rather than on the notion of equilibrium between
“equal” players. For such settings, in which decisions are
made on an arbitrary input pattern revealed piece-by-piece, the
methodology of competitive analysis [3] provides a framework
for the systematic design of algorithmic solutions, as well as
for establishing worst-case performance bounds. Online meth-
ods have gained prominence in solving algorithmic problems
in a variety of networking domains, e.g., network switches and
buffers, call admission control, and scheduling.

Due to the finite time-horizon assumption, the mathematical
formulation of our offline power control problem shows much
similarity with the well studied problem of assigning trans-
mission powers to orthogonal frequency bands in a general-
topology wireless network. This problem is studied as a cen-
tralized optimization problem as well as in a non-cooperative
game theoretic setting (see, e.g., [7], [8], [11], [10], [9] and
the references therein). The centralized optimization problem
is known to be NP-hard [8], further highlighting the algo-
rithmic challenge in our problem, since the online decision
requirement imposes additional difficulty.

In recent work, the online power allocation problem for
the single transmitter case [2] was considered. The multiuser
case studied here uses some basic observations from [2]; yet,
due to its higher complexity, it requires new formulations and
algorithmic solutions.

C. Contribution and Paper Organization

To the best of our knowledge, this is the first paper studying
the problem of power allocation in a multi-transmitter envi-
ronment, under dynamically varying channel quality, through
the methodology of online (competitive) analysis. We address
two scenarios which correspond to different capabilities of
the transmitter in terms of the feedback it obtains from
the channel. The first one, the fixed channel gain scenario,
corresponds to binary feedback, i.e., the channel quality infor-
mation provided to a transmitter in each time slot is either

“reception” or “no reception”. We start by characterizing
some fundamental properties of an optimal (offline) solution.
Then, we provide an online algorithm for which we prove,
under mild assumptions, that its worst-case performance (i.e.,
competitive ratio) is at most a constant factor away from an
(offline) optimum. We then turn to the general scenario, where
the information received from the channel is the gain value,
rather than just a binary flag. For this case, we provide an
online algorithm whose competitive ratio is on the same order
as previously obtained for the single transmitter case [2].

The above results are obtained under the full information
assumption, i.e., each transmitter is aware of the gain of
all other transmitters in each time slot. We get around this
assumption and provide a distributed scheme allowing the
employment of the above algorithms in the practical case
of “local” information, where each transmitter is aware of
only its own gain value. We complement our work with a
simulation study, where we validate our online algorithm for
the fixed channel gain scenario, and examine the effect of
certain parameters on its performance. In certain cases, we
observe that the performance of our online algorithm is much
better than the worst-case bounds.

The paper is organized as follows. The channel and trans-
mitter are modeled in Section II, followed by a formulation
of the problem. Section III addresses the fixed channel gain
(“binary feedback”) case, whereas the general case and the
local information perspective are treated in Sections IV and
V. Section VI presents the simulation study and discusses its
results. Finally, conclusions appear in Section VII.

II. THE MODEL

A. The Channel Model

We consider a (single cell) CDMA-like system with a finite
set of transmitters {1, . . . , n}, transmitting to a single base
station (receiver) over a common bandwidth of W hertz.
The channel between the transmitters and the receiver is
modeled as a frequently-flat fading channel with additive white
Gaussian noise. Specifically, at each time t, the received signal
y(t) is given by

y(t) =
∑

j

√
h̃j(t)xj(t) + z(t), (1)

where xj(t) and h̃j(t) ≥ 0 are the transmitted signal and
channel gain (state) for the jth user, and z(t) is an additive
white Gaussian noise with power spectral density N0/2. The
sequence of channel gains h̃(t) =

(
h̃1(t), . . . , h̃n(t)

)
is

modeled as a block-fading process [6], so that for i = 1, 2, . . . ,

h̃(t) = h̃i =
(
h̃i

1, . . . , h̃
i
n

)
, for all t ∈ [iL, (i + 1)L),

where h̃i
j is the gain of user j at time slot i, and L is the

length of each time slot.
A distinctive feature of our model is that the process {h̃i}

evolves arbitrarily, i.e., without an underlying probability rule.
At the beginning of every time slot i, each transmitter j
receives information hi

j regarding its current channel gain h̃i
j .
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This information is passed through a finite lossless feedback
link with capacity of C bits per second1. The information
hi

j ∈ {q0 = 0, q1, . . . , qM} ⊂ R+ is a quantized version
of the actual gain h̃i

j , so that if h̃i
j ∈ [qm, qm+1) (where

qM+1 ≡ ∞), then hi
j = qm. Throughout the paper, we use

the notation hmin = q1 for the smallest (nonzero) quantized
gain, and hmax = qM for the maximum one. To simplify the
exposition, we shall henceforth refer to hi

j as the channel gain
of transmitter j at time-slot i.

The transmitter observes hi
j and can accordingly decide

whether to transmit or not, and also adapt its transmission
power. We assume that there is no retransmission mechanism,
so that each transmission arrives at the base station with
very high probability. The basic measure that determines the
instantaneous throughput is the received signal to noise ratio
(SINR), given by

SINRi
j =

hi
jp

i
j

N0 +
∑

m 6=j hi
mpi

m

, (2)

where pi
j is the transmission power of transmitter j at time i,

and W is normalized to one. Note that in CDMA systems,
the signals of other users are often treated as interfering
noise signals (i.e., there is no interference cancellation at the
receiver), hence the direct dependence of throughput on SINR,
as we elaborate below.

Let U(SINRi
j) be the instantaneous rate which transmitter

j can reliably transmit at time slot i. In this paper, we shall
consider the function U(SINRi

j) = log(1+SINRi
j), which can

be interpreted as being proportional to the Shannon capacity
of user j, if we make the simplifying assumption that the
noise plus the interference of all other users constitute an
independent Gaussian noise.

B. The Optimization Problem

We assume that each transmitter j has an initial power
budget of Pj that can be divided between different time slots.
Further, transmitters can recharge their battery to their initial
power; however, due to practical limitations, a period of T
time slots elapses between consecutive battery charges.

The objective of the transmitters is to cooperatively max-
imize the total throughput of the system, subject to the
constraints described above. We often refer to the total net-
work throughput achieved as profit. The general optimization
problem is thus the following:

maximize
T∑

i=1

n∑

j=1

U(SINRi
j) (3)

subject to
T∑

i=1

pi
j ≤ Pj , ∀j ∈ {1, . . . , n}

where SINRj
i is given in (2).

We emphasize that since the channel gain sequence hi =(
hi

1, . . . , h
i
n

)
is not known a-priori, we pose (3) as an online

1E.g., each feedback link may employ a different frequency band in a
Frequency Division Duplex (FDD) system, which does not suffer from fading.

optimization problem, where in each time slot i a new channel
gain sequence hi is revealed. We consider two different
scenarios, corresponding to the information available to the
transmitters when making their power-allocation decision.

1) Global information: At every time slot i, each transmit-
ter is aware of the gain of all transmitters (e.g., the gains
are broadcasted to all transmitters). That is, the vector
hi =

(
hi

1, . . . , h
i
n

)
is known to all transmitters.

2) Local information: At every time slot i, each transmitter
j is aware only of its own gain hi

j .

In the bulk of the paper, we focus on the global information
case. We describe a distributed and practical way to deal with
the local information case in Section V.

III. THE FIXED CHANNEL GAIN PROBLEM

We study here a version of our power allocation problem in
which the channel gain value given to a user (in each time-slot)
can be either 0 or a fixed value h̄0. This scenario corresponds
to binary feedback, i.e., the channel quality information pro-
vided to a transmitter in each time slot is either “reception”
or “no reception”. Our main result is an online algorithm with
constant competitive factor for this case. We later show that
this online algorithm can be used in a black box fashion to
design an online algorithm with competitive ratio O

(
log hmax

hmin

)
for the general online multi-user power allocation problem.

Let F i ⊆ {1, . . . , n} denote the set of users that obtain a
gain of h̄0 at time slot i. We refer to F i as the set of users that
can transmit (or “allowed” to transmit) at time slot i (since
other users will obtain a zero throughput if they decide to
transmit). The fixed channel gain optimization problem is thus:

maximize
T∑

i=1

∑

j∈F i

log
(

1 +
pi

j · h0

1 +
∑

m 6=j pi
mh0

)

subject to
T∑

i=1

pi
j ≤ Pj , ∀j ∈ {1, . . . , n},

where h0 = h̄0/N0 .
We now point out the relation between our (offline) op-

timization problem and the well-studied power allocation
problem in multiuser frequency selective environments with
no fading (see, e.g., [8]). In our setting, users share a single
band, whereas the channel quality of each one changes over
time. By mapping time-slots to bands it is straightforward to
reduce our (offline) optimization problem, stated above, to
the problem investigated in [8]. This reduction implies that
under mild assumptions, the optimal solution of our power
allocation problem in the fixed channel gain scenario is a
TDMA solution, where in each slot only a single user is
allowed to transmit. Specifically, the assumption in our model
(as follows from [8]) is that each user transmits during at least
two time slots. Since this is a very reasonable assumption, we
thus compare our online algorithm for the fixed channel case
to an optimal TDMA solution.
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A. Characterizing an Optimal TDMA Solution

In this section we characterize an optimal TDMA solution
in the fixed gain case. In a TDMA solution only one user is
allowed to transmit at each time slot. Thus, for each slot i
some user from the set F i is chosen to transmit. Let Tj be the
number of slots during which user j transmits. The user may
split its budget Pj between these slots in order to maximize
its total throughput. Since the instantaneous throughput is
concave in the transmission power, it follows by Jansen’s
inequality that the total throughput is maximized when the
budget is equally divided between the Tj slots. The total profit
is therefore

Tj log
(

1 +
Pj · h0

Tj

)
. (4)

The question is thus how to divide the time slots between the
users. Consider an allocation of slots to users. Let T r

j = Tj/Pj

be the ratio between the number of slots given to user
j and its budget. Arrange the users {1, . . . , n} in a non-
increasing order with respect to T r

j . Let T r
(j) be the jth

highest ratio in the allocation. Thus, we get an allocation
vector

(
T r

(n), T
r
(n−1), . . . , T

r
(1)

)
such that T r

(n) ≤ T r
(n−1) ≤

. . . ≤ T r
(1). It is then possible to compare any two allocations

by comparing them coordinate after coordinate, starting from
T r

(n) and stoping whenever a coordinate in one vector is
strictly larger than a coordinate in the other vector. The
allocation that is the best among all allocations with respect to
this comparison procedure is referred to as lexicographically
maximal. It is also known as the max-min fair allocation.
The next theorem characterizes the optimal allocation as
lexicographically maximal among all allocation vectors.

Theorem 1: Consider the fixed channel gain problem. The
optimal allocation vector T∗ = (T r

(n), T
r
(n−1), . . . , T

r
(1)) for

that problem is a max-min fair allocation vector; that is, T∗

is a lexicographically maximal allocation.
Proof: Assume by contradiction that T∗ is not a max-

min fair allocation. Then, there are two users j and k such
that T r

j + 1
Pj

≤ T r
k − 1

Pk
, and there exists a slot which is

allocated to k, yet it and can be allocated to j. That is, if we
take a slot from k and give it to j, the ratio of k is still larger
than the ratio of j. Suppose we take a slot from k and give it
to j. Then, using Equality (4) we get that the total gain after
this change increases, that is,

(Tj + 1) log
(

1 +
Pj · h0

Tj + 1

)
+ (Tk − 1) log

(
1 +

Pk · h0

Tk − 1

)

> Tj log
(

1 +
Pj · h0

Tj

)
+ Tk log

(
1 +

Pk · h0

Tk

)
.

To see this, consider the function f(x) = x · log(1 + h0
x ). For

this function, f ′′(x) = h0
x+h0

( 1
x+h0

− 1
x ) ≤ 0, for any x > 0.

Therefore, this is a concave function for any x > 0, and so

for x < y, f ′(x) > f ′(y). Next, using this fact we get that,

(Tj + 1) log

(
1 +

Pj · h0

Tj + 1

)
− Tj log

(
1 +

Pj · h0

Tj

)

= Pj

(
(Tj + 1)

Pj
log

(
1 +

Pj · h0

Tj + 1

)
− Tj

Pj
log

(
1 +

Pj · h0

Tj

))

= Pj

(
f

(
Tj

Pj
+

1

Pj

)
− f

(
Tj

Pj

))

≥ Pj · 1

Pj
· f ′

(
Tj

Pj
+

1

Pj

)
= f ′

(
Tj

Pj
+

1

Pj

)
.

On the other hand,

Tk log

(
1 +

Pk · h0

Tk

)
− (Tk − 1) log

(
1 +

Pk · h0

Tk − 1

)

= Pk

(
Tk

Pk
log

(
1 +

Pk · h0

Tk

)
− Tk − 1

Pk
log

(
1 +

Pk · h0

Tk − 1

))

= Pk

(
f

(
Tk

Pk

)
− f

(
Tk

Pk
− 1

Pk

))

≤ Pk
1

Pk
f ′

(
Tk

Pk
− 1

Pk

)
= f ′

(
Tk

Pk
− 1

Pk

)
.

Since T r
j + 1

Pj
≤ T r

k− 1
Pk

and using concavity again we get the
desired result. Thus, unless T∗ is a max-min fair allocation,
the total profit can be improved, proving the theorem.

For the sake of analysis let us consider a fractional max-
min fair allocation. In a fractional allocation, a slot can be
fractionally divided between several users, where the sum of
the allocated fractions of each slot adds up to 1. The total
gain of user j is still considered (for analysis purpose) as

Tj log
(

1 + P ·h0
Tj

)
, although now Tj can be non-integral. We

denote by T ∗(j) the allocation of the user with the jth highest
ratio T r

(j) according to a max-min fair fractional allocation. It
is easy to verify that the proof of Theorem 1 still goes through
when considering a fractional max-min fair allocation, and
thus the best TDMA solution satisfies the following inequality
with respect to a fractional optimal solution.

OPT ≤
n∑

j=1

T ∗(j) log

(
1 +

Pj · h0

T ∗(j)

)
.

From this point on we assume, for simplicity, that all budgets
are equal to some value P . In this case we are only concerned
about the number of slots assigned to each user, rather than
the ratio of number of slots to the budget. This simplifies a
bit our notation and presentation. We later remark on how to
extend all of our results to the case of arbitrary budgets.

When considering a fractional max-min fair solution, we
have the following nice property.

Fact 1: In every fractional max-min fair solution, each user
j is allocated the same total number of slots T ∗j .

One way of proving this fact is that a max-min allocation
is in particular a market equilibrium allocation in which
equilibrium utilities are unique. See, e.g. [5, Theorem 5.1].
This motivates the following definition. For any j let us define
S∗j =

{
k | T ∗k ≥ T ∗(j)

}
, where T ∗(j) is the number of slots the

user with the jth highest allocation received in a max-min fair
fractional allocation. The set S∗j consists of all the users that



5

get at least T ∗(j) slots in the fractional max-min fair allocation.
Note that the size of S∗j is at least j since there are at least
j users that got at least T ∗(j) in the max-min fair solution, but
there can be more than j users in S∗j in the case where more
than one user got exactly T ∗(j) slots. Let W ∗

j be the set of slots
that are fractionally allocated to users in S∗j . The following
simple claim states that the slots in W ∗

j cannot be allocated
to users outside the set S∗j . That is, each user outside the set
S∗j cannot transmit over the slots in W ∗

j .
Lemma 1: Any slot in W ∗

j cannot be allocated to users
outside S∗j . Therefore, each slot in W ∗

j is fully allocated to
only users in S∗j .

Proof: Assume to the contrary that there exists a slot
w ∈ W ∗

j that can be allocated to some user that is not in S∗j .
This user is allocated strictly less than T ∗(j). By the definition
of W ∗

j there exists a user in S∗j who is allocated a positive
fraction w. Therefore, it is possible to decrease w by some
ε > 0 and allocate ε to a user outside S∗j . This contradicts the
fact that the allocation is a max-min fair allocation.

We prove another useful lemma connecting a fractional
max-min fair allocation that allocates the slots fractionally to
users and an integral allocation that can only allocate slots in
an indivisible way.

Lemma 2: Let T∗ be a fractional max-min allocation. Then
there exists an integral allocation of the slots such that each
user j gets at least bT ∗j c slots. Furthermore, for any j there
exists an integral allocation of the slots in W ∗

j to the users in
S∗j that allocates to each user in S∗j exactly bT ∗(j)c slots.

Proof: We prove the first part of the claim. Given the
values T ∗j , we construct a flow network between the users and
the slots by adding a super-source s connected to all the users
with infinite capacity, and a super-sink t with directed edges
from all slots having unit capacity. We add an edge between
each user j and slot w if the user can transmit in this slot. The
capacity of these edges is also infinity. It can easily be verified
that any flow in this graph immediately translates to a feasible
(fractional) allocation of slots to the users and vice versa. Next,
we put a lower bound capacity of bT ∗j c on the edge to user
j which bounds from below the amount of flow to user j.
Since the max-min fair allocation satisfies these lower bounds
we know that there exists a feasible flow that satisfies all
upper and lower bounds on the capacities. Next, we compute
a maximum flow in this graph. It is well known that for any
flow problem, if there is a feasible fractional solution, then
there is also a feasible integral solution, assuming capacities
(lower and upper bounds) are integral. Thus, we get an integral
feasible flow that satisfies the constraints.

To get the the second claim, we build a subgraph containing
only the users in S∗j and the slots in W ∗

j . We then remove
integral flow from users that got more than bT ∗(j)c units of
flow until each user gets exactly that amount.

B. The Online Algorithm

We now present our online algorithm for allocating slots
to users and analyze its performance.

Algorithm Balance: When a new time slot is available,
allocate it to a user j that can transmit in this slot and has
gotten the least number of slots so far. Break ties arbitrarily.

The power allocation of user j is done as follows. Assume
slot i is allocated to user j. At this point, j must determine
the amount of power to be invested in slot i. We proceed
as described in [2]. The algorithm guesses the length tj of
the sequence, starting from 1, and doubling it each time the
current length of the online sequence turns out to be longer
than the guess. In case the channel gain is a fixed value h0,
the power allocation is determined as follows. For a sequence
length t, the algorithm invests in each time slot a power equal
to ( P ·h0

h0·t·c )1/2, where c = 2
(
√

2−1)2
. That is, when at time t the

algorithm realizes that its current guess is wrong, it updates
its guess to be 2t, and works with this value until time 2t.
At time 2t the algorithm will again update its guess to 4t,
etc. The algorithm continues to invest some power until the
sequence length becomes longer than P . After that point, the
algorithm no longer invests any power, and thus does not make
any additional profit.

Analysis. For each user j, let TB
j be the number of slots

allocated to the user in the online assignment. As in the
allocation of the optimal solution, we sort the users by the
number of slots allocated to them. Let TB

(j) be the number
of slots the jth highest user received in the allocation of
Algorithm Balance. Below is a technical lemma that proves
a lower bound on the number of slots the online assignment
allocates inside any subset S∗j .

Lemma 3: For every j:

∑

k∈S∗j

min{TB
k , bT ∗(j)c} ≥

1
2
|S∗j |bT ∗(j)c.

Proof: By Lemma 2 there exists an integral allocation of
a subset of the slots in W ∗

j that allocates to each user exactly
bT ∗(j)c slots. For each user k ∈ S∗j let W ∗

j,k be the slots that
were allocated to this user in this allocation (so |W ∗

j,k| =
bT ∗(j)c). For each user k ∈ S∗j let TB

k be the number of slots
allocated to user k by the online algorithm.

Next, we define a subset W ′∗
j,k ⊆ W ∗

j,k. A slot w ∈ W ∗
j,k

belongs to W ′∗
j,k if it was allocated by the online assignment to

a user which had at least bT ∗(j)c at the time of the allocation.
Our claim is that min{TB

k , bT ∗(j)c} ≥ |W ′∗
j,k|.

If |W ′∗
j,k| = 0, the claim holds trivially. Otherwise, there

exists a slot in W ∗
j,k that was allocated by the online algorithm

to some user that had at least bT ∗(j)c slots (at the time of
allocation). In this case the slot could be allocated to user
k and so it must be that user k also already received at least
bT ∗(j)c slots. Therefore, TB

k ≥ bT ∗(j)c. Since |W ′∗
j,k| ≤ |W ∗

j,k| =
bT ∗(j)c, the claim holds.

This means that:

∑

k∈S∗j

min{TB
k , bT ∗(j)c} ≥

∑

k∈S∗j

|W ′∗
j,k|. (5)
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We also claim that,
∑

k∈S∗j

min{TB
k , bT ∗(j)c} ≥

∑

k∈S∗j

(|W ∗
j,k| − |W ′∗

j,k|
)
. (6)

This follows since each slot in W ∗
j,k that is not in W ′∗

j,k

was allocated by the online assignment to some user that had
strictly less than bT ∗(j)c slots at the time of the assignment.
Since by Lemma 1 the slots in W ∗ can only be allocated
to users in S∗j then this slot could only be allocated to users
inside S∗j . The LHS actually counts all slots that was allocated
to users in S∗j when the users had less than bT ∗(j)c therefore
such a slot is also counted in the LHS and the inequality holds.
Summing up Inequality (5) and Inequality (6) we get that:

2 ·
∑

k∈S∗j

min{TB
k , bT ∗(j)c} ≥

∑

k∈S∗j

|W ∗
j,k| = |S∗j | · bT ∗(j)c

which proves the claim.
Next, we prove that the number of slots the jth highest user

received in the online allocation is not too small. Specifically,
we make a connection between the number of slots the jth
highest user receives in our allocation and the number of slots
the 4jth highest user got in an optimal max-min fair allocation.

Lemma 4: For any 1 ≤ j ≤ n: TB
(j) ≥

bT∗(4j)c
3 , where for

each j > n, T ∗(j) = 0.
Proof: Consider some value j. Consider the set of users

in S∗4j . By Lemma 3 we know that:
∑

k∈S∗4j

min{TB
k , bT ∗(4j)c} ≥

1
2
|S∗4j |bT ∗(4j)c.

Consider some 1 ≤ r ≤ |S∗4j | and let TB
(r) be the user that

received the rth highest number of slots in the online allocation
out of the set of users in S∗4j . We get that:

(r − 1) bT ∗(4j)c+
(|S∗4j | − r + 1

)
TB

(r)

≥
∑

k∈S∗4j

min{TB
k , bT ∗(4j)c} ≥

1
2
|S∗4j |bT ∗(4j)c.

Setting r = |S∗4j |/4 + 1 ≥ j we get that:

|S∗4j |
4
bT ∗(4j)c+

3|S∗4j |
4

TB
(|S∗4j |/4) ≥

1
2
|S∗4j |bT ∗(4j)c.

Simplifying, we get: TB
(|S∗4j |/4) ≥ 1

3bT ∗(4j)c. Since |S∗4j |/4 +
1 ≥ j we get that TB

(j) is at least that amount. Note that we
consider here the user that received the jth highest number of
slots in the online allocation out of the set of users in S∗4j .
Thus, the user that received the jth highest number of slots in
the online allocation out of all users can only be better.

Finally, the next lemma bounds from below the optimal
solution that can be obtained if the users split their budget
equally using the allocation of the online algorithm.

Lemma 5:
n∑

j=1

TB
(j)·log

(
1 +

P · h0

TB
(j)

)
≥ 1

48
·

n∑

j=4

T ∗(j)·log

(
1 +

P · h0

T ∗(j)

)
,

where T ∗ is the integral optimal max-min fair allocation.
Proof: The proof follows from the following:

n∑

j=1

T B
(j) · log(1 +

P · h0

T B
(j)

) (7)

≥ T B
(1) · log(1 +

P · h0

T B
(1)

) +
n∑

j=2

bT ∗
(4j)

c
3

· log(1 +
3P · h0

bT ∗
(4j)

c ) (8)

≥ T B
(1) · log(1 +

P · h0

T B
(1)

) +
1

3

n∑

j=2

bT ∗(4j)c · log(1 +
P · h0

bT ∗
(4j)

c )

≥ T ∗(1) · log(1 +
P · h0

T ∗
(1)

) +
1

3

n∑

j=2

bT ∗(4j)c · log(1 +
P · h0

bT ∗
(4j)

c ) (9)

≥ T ∗(1) · log(1 +
P · h0

T ∗
(1)

) +
1

12

n∑

j=8

bT ∗(j)c · log(1 +
P · h0

bT ∗
(j)
c ) (10)

≥ 1

12

n∑

j=1

bT ∗(j)c · log(1 +
P · h0

bT ∗
(j)
c ). (11)

Inequality (8) follows by applying Lemma 4. Inequality (9)
follows since the max-min fair allocation minimizes the largest
coordinate in the allocation vector. Inequalities (10) and (11)
follow by the fact that T ∗(j+1) ≤ T ∗(j), and thus (T ∗(j+1) +
T ∗(j+2) + T ∗(j+3) + T ∗(j+4))/4 ≤ T ∗(j).

The claim almost proves the lemma. The only problem is
that we take the floor of the values T ∗(j). This is not a problem
if T ∗(j) ≥ 1, but it is problematic in case T ∗(j) < 1. For the
case where T ∗(j) ≥ 1, the following equation holds:

n∑

j=1

TB
(j) · log(1 +

P · h0

TB
(j)

)

≥ 1
12

n∑

j=1

bT ∗(j)c · log(1 +
P · h0

bT ∗(j)c
)

≥ 1
24

∑

j|T∗(j)≥1

T ∗(j) · log(1 +
P · h0

T ∗(j)
). (12)

Next, consider the group of users that got strictly less than
one slot in a fractional max-min fair allocation. We assume
that each user got strictly more than 0, since otherwise it
cannot transmit at all and we can remove it from the solution.
We remark that a scenario in which the gain of such users
dominates the gain of the optimum is not very interesting,
since it means in general that the number of slots is much
smaller than the number of users. Nevertheless, we analyze
this case for completeness.

Suppose there are k users that were allocated less than
one slot by the fractional max-min allocation. Consider the
set of slots that were assigned to them. The number of such
slots is j ≤ k, and none of the other slots can go to these
users. Therefore, the total profit gained from these users in an
integral allocation is at most j log(1 + P · h0), and there is
an integral allocation that gives 1 slot to j out of the k users.
Next, applying the proof of Lemma 3 on these slots, we get
that the number of users that got at least 1 slot in the online
allocation is at least j/2. Therefore, the online algorithm gains
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at least j
2 log(1 + P · h0). If the gain of the optimal solution

from users with T ∗(j) ≥ 1 is more than 1/2 of the total gain
then the total gain of the online solution is at least 1/48 of
the optimum (by Inequality (12)). Otherwise, we are at least
1/4 competitive, and we are done.

We are now ready to prove our main theorem. Before doing
so we state a previous result from [2]. In [2], the online power
allocation problem of each individual user was analyzed, and
it was proved that each user is able to obtain at least a constant
fraction of its optimal value. We use this fact along with the
previous lemma to establish the following theorem.

Theorem 2: The competitive ratio of Algorithm Balance is
O(1).

Proof: Given the slots allocation TB of Algorithm Bal-
ance, we denote by ΠB

j (x) the profit achieved by user j in
Algorithm Balance, and by Π∗j (x) the profit achieved by the
optimal power allocation of user j, given an allocation of x
slots to user j. Recall that TB

j is the number of slots that
Algorithm Balance allocated to user j, and T ∗j is the number
of slots allocated to j in the optimal solution. We denote by
ΠB the total profit of Algorithm Balance, and by Π∗ the total
profit of the optimal solution. Then, it holds that

ΠB =
n∑

j=1

ΠB
j (TB

j ) ≥
n∑

j=1

Π∗j (T
B
j )

c
(13)

≥ 1
48c

n∑

j=1

Π∗j (T
∗
j ) = O(1) ·Π∗. (14)

The value c is the competitive ratio proven for each user in [2].
Inequality (13) follows from [2], and inequality (14) follows
from Lemma 5.

C. Arbitrary Power Budgets

Our online algorithm for the fixed channel gain problem,
where the power budgets of the users can be arbitrary, is a
weighted version of Algorithm Balance, proceeding as follows.
Denote by T r

j (i−) the ratio of the number of slots allocated
to user j up to (not including) slot i and its budget.

Algorithm Weighted Balance: When a new time slot is
available, allocate the slot to a user j that can transmit in this
slot and minimizes T r

j (i−) + (1/Pj). Break ties arbitrarily.
Each user then allocates its power over the slots it is allocated
to in a similar way as described in Section III-B.

It is easily seen that the lemmas in Sections III-A and III-B
hold for the case of arbitrary budgets, using a simple reduction
that splits each user to several “users” with equal budgets.
Note that we assume here that all budgets are products of the
same factor. We thus get that the competitive ratio of algorithm
Weighted Balance is O(1).

IV. THE GENERAL CASE

In this section we design a randomized algorithm for the
general case where in each time slot i, each user j is given
a channel gain hi

j within the range [hmin, hmax]. For ease of
notation, we denote h = hmin and H = hmax. We partition

the range of gain values [h,H] into log H
h levels, where the

`th level contains gain values in the range [2`−1h, 2`h), and
` ∈ {1, 2, 3, . . . , dlog H

h e}. For each gain sequence hi given
at time slot i, we refer to users for which the gain value hi

j is
in the range [2`−1h, 2`h) as belonging to the same level.

The general idea of our algorithm is as follows. We
choose uniformly in random a gain level δ from the range
{1, 2, 3, . . . , dlog H

h e}. For each slot i, we consider only the
users belonging to level δ, and ignore all other users in the
sequence hi. The sets of users considered for each slot define
an instance of the power allocation problem where the ratio
between the maximum and minimum possible gain values is
at most 2, that is, the channel gain value is nearly fixed.

Our randomized algorithm thus works as follows. After
choosing at random a gain level δ, we reduce our problem
to the fixed channel gain case by ascribing all values in the
range of level δ to the lower gain value 2δ−1h. This means
that the competitive ratio of the fixed channel gain drops by
at most a factor of 2. Then, we apply Algorithm Balance to
the set of users belonging to level δ in each slot.

Theorem 3: Given a γ-competitive online algorithm to the
power allocation problem with fixed channel gain value,
the expected competitive ratio the randomized algorithm is
O(γ log H

h ).
Proof: We denote by OPT the optimal off-line algorithm

for the general multi-user power allocation problem, and by
OPT its profit. For each level `, we denote by OPT` the profit
obtained by OPT from users transmitting over a channel with
gain values in the range [2`−1h, 2`h). Let Π(OPT `) be the
profit of the optimal off-line algorithm when applied to the
`th level instance only (ignoring in each slot users belonging
to other levels).

We denote L = log H
h . As the level δ is chosen uniformly

in random, the expected profit Π of our algorithm is bounded
as follows:

Π ≥
dlog H

h e∑

`=1

1
L
· Π(OPT `)

γ
≥
dlog H

h e∑

`=1

1
L
· OPT`

γ
=

OPT

γL
.

Since Algorithm Balance is a constant-competitive online
algorithm for the fixed channel gain, we get a randomized
algorithm with competitive ratio O(log H

h ) for the general
online multi-user power allocation problem.

Theorem 4: Our online algorithm is O(log H
h )-competitive

for the general multi-user power allocation problem.

V. THE LOCAL INFORMATION CASE

We turn to examine the local information case, where at
each time slot i, each transmitter j is aware only of its own
gain value hi

j . We present a distributed framework, where
each user can learn the state of the system, and save it as
local information. Each user takes an individual transmission
decision, based on its observation of the state of the system
and on the full knowledge of the algorithm.

Initially, all users agree on a level δ from the range
{1, 2, 3, . . . , dlog H

h e}. For each slot i, only users with channel
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gain values belonging to level δ (that is, gain values in
the range [2δ−1h, 2δh)) are candidates for transmission. We
denote this set of users by Si. In each slot, only a single user,
out of this set, performs a transmission. We show how the
identity of the transmitting user is set in each slot, in a fully
distributed manner.

Each user is assigned with a different ID. During the initial
state of the system, each user transmits its ID along with its
initial power. We assume these transmissions are performed
sequentially, so that all users get and save the data. At the
beginning of each slot i, we allocate a small time interval σi.
Using time division multiplexing, σi is divided into n time
fractions, where time fraction σi

j is assigned to user j. Now,
we add the following rule to our online algorithm. At the
beginning of each slot i, each user j transmits during time
fraction σi

j its ID along with a binary value TRUE/FALSE
indicating whether its gain value hi

j belongs to level δ (that
is, whether j ∈ F i). As it is the only user transmitting at this
time, all other users receive its transmission and save the data.

Following this rule, each user can keep track of the number
of slots allocated to the other users. That is, before slot i,
each user j knows the total number of slots Tm(i−) that were
allocated to each user m 6= j up to slot i. As after σi, each user
knows which are the users in set Si, then each user also knows
which is the user j ∈ F i that minimizes T r

j (i−)+1/Pj . Only
this user will perform the transmission. Ties can be broken by
choosing the user with minimal ID.

The appeal of the above scheme is in the overall message
complexity, where each user is required to send only a single
binary signal in each time slot.

VI. SIMULATIONS STUDY

The objective here is to validate our suggested online algo-
rithm, and to examine the effect of certain parameters on its
performance. We first describe some heuristic enhancements
added to the online algorithm, and explicitly specify the
algorithm used in the performed experiments. Then, we turn
to describe the experiments and their respective results.

A. Heuristics Enhancements

We add several enhancements to the online algorithms
described in Sections III-B and III-C. In each slot i, we denote
by F i(`) the set of users with channel gain value belonging
to level `. As mentioned, our algorithm chooses at random
a level δ, and allows transmissions only to users with gain
value belonging to level δ. The main natural improvement
is the following. Instead of considering in each slot i the
set F i(δ), we consider the set F i(≥ δ) that contains the
users that got in slot i a channel gain value belonging to
one of the levels {δ, δ + 1, . . . , dlog H

h e}. That is, F i(≥ δ)
consists of users j such that hi

j ∈ [2δ−1h,H]. Among these
users, we allocate slot i to user j ∈ F i(≥ δ) that minimizes
T r

j (i−) + 1/Pj . In addition, in case there is a slot i where
F i(≥ δ) = ∅, then a single user j with highest gain value
hi

j ∈ [h, 2δ−1h) is allowed to transmit. We note that following
these improvements, our assumption according to which each

user is allocated at least two time slots in the optimal solution
(see Section III), becomes even more evident.

We also apply the enhancements specified in [2] for the
power allocation performed by each user over its allocated
slots. Moreover, in practice, different gain values in level δ are
not considered as equal, and thus the ratio between different
gain values in this level is at most 2. The constant c is thus
set to c = 2λ

(
√

2−1)2
= 4

(
√

2−1)2
. In addition, for a sequence

length Tj , user j invests in each time slot a power equal to
( Pj

h(δ)·Tj ·c )1/2, where h(δ) = 2δ−1h. The algorithm used for
our numerical experiments is specified below (Algorithm 1).

Algorithm 1 Online Algorithm for the Multi-User Power Allocation
Problem in the Fixed Channel Gain Scenario

1: Initialization: choose uniformly in random a value δ from {1, . . . , dlog H
h e}.

2: set ∀j, (Pj)
′ = Pj , current length guess Tj = 1 and current length τj = 0.

3: set c = 4
(
√

2−1)2
.

Given a new channel gain sequence hi = (hi
1, . . . , hi

n):

4: F i(≥ δ) is the set of users with gain values belonging to levels ≥ δ in slot i;
5: if F i(≥ δ) 6= ∅ then
6: choose user j ∈ F i(≥ δ) with minimum ratio (τj + 1)/Pj , such that

(Pj)
′ > 0;

7: k = j;
8: else
9: if ((F i(≥ δ) = ∅) OR (there is no user j ∈ F i(≥ δ) with (Pj)

′ > 0))
then

10: choose user m with highest gain value hi
m, such that (Pm)′ > 0;

11: k = m;
12: end if
13: end if
14: power to be invested in current slot is pi

k =
(

Pk
h(δ)·Tk·c

)1/2
;

15: invest at current slot i a power of min{(Pk)′, pi
k};

16: remaining power of user k is (Pk)′ = max{0, (Pk)′ − pi
k};

17: current sequence length of user k is τk = τk + 1;
18: if (length τk is equal to length guess Tk) then
19: double the length guess Tk = 2Tk .
20: end if

B. Experimental Results

We perform simulations comparing an optimal TDMA
solution to our online balance algorithm in case of a fixed
channel gain. Comparing our algorithm to the optimal solution
in the general case would be possible once the latter is fully
characterized, which at this stage is an open problem.

We study the effect of several parameters on performance.
First, we examine the influence of the power budgets given
initially to the users on the throughput ratio between the
optimal (off-line) and online algorithms. Accordingly, we fix
the number of users (100) and length of time frame (10000).
It is seen in Figure 1 that the performance bound stabilizes
around 2.2, which is much better than the constant ratio
guaranteed by our theoretical analysis (Equation (14)).

Next, we examine the influence of the number of users n on
the throughput ratio between the optimal (off-line) and online
algorithms. Accordingly, we fix the initial budgets (1000) and
length of time frame (10000). Observe that the performance
ratio improves with the number of users (Figure 2). The
intuitive explanation for this phenomenon is that most of the
time slots can be used for useful transmissions, as in the
optimal solution.
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Fig. 1. The ratio between the optimal (offline)
power allocation and the online allocation, as
a function of the power budget. Results are
averaged over 10 runs.
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Fig. 2. The ratio between the optimal (offline)
power allocation and the online allocation, as
a function of the number of users. Results are
averaged over 10 runs.
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Fig. 3. The ratio between the optimal (offline)
power allocation and the online allocation, as a
function of the time frame length. Results are
averaged over 10 runs.

Finally, we examine the influence of the time frame length
T on the throughput ratio between the optimal (off-line) and
online algorithms. Accordingly, we fix initial budgets (1000)
and number of users (100). Observe that the performance
ratio decreases slightly between 2.4 and 2.2, i.e., is almost
fixed (Figure 3). This may follow from the concavity of
the logarithmic objective function, reaching saturation from
relatively low values of T (given that the total powers are
held fixed).

Summarizing our results, we have observed that the online
algorithm performs even better than the theoretical guarantees.
In addition, it seems that performance is mostly affected by
the number of users, but stays almost fixed as a function of
the other system parameters.

VII. CONCLUSION

We considered the problem of power allocation under
dynamic channel quality, in a multi-transmitter environment,
within the framework of online computation. We addressed
both a “fixed gain” case, where transmitters are provided with
binary information on the channel quality, and the general
case, where the precise gain values are provided. For both
cases, we established online power-allocation algorithms with
proven worst-case performance bounds. We then designed a
distributed scheme that allows to implement these algorithms
in a practical setting of local information. We complemented
our work with a simulation study, where we validated our
suggested online algorithm for the fixed channel gain case,
and observed that our online algorithm performs even better
than the theoretical bound.

Our framework can be extended in several different aspects.
An immediate research direction would be to consider general
network topologies (for example, multiple users transmitting
to multiple base-stations); instead of having per-user gains as
in our case, the gains would in general correspond to the
instantaneous pairwise interference between any two users
(hence involving a larger parameter space). Another interesting
topic is to go beyond the CDMA-like cell studied here, and
consider Information-Theoretic bounds and the corresponding
capacity region under arbitrary fading channels.

At a higher level, it is of great interest to consider our model
under a noncooperative framework, where mobiles adjust their
transmission power in order to optimize their individual rate.
From a game-theoretic perspective, the combination of mul-
tiple time periods, arbitrary channel conditions, and possibly
incomplete information (e.g., regarding the gains of other users
or their budget), creates a very complicated and challenging
domain, whose analysis may require novel tools and solution
concepts.
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