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We consider 0-π Josephson junctions consisting of 0 and π regions of lengths L0 and Lπ with critical current
densities jc0 and jcπ , respectively. The dependence of the Josephson current on the phase-shift averaged along
the junction is derived. We show that these systems exhibit the main features of ϕ Josephson junctions—the
ground state is doubly degenerate and the current-phase relation can be tuned in situ by applying magnetic field.
In the limit of short and long 0 and π regions, the current phase relation is derived analytically. In the case of
intermediate lengths of 0 and π regions, the current-phase relation is calculated numerically.
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I. INTRODUCTION

Usually, Josephson junctions (JJs) have a phase drop φ = 0
in the ground state, i.e. when no current is applied. Recently,
Josephson junctions with a nonzero ground-state phase φ �= 0
attracted strong attention [1–7]. Most of these JJs are π

Josephson junctions. Several types of JJs with the ground-state
phase φ = ϕ were suggested recently [8–11] and implemented
experimentally [12,13]. In general, a ϕ Josephson junction can
be defined as a junction having a degenerate Josephson phase
φ = ±ϕ in the ground state. In terms of Josephson energy (po-
tential), this corresponds to a 2π periodic double well, where
the phase has two degenerate minima φ = ±ϕ + 2πn, where
n is an integer. The evidence of ϕ JJs in high-Tc grain boundary
JJs was presented [14], where noninteger splintered Josephson
vortices were observed in agreement with theory [15,16]. ϕ

JJs have very interesting properties that are important for
applications [13] as well as for fundamental physics [17,18].

Initially, we suggested [11] to implement a ϕ JJ with a
magnetic-field tunable current-phase relation (CPR) based
on a 0-π JJ with its 0 and π segments of different length
L0 �= Lπ (see Fig. 1 for the geometry of the problem). This
study was motivated by technology of JJs fabricated between
d-wave and s-wave superconductors [19–21]. However, in the
experiment reported in Ref. [12] we were able to demon-
strate ϕ JJs based on superconductor-insulator-ferromagnet-
superconductor (SIFS) 0-π JJs [22–24], where the lengths
of the 0 and π segments were nominally equal, but critical
current densities jc0 and jcπ in the 0 and π parts were different.
Therefore, the theory [11] should be generalized to the more
general case jc0 �= jcπ .

Furthermore, the theoretical approach from Ref. [11] is
only applicable in a narrow region of the parameter space.
This makes it almost impossible to realize experimentally a
0-π JJ that is located in this region. This can be corrected
by deriving the CPR in the two limiting cases of short and
long ϕ JJs analytically and studying the CPR in the region of
parameters between the both limiting cases numerically. The
main target of this paper is to find the CPR of a ϕ JJ in the
whole parameter space, for any jc0, jcπ , L0, Lπ .
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The paper is organized as follows. In Sec. II we introduce
the model that we use for the general case jc0 �= jcπ and
L0 �= Lπ . In Sec. III we present the analytically calculated
CPR obtained in the limits of short and long JJs as well as
the numerically calculated CPR in the case of intermediate
lengths. In Sec. IV we discuss the phase diagrams. A summary,
Sec. V, concludes the paper.

II. BASIC EQUATIONS

The static spatial distribution of the phase difference φ(x)
along the JJ (see Fig. 1 for definitions of jc0, jcπ , L0, Lπ and
the geometry) is described by the sine-Gordon equation

�0

2πμ0dJ
φ′′ − jc(x) sin φ = −j, (1)

where �0 is the magnetic flux quantum, μ0dJ is the specific
inductance (per square) of the superconducting banks forming
the JJ, jc(x) is the Josephson critical current density, j is
the bias current density, the prime denotes the derivative with
respect to the coordinate x. We assume that the critical current
density jc(x) is a stepwise function,

jc(x) =
{
jc0, 0 � x � L0,

−jcπ , −Lπ � x < 0,
(2)

where both critical current densities jc0 and jcπ are positive
constants. It is convenient to write jc(x) in the form [15]

jc(x) = 〈jc(x)〉[1 + g(x)], (3)

where the average 〈jc(x)〉 is defined by

〈jc(x)〉 = 1

L

∫ L0

−Lπ

jc(x) dx = 1

L
(jc0L0 − jcπLπ ), (4)

L = L0 + Lπ is the total length of the junction, and 〈g(x)〉 =
0. The function g(x) is defined by Eq. (3) and takes the form

g(x) = jc(x)

〈jc(x)〉 − 1, (5)

with the stepwise dependence of the function g(x) on x,

g(x) =
{
g0, 0 < x < L0,

gπ , −Lπ < x < 0,
(6)
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FIG. 1. (Color online) Sketch of the geometry of the ϕ JJ. The
region 0 < x < L0 is a 0-JJ and the region −Lπ < x < 0 is a π -JJ.

where

g0 = (jc0 + jcπ )Lπ

jc0L0 − jcπLπ

, gπ = − (jc0 + jcπ )L0

jc0L0 − jcπLπ

(7)

are constants defined by the properties and structure of
the JJ.

Next, we normalize the coordinate x by a certain length
(making it dimensionless) to simplify the theoretical approach
to the problem. There are two primary options defined by
the typical lengths, which are convenient for the coordinate
normalization—global [15] and local [25].

A. Global normalization

In this case we normalize the coordinate x by λJg ∝
1/

√|〈jc〉|, where the averaging is over the whole junction.
Here, the global Josephson penetration depth λJg is defined
by the value of the average critical current density 〈jc〉 and is
given by [15]

λJg =
√

�0

2πμ0dJ|〈jc〉| . (8)

The dimensionless coordinate x lies then within the interval

−lπ ≡ −Lπ

λJg
� x � L0

λJg
≡ l0. (9)

Using the dimensionless coordinate x we write Eq. (1) in
the form

φ′′ − sgn(〈jc〉)[1 + g(x)] sin φ = −γ, (10)

where γ = j/〈jc〉 is the normalized bias current density. By
introducing the new phase,

φ̂ =
{
φ 〈jc〉 > 0
π − φ 〈jc〉 < 0 , (11)

we can rewrite Eq. (10) as

φ̂′′ − [1 + g(x)] sin φ̂ = −γ. (12)

As shown below, the global normalization is convenient for
the theoretical analysis of the problem in the short junction
limit.

B. Local normalization

In this case we normalize the x coordinate differently in the
0 region and in the π region by using two different “stretching”

factors. In the interval −Lπ � x � 0 we normalize x as x/λJπ

and in the region 0 � x � L0 we normalize x as x/λJ0, where

λJ0 =
√

�0

2πμ0dJjc0
, λJπ =

√
�0

2πμ0dJjcπ
(13)

are the local Josephson penetration depths [25]. It is seen from
Eq. (13) that the dimensionless coordinate x lies now within
the interval −�π < x < �0, where

�π = Lπ

λJπ
, �0 = L0

λJ0
. (14)

It is shown below that the local normalization is con-
venient for comparison of the numerically calculated and
measured data, and it must be used for phase diagrams in the
L0,Lπ plane.

III. CURRENT PHASE RELATION

A. Numerical simulations

We begin the study of the CPRs from numerical simulations
of Eq. (10). The procedure used for these calculations is as
follows. First, we chose a certain set of parameters L0, Lπ ,
jc0/〈jc(x)〉, jcπ/〈jc(x)〉 and a bias current γ . Second, we solve
Eq. (10) for each of these sets. As a result we obtain one or
more solutions for the function φ(x). Next, for each of these
solutions we calculate the spatial average ψ = 〈φ(x)〉 and plot
these values of ψ on a ψ(γ ) plot. If we repeat this procedure
for different values of γ we obtain γ (ψ), the effective current-
phase relation.

B. Short junctions

In the case of short JJ the current-phase relation can be
obtained analytically. It is convenient to derive it by using the
global normalization for the following calculations. First, we
write the solution of Eq. (12) in the form

φ̂(x) = ψ̂ + ξ (x) sin ψ̂, (15)

where ψ̂ is the spatial average of φ̂(x). ψ̂ is related to the
true average phase ψ via an equation similar to Eq. (11). The
term ξ (x) sin ψ̂ describes the deviation of the phase from its
average value, 〈ξ (x)〉 = 0. Next, we assume that this deviation
is small, |ξ (x) sin ψ̂ | 	 1. Then we plug the relation given by
Eq. (15) into Eq. (10), expand it in series in ξ (x) sin ψ̂ , and
keep the terms of zero and first order. As a result we find

ξ ′′ sin ψ̂ − [1 + g(x)][1 + ξ (x) cos ψ̂] sin ψ̂ = −γ. (16)

The zero- and second-order terms in ξ in Eq. (16) are given by
the following two equations:

γ = sin ψ̂ + 〈ξ (x)g(x)〉 cos ψ̂ sin ψ̂, (17)

ξ ′′ − g(x) = [ξ + ξ (x)g(x) − 〈ξ (x)g(x)〉] cos ψ̂. (18)

Numerical calculations show that the terms ∝cos ψ̂ have an
extremely weak effect on the solutions of Eq. (18) when facet
lengths are small l0,lπ 	 1. We neglect these terms and obtain
for ξ (x)

ξ ′′ − g(x) = 0. (19)
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The solutions of Eq. (19) are continuous at x = 0 and match
the boundary conditions at x = −lπ and x = l0:

ξπ (0) = ξ0(0), ξ ′
π (0) = ξ ′

0(0), (20)

ξ ′
π (−lπ ) sin ψ̂ = h, ξ ′

0(l0) sin ψ̂ = h. (21)

The magnetic field H applied normal to the plane of Fig. 1
is normalized by Hc1/2,

h = 2H

Hc1
, Hc1 = �0

π�λJg
, (22)

where � is the effective magnetic thickness of the JJ.
We integrate Eq. (19) by using boundary condition Eqs. (20)

and (21) and obtain

ξ0(x) = g0

(
x2

2
− l0x

)
+ hx

sin ψ̂
+ C, for

0 < x < l0, (23)

ξπ (x) = gπ

(
x2

2
+ lπx

)
+ hx

sin ψ̂
+ C, for

−lπ < x < 0. (24)

The integration constant C can be obtained by using the
condition 〈ξ (x)〉 = 0, which yields

C = l0 − lπ

2

(
g0l0 + gπ lπ

3
− h

sin ψ̂

)
. (25)

We use Eqs. (6), (23), and (24) to obtain the average
〈ξ (x)g(x)〉 in the form

〈ξ (x)g(x)〉 = �0 + �h

h

sin ψ̂
, (26)

where the coefficients �0 and �h are given by

�0 = − l2
0 l

2
π

3

(jc0 + jcπ )2

(jc0l0 − jcπ lπ )2
, (27)

�h = l0lπ

2

jc0 + jcπ

jc0l0 − jcπ lπ
. (28)

Using Eqs. (17) and (26) we find the current-phase relation in
the form

j = 〈jc〉(sin ψ ± �0 sin ψ cos ψ ± h�h cos ψ), (29)

where ± stands for 〈jc〉 > 0 and 〈jc〉 < 0, respectively. It
is worth noting that there is a simple relation between the
coefficients �0 and �h. Indeed, it follows from Eqs. (27)
and (28) that

�0 = − 4
3�2

h. (30)

In particular, in the case of equal lengths of 0 and π regions
(l0 = lπ ) we find

�0 = − l2

12

(
jc0 + jcπ

jc0 − jcπ

)2

, (31)

�h = l

4

jc0 + jcπ

jc0 − jcπ
, (32)

where l = 2l0 = 2lπ .

TABLE I. Parameters of the JJs used as illustrative examples.

JJ name jc0 jcπ l0 lπ �0 �π

a 1.0 1.0 1.155 0.577 2.00 1.00
b 1.0 1.0 1.342 1.894 3.00 2.00
c 1.0 1.0 2.500 1.500 5.00 3.00
d 1.0 0.5 1.155 1.155 2.309 1.633
e 1.0 0.5 2.309 2.309 4.619 3.266
f 1.0 0.5 3.819 2.291 5.774 2.449

C. Long junctions

In the case of long JJ facets, for 1 	 �0,�π we neglect the
spatial variation of the phase in the vicinity of the 0-π interface
(|x| � λJ0,λJπ ). In this approximation the values of the phases
are

φ(x) ≈
{±π − arcsin(j/jcπ ), x < 0,

arcsin(j/jc0), x > 0.
(33)

It follows from Eq. (33) that in the case of a long JJ the average
phase ψ is given by

ψ = L0

L
arcsin

j

jc0
+ Lπ

L

(
±π − arcsin

j

jcπ

)
. (34)

The above equation defines the CPR j (ψ) in a long JJ.
The maximum supercurrent for this system was calculated
in Ref. [26].

In the next approximation 1/�0 	 1 and 1/�π 	 1 we take
into account the spatial dependence of the phase φ(x) in the
vicinity of the 0-π interface. As a result it can be shown that
the function φ(x) describes a semifluxon pinned at the 0-π
interface (see Appendices A and C for details).

D. Discussion

In the following we show current-phase relations obtained
by each of the above techniques for different facet lengths and
for different relations between the critical current densities of
the 0 and π regions. The parameters of the JJs used as examples
are summarized in Table I.

Several examples of the CPRs are shown in Fig. 2. One
can see that for shorter 0-π JJs, the CPR has two stable static
solutions (ground states) with the phase ψ = ±ϕ. However,
as the length of the JJ increases, one can observe regions of
negative slope; see Fig. 2(c). This implies a bistability and
abrupt switching of the system between two CPR branches.
Also, at even larger lengths one can observe multiple branches
corresponding to the appearance of additional solutions; see
Figs. 2(c), 2(e), and 2(f). In terms of a reliable application of
ϕ JJs such regimes with multiple solutions should be avoided.

In Fig. 2, apart from numerically calculated CPRs we show
CPRs obtained in the limits of short and long JJs analytically
for different facets lengths and for different relations between
the critical currents densities in the 0 and π regions. One
can see that indeed for short 0 and π regions the short-
limit formula, Eq. (29), reproduces the CPR quite well. For
longer JJs, Eq. (29) predicts a much larger amplitude of the
supercurrent (critical current) than what follows from direct
simulations. The long-limit formula, Eq. (34), obviously works
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FIG. 2. (Color online) CPR in a 0-π JJ with jc0 = jcπ (a)–(c) and jc0 = 2jcπ (d)–(f) for different normalized lengths l0 and lπ . The black
dots show the numerically calculated CPR. The CPR given by the short limit formula, Eq. (29), is shown by the dashed line. The CPR (stable
branch) given by the long limit formula, Eq. (34), is shown by the solid (blue) lines.

better for larger lengths of the 0 and π parts. However, at best,
it only reproduces correctly the value of the ground-state phase
ϕ but not the slope of the CPR. This is expected as the formula
does not take into account the bending of the phase near x = 0.
Thus, it may work better for L ∼ 100, which is not relevant for
current experiments. Moreover, for L ∼ 100 the system under
consideration will have so many competing solutions (CPR
branches) that its real application will be problematic.

IV. PHASE DIAGRAMS

The phase diagrams in Figs. 3 (symmetric junction, jc0 =
jcπ ) and 4 (asymmetric junction, as an example we take
jc0 = 2jcπ ) show the domains of existence of ϕ states in the
�0, �π plane and contours of constant ground-state phase ϕ

(ϕ ≡ ψ@j = 0 and dj/dψ |j=0 > 0). We also demonstrate
comparison of numerically calculated constant phase contours
with analytically calculated ones for the limiting cases of short
and long junctions, for �0 	 1, �π 	 1, and �0 � 1, �π � 1.
Moreover, a comparison between the phase diagrams of Figs. 3

and 4 shows how junction asymmetry affects the spreading and
bending of the ϕ contours.

A. Theoretical calculation for short JJ

We begin with treating the phase diagrams for the limiting
case of short junctions. Using Eqs. (27) and (29) with h = 0
and j = 0 (ground state) we find that the phase in the ground-
state ϕ obeys

1 + �0 cos ϕ = 0, (35)

and the lengths �π (�0) and �0(�π ) have the form (rewritten in
the local normalization)

�π (�0) = �0

2

√
3jc0jcπ

√
3j + j�

√
3 + 4�2

0 cos ϕ

�2
0j

2
� cos ϕ − 3jc0jcπ

, (36)

�0(�π ) = �π

2

√
3jc0jcπ

√
3j − j�

√
3 − 4�2

π cos ϕ

�2
πj 2

� cos ϕ + 3jc0jcπ

, (37)

where j = jc0 + jcπ and j� = |jc0 − jcπ |.
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FIG. 3. (Color online) Phase diagrams calculated for the case jc0 = jcπ . (a) The contour lines of constant ground-state phase ϕ calculated
numerically (solid lines). The numbers interrupting the lines indicate the values of ϕ. The filled region is the domain of interest where the
phase smoothly changes between 0 and π . The stars show the parameters of the samples a, b, and c from Table I. (b)–(e) Comparison between
the numerically calculated solid lines of constant phase with those calculated analytically in the short limit (green short dashed lines) and long
limit (red dashed lines).

It is worth mentioning that Eqs. (36) and (37) are valid for
any value of ϕ within the interval 0 � ϕ � π . However, for
ϕ � π/2 it is more convenient to use Eq. (36), as Eq. (37)
has a singularity at �π =

√
−3jc0jcπ/(j 2

� cos ϕ). In the case
of ϕ > π/2 then we use Eq. (37) for any �π , while Eq. (36)
diverges at �0 =

√
2jc0jcπ/(j 2

� cos ϕ).
Finally, we note that in the global normalization the

formulas given by Eqs. (36) and (37) read

lπ (l0) = jc0l0
3jcπ − l0j� sgn(cos ϕ)

√
3| cos ϕ|

l2
0j

2
�| cos ϕ| − 3j 2

c0

, (38)

l0(lπ ) = jcπ lπ
3jc0 + lπ j� sgn(cos ϕ)

√
3| cos ϕ|

l2
πj 2

� cos ϕ − 3j 2
c0

. (39)

B. Analytical calculation for a long JJ

We begin the treatment of the phase diagram for the case
of a long junction, for L0 � λJ0 and Lπ � λJπ . In this case
the spatial phase distribution in the ground state φ(x) is given
by two fluxon tails matching at x = 0 (see Appendix A for
details).

To investigate the phase plane in the long-junction limit,
we calculate the dependence Lπ (L0) by using the ground-state
phase dependence ϕ(L0,Lπ ) obtained in Appendix C,

Lπ = ϕ

π − ϕ
L0 + �Lπ, (40)

where

�Lπ = λJ0

ϕ − π
[4 ln(z0) arctan(z0) + M(z0)]

+ λJπ

π − ϕ
[ln(zπ )(2π − 4 arctan(z0)) − M(1/zπ )],

(41)

and the function M(z) (see Appendix B) is given by the integral

M(z) = −
∫ z

0

ln(u)

1 + u2
du. (42)

In the local normalization a similar calculation results
in

�π = ϕ

π − ϕ
�0

√
jcπ

jc0
+ ��π, (43)
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FIG. 4. (Color online) Phase diagrams calculated for the case jc0 = 2jcπ . (a) Contour lines of constant ground-state phase ϕ calculated
numerically (solid lines). The numbers interrupting the lines indicate the values of ϕ. The filled region is the domain of interest where the
phase smoothly changes between 0 and π . The stars show the parameters of samples d, e, and f from Table I. (b)–(h) Comparison between
the numerically calculated solid lines of constant phase with those calculated analytically in the short limit (green short dashed lines) and long
limit (red dashed lines).

where

��π = −1

π − ϕ
[4 ln(z0) arctan(z0) + M(z0)]

√
jcπ

jc0
+ −1

π − ϕ
[ln(zπ )(2π − 4 arctan(z0)) − M(1/zπ )]. (44)
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We note that for jc0 = jcπ the values z0 = √
2 − 1, zπ = √

2 +
1, so that zπ = 1/z0, and after simple algebra, ��π = 0. This
means that constant phase contours in the long junction limit
become straight lines with a slope of ϕ/(π − ϕ).

V. CONCLUSIONS

We have obtained the current-phase relation and studied
the phase diagram (including mapping of the ground state
phase) theoretically and numerically for the various possible
regimes of a 0-π JJ. The limiting cases of short and long JJs are
considered analytically. The intermediate region of parameters
is studied numerically. The case of critical current densities
jc0 �= jcπ relevant for experiments [12] is treated. Obtaining
the CPR is crucial for a proper analysis of experiments in
such junctions. Ground-state mapping is necessary for the
proper selection of junction parameters in future experiments.
It would also be useful to map the depth of the ϕ-state energy
well and its asymmetry.
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APPENDIX A: SEMIFLUXON IN A LONG 0-π JJ

Consider an infinite 0-π LJJ with jc0 �= jcπ . The 0 part is
located at x < 0 and the π part at x > 0. We assume zero
magnetic field and we treat the case with no bias current. Then
the phase is given by the fluxon tails,

φ(x) =
{

4 arctan exp
(

x−x0
λJ0

)
, x < 0,

4 arctan exp
(

x−xπ

λJπ

) − π, x > 0.
(A1)

At x = 0 the phase and its derivative (proportional to the
magnetic field) are continuous,

arctan(z0) = arctan(zπ ) − π

4
, (A2)

1

λJ0

z0

1 + z2
0

= 1

λJπ

zπ

1 + z2
π

, (A3)

where

z0 = exp

(
− x0

λJ0

)
, zπ = exp

(
− xπ

λJπ

)
. (A4)

It follows from Eq. (A2) that

z0 = zπ − 1

zπ + 1
, (A5)

1

λJ0

z0

1 + z2
0

= 1

λJπ

zπ

1 + z2
π

. (A6)

Solving Eqs. (A5) and (A6) we obtain

zπ =
√

jcπ

jc0
+ 1 +

√
jcπ

jc0
� 1, (A7)

z0 =
√

jc0

jcπ
+ 1 −

√
jc0

jcπ
� 1. (A8)

Combining Eqs. (A7), (A8), and (A9) we find

xπ = −λJπ ln

(√
jcπ

jc0
+ 1 +

√
jcπ

jc0

)
� 0, (A9)

x0 = −λJ0 ln

(√
jc0

jcπ
+ 1 −

√
jc0

jcπ

)
� 0. (A10)

Now, that we have the spatial dependence of the phase we
can calculate its average value as function of the facet lengths,
as we do in Appendix C, and then get the phase diagram in the
long junction limit.

APPENDIX B: THE FUNCTION M(z)

It is useful to introduce the function M(z) before continuing
with the averaging integral. Consider the function M(z) is
given by the integral

M(z) = −
∫ z

0

ln(u)

1 + u2
du. (B1)

Introducing a new variable v = 1/u we find that

M(z) = M(1/z). (B2)

It follows from Eq. (B2) that M(0) = M(+∞) = 0.
In the interval 0 < z < 1 the integrand in Eq. (B1) can be

written as the series

ln(u)

1 + u2
=

∞∑
n=0

(−1)nu2n ln(u). (B3)

Integrating the series given by Eq. (B3) we obtain

MN (z) = −
N∑

n=0

(−1)n
z2n+1

(2n + 1)2
[(2n + 1) ln z − 1]. (B4)

If z < 1 then the series of Eq. (B4) is converging rapidly
and M(z) = M∞(z). If z > 1 then we use the relation given
by Eq. (B2) and obtain the function M(z) in the form M(z) =
M∞(1/z).

The sum Eq. (B3) is converging rapidly. As a result, it can
be approximated by taking only a few first terms of the series.
The plots of M(z) and its approximation by a finite number of
terms N are shown in Fig. 5. It is seen that the deviation of

FIG. 5. (Color online) The function M(z) (continuous line) cal-
culated directly from definition Eq. (B1) and its approximations M0(z)
(dotted line) and M1(z) (dashed line) calculated by using Eq. (B4).
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MN (z) from M∞(z) is less than a few percent even for N = 0.
As a result, for most practical purposes the function M(z) can
be approximated as M(z) ≈ M1(z).

APPENDIX C: GROUND-STATE PHASE IN THE
LONG-JUNCTION LIMIT

To investigate the phase plane in the long-junction limit,
we first need to find the dependence of the ground-state phase
ϕ(L0,Lπ ) at L0 � λJ0, Lπ � λJπ . Therefore, our aim is to
calculate

ϕ ≡ 〈φ(x)〉 = 1

L0 + Lπ

∫ +Lπ

−L0

φ(x)dx, (C1)

in the limit of L0, Lπ → ∞. In this limit the phase φ(x) is
given by Eq. (A1).

First, we find the value of the integral in Eq. (C1) in
the 0 domain; we integrate from −L0 to 0 to obtain I0. By
introducing a new integration variable

y = x − x0

λJ0
(C2)

and, correspondingly, new integration limits

y0 = −x0

λJ0
, yL0 = −L0 − x0

λJ0
, (C3)

after integration by parts, we get

I0 = λJ0

[
4y arctan ey

∣∣y0

yL0
−

∫ y0

yL0

4 arctan ey dy

]
. (C4)

Further, we introduce a new integration variable, Eq. (A4),

z = ey, so that z0 = ey0 and zL0 = eyL0 , (C5)

and Eq. (C4) turns into

I0 = λJ0

[
4 ln(z) arctan(z)

∣∣z0

zL0
− 4

∫ z0

zL0

ln z

1 + z2
dz

]
. (C6)

The value of zL0 is exponentially small for large L0. Therefore,
ln(zL0 ) arctan(zL0 ) as well as the lower integration limit zL0 can
be substituted by 0 with exponential accuracy. Thus, we obtain

I0 = λJ0[4 ln(z0) arctan(z0) + 4M(z0)], (C7)

where the function M(z) is defined by Eq. (B1) and can be
calculated as discussed in Appendix B. Note that according to
Eq. (A8) z0 < 1, one can take a series MN (z0); see Eq. (B4).

The calculation of the average phase in the π domain
follows the same procedure. Now we introduce

y = x − xπ

λJπ
(C8)

and, correspondingly, new integration limits

yπ = −xπ

λJπ
, yLπ

= Lπ − xπ

λJπ
. (C9)

After integration by parts, we get

Iπ = −πLπ + λJπ

[
4y arctan ey

∣∣yLπ

yπ
−

∫ yLπ

yπ

4 arctan ey dy

]
.

(C10)
Further, we introduce a new integration variable, Eq. (A4),

z = ey, so that zπ = eyπ and zLπ
= eyLπ , (C11)

and Eq. (C10) turns into

Iπ = −πLπ + λJπ

[
4 ln(z) arctan(z)

∣∣zLπ

zπ
−4

∫ zLπ

zπ

ln z

1 + z2
dz

]
.

(C12)

The value of zLπ
is exponentially large so that the limit of

integration can be substituted by +∞ and arctan(zLπ
) can be

substituted by 2π with exponential accuracy. Thus, we obtain

Iπ = −πLπ + λJπ
[
2π ln

(
zLπ

)
− 4 ln(zπ ) arctan(zπ ) − 4M(zπ )

]
. (C13)

By using the definition Eqs. (C9) and (C11), the first term in
the braces can be expanded to obtain Lπ explicitly. Further,
according to Eq. (A7) zπ > 1, one should make use of relation
Eq. (B2) and obtain

Iπ = +πLπ + λJπ [ln(zπ )(2π − 4 arctan(zπ )) − 4M(1/zπ )].

(C14)

Finally, combining Eqs. (C7) and (C14) and embedding
them into Eq. (C1) we obtain

ϕ = I0 + Iπ

L0 + Lπ

= λJ0[4 ln(z0) arctan(z0) + 4M(z0)] + πLπ + λJπ {ln(zπ )[2π − 4 arctan(zπ )] − 4M(1/zπ )}
L0 + Lπ

. (C15)

Note that the values of z0, zπ in Eq. (C15) are just constants defined by jc0 and jcπ and given by Eqs. (A7) and (A8).
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