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Manipulating Josephson junctions in thin-films by nearby vortices
Fig. 1. The superconducting thin-film strip with a Josephson junction at x ¼
vortex at ðx0; y0Þ. The half-strip containing the vortex is outlined by thick
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It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow
thin-film superconducting strip can change drastically the dependence of the junction critical current on
the applied field, IcðHÞ. When the vortex is placed at certain discrete positions in the strip middle, the pat-
tern IcðHÞ has zero at H ¼ 0 instead of the traditional maximum of ‘0-type’ junctions. The number of these
positions is equal to the number of vortices trapped at the same location. When the junction–vortex sep-
aration exceeds �W , the strip width, IcðHÞ is no longer sensitive to the vortex presence. The same is true
for any separation if the vortex approaches the strip edges.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The very fact that Abrikosov vortices in the vicinity of Josephson
junctions affect the junction properties is well documented and not
surprising since the phase associated with vortex affects the junc-
tion phase difference [1–3]. Recent experiments with a vortex
trapped in one of the banks of an edge-type planar junction in a
thin-film superconducting strip showed that the vortex causes an
extra phase difference on the junction that depends on the vortex
position [4]. The effect is strong in particular when the vortex is
close to the junction, the situation when the junction behavior can
be changed from the conventional ‘‘0-type’’ to that of the p-junction.

Here we study how the field dependence of maximum critical
tunneling currents IcðHÞ depends on position of a vortex trapped
in one of the junction thin-film banks. This effect can be utilized
for manipulating Josephson currents by controlling the vortex
position.

2. Approach

Consider a thin-film strip of a width W with an edge-type
Josephson junction across the strip that cuts the strip in two
half-strips, Fig. 1. The strip is narrow: W � K ¼ 2k2=d where k is
the London penetration depth of the film material and d is the film
thickness. Choose x along the strip and y across so that 0 < y < W
and the junction is at x ¼ 0. Let a vortex be trapped at some point
r0 ¼ ðx0; y0Þ in the right half-strip (x0 > 0).
The London equation integrated over the film thickness for the
half-strip with vortex (shown by a thick line in Fig. 1) is:

hz þ
2pK

c
ðcurlgÞz ¼ /0dðr � r0Þ: ð1Þ

Here g is the sheet current density and hz consists of the applied
field H and the self-field of the current g.

The self-field of the current g is of the order g=c, whereas the
second term on the left-hand side of Eq. (1) is of the order
gK=cW � g=c. Hence, in narrow strips with W � K, the self-field
can be discarded, unlike the applied field Hẑ. Introducing the
scalar stream function S via g ¼ curl½Sðx; yÞẑ�, we obtain instead
of Eq. (1):

r2S ¼ cH
2pK

� c/0

2pK
dðr � r0Þ : ð2Þ
0 and a
lines.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.physc.2014.04.039&domain=pdf
http://dx.doi.org/10.1016/j.physc.2014.04.039
mailto:kogan@ameslab.gov
mailto:mints@post.tau.ac.il
http://dx.doi.org/10.1016/j.physc.2014.04.039
http://www.sciencedirect.com/science/journal/09214534
http://www.elsevier.com/locate/physc


V.G. Kogan, R.G. Mints / Physica C 502 (2014) 58–62 59
This is a linear Poisson equation, that formally simplifies the prob-
lem as compared to Eq. (1). Physically, this simplification comes
about since in narrow films the major contribution to the system
energy is the kinetic energy of supercurrents, while their magnetic
energy can be discarded.

The boundary condition gy ¼ 0 at the strip edges translates to
S ¼ 0 at the edges y ¼ 0;W (in the absence of transport current).
Besides, one can disregard Josephson tunneling currents relative
to those of the vortex, i.e. to set gxð0; yÞ ¼ 0 as well. The Green’s
function Gðr; r0Þwhich satisfiesr2G ¼ �4pdðr � r0Þ (as the electro-
static potential of a unit linear charge at r0) with zero boundary
conditions at the edges of the half-srtip (delineated in Fig. 1 by
thick lines) is found by conformal mapping [5–7]:

uþ iv ¼ �i coshpðxþ iyÞ; ð3Þ

transforms the half-plane u > 0 to the half-strip of a width 1 (here-
after we use W as a unit length). Explicitly, this transformation
reads:

u ¼ sinh px sin py; v ¼ � cosh px cos py: ð4Þ

The complex potential Gðw;w0Þ for a linear unit charge at
w0 ¼ u0 þ iv 0 at the half plane u > 0 is [8]:

G ¼ �2 ln
w�w0

w� ~w0
¼ �2 ln

r1

r2
þ iðh1 � h2Þ

� �
; ð5Þ

where w ¼ uþ iv; ~w0 ¼ �u0 þ iv 0 is the position of fictitious image
source on the opposite side of the grounded plane u ¼ 0. The corre-
sponding moduli and phases are:

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� u0Þ2 þ ðv � v 0Þ2

q
;

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuþ u0Þ2 þ ðv � v 0Þ2

q
;

h1 � h2 ¼ tan�1 v � v 0
u� u0

� tan�1 v � v 0
uþ u0

: ð6Þ

Below we evaluate the phase at the junction bank x ¼ þ0 and make
use of

ImGð0; y; r0Þ ¼ �4 tan�1 cospy� coshpx0 cospy0

sinh px0 sin py0
; ð7Þ

which follows from Eqs. (5) and (6).
We now note that the sheet current is expressed either in terms

of the gauge invariant phase u or via the stream function S:
g ¼ �ðc/0=4p2KÞru ¼ curlSz. (This relation written in compo-
nents shows that ð4p2K=c/0ÞSðrÞ and uðrÞ are the real and imagi-
nary parts of an analytic function.) In particular, we have

@u
@y
¼ �4p2K

c/0
gy: ð8Þ

On the other hand, the sheet current g0 for a unit d-function source
can be expressed either via real or imaginary parts of G [8]. In par-
ticular, we have:

g0y ¼ �
@ReG
@x

¼ � @ ImG
@y

: ð9Þ
2.1. Contribution of the field H at the right bank to the phase difference
at the junction

The solution of Eq. (2) without a vortex,
r2S ¼ �4pð�cH=8p2KÞ, is

ImSð0; yÞ ¼ �W2
Z

dr0
cH

8p2K
ImGð0; y; r0Þ

¼ cHW2

2p2K

Z
dr0 tan�1 cos py� cosh px0 cos py0

sinhpx0 sin py0
; ð10Þ
where the integrals are extended over the half-strip:
0 < x0 <1;0 < y0 < 1. The last integral I can be evaluated in terms
of Lerch transcendents [6], which are not particularly illuminating.
Hence, for each y we do the integration numerically. The function
IðyÞ can be approximated as

I � 0:43 cospy� 0:03 sin 2py; ð11Þ

with accuracy less than 0.5%. The quantity I has been calculated
employing a different method (see Ref. [9]). We use the approxima-
tion Eq. (11) in the numerical work below.

At the junction bank x ¼ þ0; gyð0; yÞ ¼ �@yImSð0; yÞ, and we
obtain with the help of Eqs. (8), (10), and (11):

@u
@y
¼ � h

2
@I
@y

: ð12Þ

or after integration over y:

uHðþ0; yÞ ¼ � h
2
IðyÞ þu0; h ¼ 4W2H

/0
: ð13Þ

The subscript H here is to indicate that this contribution to the
phase is due to the applied field; u0 is an arbitrary constant [9].

2.2. Contribution of a vortex at r0 to the phase difference at the
junction

To find this contribution, we use the relation Eq. (8) along with

gyðþ0; yÞ ¼ � @ ImS
@y

¼ � c/0

8p2K
@ ImGð0; y; r0Þ

@y
: ð14Þ

We obtain after integration over y:

uvðy; r0Þ ¼
1
2

ImGð0; y; r0Þ

¼ �2 tan�1 cospy� coshpx0 cos py0

sinh px0 sinpy0
; ð15Þ

where an arbitrary constant is omitted.
It is worth observing that at large vortex–junction separations,

x0 � 1, this contribution is a constant which does not depend on
x0:

uvðy; r0Þ ¼ pð2y0 � 1Þ þ Oðe�px0 Þ; ð16Þ

in other words, corrections to this constant are exponentially small
with the length scale W=p.

3. The critical current IcðH; r0Þ

The total phase difference at the junction is

uðy; H; r0Þ ¼ uHðyÞ þuvðy; r0Þ þu0: ð17Þ

The field induced phase difference uHðyÞ is twice as large as
uHðþ0; yÞ which was evaluated for a half-strip in Eq. (13) because
both right and left half-strips contribute equally.

The Josephson current density gc sin uðyÞ integrated over the
junction length gives the total current I:

IðH; r0Þ
gcW

¼ A cos u0 þ B sin u0; ð18Þ

A ¼
Z 1

0
sinðuH þuvÞdy; B ¼

Z 1

0
cosðuH þuvÞdy: ð19Þ

The right-hand side of Eq. (19) is easily transformed to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

q
cosðu0 � wÞ; w ¼ sin�1 Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p : ð20Þ
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Maximizing this relative to the free parameter u0 one obtains the
normalized critical current:

Jc ¼
IcðH; r0Þ

gcW
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

q
: ð21Þ

It is worth noting that uHðyÞ is an odd function relative to the
strip middle, whereas for a general vortex position uv ðyÞ is neither
odd nor even unless y0 ¼ 1=2. In the latter case uvðyÞ of Eq. (15) is
also odd relative to the strip middle; as a result A ¼ 0 and Jc ¼ jBj.

It is readily seen that the critical current Eq. (21) can also be
written as

Jc ¼
Z 1

0
eiðuHþuv Þ dy

����
����: ð22Þ

In some situations this form of Jcis more convenient.
Below, we consider a few cases of interest.

3.1. No vortex is present

The normalized critical current Jc ¼ Ic=gcW evaluated with the
help of Eqs. (19) and (21) is shown in Fig. 2 versus reduced field
h ¼ 4HW2=/0. As expected, in vortex absence, JcðhÞ is symmetric
with respect to h ¼ 0 at which Jcreaches maximum, the behavior
characteristic of 0-type junctions.

It is worth mentioning that JcðhÞ of planar thin film junctions
differs from the common Fraunhofer pattern. Keeping only the
term with cos py in Eq. (11) for I one has JcðhÞ ¼ J0ð0:43hÞ, where
J0is the Bessel function of the first kind. In particular, the pattern
maxima go as 1

ffiffiffi
h
p.

at large h, whereas zeros have periodicity
Dh ¼ p=0:43 which corresponds to DH ¼ /0=Aeff with the effective
area Aeff � 0:55W2 [9,10].

3.2. Vortex is near the strip edges

If the vortex is near y0 ¼ 0;1, its contribution Eq. (15) to the
phase difference is uv ¼ p and is independent of the junction–vor-
tex separation. Physical reasons for this are discussed in [7].
Clearly, the tunneling current is not affected, and JcðhÞ is the same
as in the vortex absence.

3.3. Vortex is far from the junction, x0 > 2

In this situation the vortex contribution to the phase difference
at the junction is a y independent constant given in Eq. (16). Then
Eq. (22) shows that the vortex has no effect on the pattern JcðhÞ. We
thus conclude that the vortex at a distance x0 > 2W does not affect
the pattern JcðhÞ of the junction.
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Fig. 2. The normalized Josephson critical current Jc ¼ Ic=gcW vs h ¼ 4HW2=/0 in
the vortex absence.
3.4. Zero-field Jcð0; r0Þ

One of the relevant characteristics of the pattern JcðhÞ is the
value of zero-field critical current Jcð0Þ. In particular, Jcð0Þ ¼ 0 sig-
nals a qualitative difference of the junction from the ‘0-type’. To
find Jcð0Þ we start with Eq. (22) with uH ¼ 0. The vortex factor
eiuv can be transformed using the logarithmic form of the inverse
tangent in Eq. (15) for uv :

uv ¼ �2 tan�1 u ¼ �i ln
iþ u
i� u

; ð23Þ

u ¼ cospy� coshpx0 cospy0

sinh px0 sin py0
: ð24Þ

We thus obtain

Jcð0Þ ¼
Z 1

0

iþ u
i� u

dy
����

����: ð25Þ

One can go here to integration over u:

u ¼ C cos py� D;

C ¼ 1
sinh px0 sin py0

; D ¼ coshpx0 cospy0

sinhpx0 sinpy0
; ð26Þ

and obtain

Jcð0; r0Þ ¼
1
p

Z u2

u1

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� u1Þðu� u2Þ

p iþ u
i� u

�����
�����;

u1 ¼ �C � D; u2 ¼ C � D: ð27Þ
3.5. The vortex in the strip middle

It is shown in this section that a vortex at some positions at the
strip middle has an exclusive property to cause a shift in the pat-
tern JcðhÞ so that instead of maximum at h ¼ 0; Jcð0Þ is zero,
Fig. 3, the feature commonly ascribed to ð0;pÞ junctions.

To find these positions we note that for y0 ¼ 1=2;C ¼ 1= sinhpx0

and D ¼ 0. The integral in Eq. (27) then takes the form

J ¼
Z C

�C

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � C2

p iþ u
i� u

¼ i
Z p

0

iþ C cos v
i� C cos v dv ; ð28Þ

where the substitution u ¼ C cos v has been used. The last integral
here can be written as

R 2p
0 dv=2 since only cos v enters the inte-

grand. Further substitution z ¼ eiv transforms the integral to a con-
tour integral over the unit circle in the complex plane z:

J ¼ 1
2

I
dz
z

z2 þ 2iz=C þ 1
z2 � 2iz=C þ 1

: ð29Þ
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Fig. 3. The normalized Josephson critical current JcðhÞ for the vortex situated close
to the junction in the strip middle: x0 ¼ 0:175; y0 ¼ 0:5.



Fig. 4. The normalized zero-field Josephson critical currents Jcð0; x0; y0Þ. The sharp
minimum corresponds to Jcð0;0:175;0:5Þ ¼ 0. It is seen that this zero is isolated and
no other zeros of Jcð0Þ exist for a single vortex at this point.
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Fig. 5. The normalized zero-field Josephson critical currents Jcð0Þ for vortices in the
strip middle y0 ¼ 0:5 as a function of x0: the upper panel is for N ¼ 1, the middle
panel N ¼ 5, and the lowest panel N ¼ 10. Roughly, the intervals
Dx0 / 1=ðN þ 1� nÞ where n is the number of the zero counted from x0 ¼ 0.
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Fig. 6. The upper panel: normalized Josephson critical currents JcðhÞ for a vortex at
x0 ¼ 0:1; y0 ¼ 0:3. The middle panel: the same for 3 vortices trapped at the same
location. The lowest panel: the same for 5 vortices trapped at the same location.
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The product of the roots of z2 � 2iz=C þ 1 ¼ 0 is unity, hence only
one of them is inside the unit circle. Then one readily obtains
J ¼ �ip 1� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

p
 !

¼ �ipð1� 2 tanh px0Þ: ð30Þ

Thus, the zero-field critical current for a vortex at ðx0;1=2Þ is [6]:

Jcð0; x0;1=2Þ ¼ j1� 2 tanhðpx0Þj: ð31Þ

It is seen that Jcð0; x0;1=2Þ has only one root x0 � 0:175. At x0 ¼ 0
and approximately for x0 > 2 Jcð0; x0;1=2Þ ¼ 1 in agreement with
the earlier conclusion that the far-away vortex does not matter
for JcðhÞ. Moreover, the point ð0:175;0:5Þ of the plane ðx0; y0Þ is
the only one (for a single vortex) where Jcð0; x0; y0Þ ¼ 0. This is seen
in Fig. 4 where Jcð0; x0; y0Þ is evaluated numerically using Eq. (27).

If N vortices are trapped at the same point r0 ¼ ðx0; y0Þ, the vor-
tex phase Eq. (23) acquires a factor N. As a result one has to replace
the factor ðiþ uÞ=ði� uÞ in Eqs. (25), (27), (28) with
ðiþ uÞN=ði� uÞN . In turn, this leads to a pole of the order N inside
the unit circle in integration over z. In principle, one can proceed
with analytical evaluation, but the result is increasingly cumber-
some with increasing N. We resort then to numerical evaluation
of Jcð0; x0;1=2Þ examples of which are shown in Fig. 5. It is seen that
the number of positions x0 for which the pattern JcðhÞ has zero at
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Fig. 7. The upper panel: normalized Josephson critical currents JcðhÞ for five
vortices x0 ¼ 0:1; y0 ¼ 0:3. The middle panel: the same for r0 ¼ ð0:3;0:3Þ. The
lowest panel: 5 vortices trapped at r0 ¼ ð0:5;0:3Þ.
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h ¼ 0 is equal to the number of vortices trapped at x0. The density
of these points also increases with N, so that for large number of
vortices trapped, nearly any place x0 of the trap in the interval
0 < x0 K 2 will make the pattern Jcðh; x0;1=2Þ to have near-zero
at h ¼ 0. The upper bound of this interval is related to the fact that
for x0 J 2 the vortex effects upon the pattern JcðhÞ vanish and
Jcð0Þapproaches unity exponentially as is seen from Eq. (31).
3.6. Arbitrary position of a nearby vortex

The upper panel of Fig. 6 shows JcðhÞ for a sigle vortex at
x0 ¼ 0:1; y0 ¼ 0:3. Characteristic features of this JcðhÞ are the pres-
ence of non-zero minima and a strong asymmetry of the pattern
relative to h! �h, the manifestation of different possibilities for
superpositions of the screening and vortex currents in the junction
vicinity. The effect of a vortex is strongest on the side of positive h.
This is seen better yet if two vortices are trapped at the same posi-
tion r0 ¼ ð0:1;0:3Þ, the middle panel, or five shown in the lowest
panel. Note that the pattern at h < 0 is well ordered with a repeti-
tion step Dh � 7:1 which corresponds to DH � 1:8/0=W2 as should
be for a pattern caused exclusively by the applied field H [10,9,6].
One can see in Fig. 7 an example of JcðhÞ for 5 vortices trapped at
the same transverse coordinate y0 ¼ 0:3 but at increasing distances
from the junction x0 ¼ 0:1, 0.3, 0.5. We have chosen a broader
domain jhj < 150 to show that vortex effects on the right side of
the pattern persist up to a large value of h, which however
decreases with increasing separation.

If the vortex approaches the strip edges y0 ¼ 0 or 1, JcðhÞ
approaches the pattern shown in Fig. 2 for no vortices. As argued
in [7], in this case the vortex causes the junction phase difference
to acquire an extra p, which does not change the tunneling current,
but affects the junction energy.

4. Discussion

We have shown that a vortex at one of the banks of the plane
thin-film Josephson junction distorts the pattern of the field
dependent critical current JcðhÞ in a strongly asymmetric way: as
is seen in Figs. 3, 6, 7, the distortion at the side h > 0 for a vortex
is strong, whereas for h < 0 it is weak and more regular (for anti-
vortex the picture flips relative to h! �h). Actually, this asymme-
try is seen in experiment [4].

We also show that the vortex effect upon the pattern JcðhÞ disap-
pears exponentially when the junction–vortex separation x0 J 2W
with the length scale W=p. This, however, does not mean that the
junction ‘‘does not feel’’ the far-away vortex; as Eq. (16) shows,
the junction phase difference acquires a constant addition depen-
dent on the transverse vortex coordinate y0 [7]. Hence, the junction
energy influenced by the vortex for all junction–vortex separations.

In principle, effects discussed here open possibilities to manip-
ulate properties of Josephson junctions by trapping vortices in
junction banks. We identified a number of vortex positions
ðx0;1=2Þ for which the zero-field critical current Jcð0Þ turns zero.
Hence, by measuring Jcð0Þ one can say whether or not one of these
positions ðx0;1=2Þ is occupied by a vortex, an interesting possibility
for applications.

Our calculations are valid for sufficiently thin and narrow
superconducting strips for which the condition W � K, the Pearl
length, is satisfied. This condition allows us to disregard the mag-
netic energy of supercurrents relative to their kinetic energy. For
other types of junctions (e.g., made of thick overlapping films)
our solutions per se do not apply.
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