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We study the field dependence of the maximum current Im�H� in narrow edge-type thin-film Josephson
junctions with alternating critical current density. Im�H� is evaluated within nonlocal Josephson electrodynam-
ics taking into account the stray fields that affect the difference of the order-parameter phases across the
junction and therefore the tunneling currents. We find that the phase difference along the junction is propor-
tional to the applied field, depends on the junction geometry, but is independent of the Josephson critical
current density gc, i.e., it is universal. An explicit form for this universal function is derived for small currents
through junctions of the width W��, the Pearl length. The result is used to calculate Im�H�. It is shown that
the maxima of Im�H��1 /�H and the zeros of Im�H� are equidistant but only in high fields. We find that the
spacing between zeros is proportional to 1 /W2. The general approach is applied to calculate Im�H� for a
superconducting quantum interference device with two narrow edge-type junctions. If gc changes sign peri-
odically or randomly, as it does in grain boundaries of high-Tc materials and superconductor-ferromagnet-
superconductor heterostructures, Im�H� not only acquires the major side peaks, but due to nonlocality the
following peaks decay much slower than in bulk junctions.
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I. INTRODUCTION

The edge-type thin-film Josephson junctions �see Fig. 1�
in magnetic fields behave differently from junctions between
bulk superconductors. The difference is caused mainly by the
stray fields outside the film. Indeed, since there is no typical
length scale for the fields outside the junction, the stray fields
strongly affect the screening and tunneling through the junc-
tion at all distances. As a result, the drop of the order-
parameter phase � across the superconducting banks is de-
fined by an integral equation.1–8 The kernel of this equation
depends on the tunneling characteristics and on the spatial
distribution of the stray fields at the film surfaces. In other
words, electrodynamics in edge-type thin-film Josephson
junctions is nonlocal.

Studies of edge-type thin-film Josephson junctions took
off after the discovery of anomalous electromagnetic proper-
ties of Josephson grain boundaries in thin films of high-Tc
superconductors.9–13 It was established experimentally that
the joint effect of meandering grain boundaries and of the
d-wave symmetry of the order-parameter results in appear-
ance of nearly periodic sequences of interchanging 0- and
�-shifted Josephson junctions along the boundary.9–13 In
other words, the Josephson critical current density alternates
along these grain boundaries.14–16 Similar critical current
density alternations were found recently in superconductor-
ferromagnet-superconductor heterostructures17–22 and
zigzag-type junctions between high- and low-Tc
superconductors.16 The spatial distributions of fields and cur-
rents in these junctions are affected by the stray fields and
vice versa. This results in appearance of complex dependen-
cies of the maximum current Im on the applied field H. The
theory of the patterns Im�H� for the edge-type thin-film Jo-
sephson junctions with alternating critical sheet current den-
sity is just emerging.

In edge-type thin-film junctions the length scale � of spa-
tial variations in the phase difference is given by

� =
c�0

8�2��gc�
, �1�

where �=2	2 /d is the Pearl length, 	 is the London penetra-
tion depth 	
d, d is the film thickness, and the average
critical sheet current density gc�y� is defined as

�gc� = �
−W/2

W/2

gc�y�
dy

W
. �2�

It is worth mentioning that in edge-type junctions � is the
length scales for current and field variations along the junc-
tion, whereas � is the scale for these variations in the trans-
verse direction. For the bulk junctions with a standard �local�
Josephson electrodynamics, these length scales are given by
the Josephson length 	J= �c�0 /16�2jc	�1/2 and the London
penetration depth 	.23,24
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FIG. 1. �a� Sketch of an edge-type Josephson junction in a thin-
film strip; the junction plane is shown by the dotted cross section.
�b� Spatially alternating critical sheet current gc�y� in a sequence of
0 and � biased Josephson junctions.
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The formal method of our analysis has been described in
a short Ref. 8 where we have shown that if the length �
exceeds both the junction width W and the Pearl �, the phase
difference ��y� for small currents is the same for junctions
with different Josephson critical currents, i.e., ��y� is a ma-
terial independent universal function; it depends only on the
applied field and the junction length.

We have evaluated the field dependence of the maximum
supercurrent Im�H� through the junction that turns out to be
quite different from the standard Fraunhofer pattern of bulk
junctions. Zeros of Im�H� become equidistant only in large
fields, and are separated by �H��0 /W2, which is much
smaller than �0 /W	 of bulk junctions of the same length.
The maxima of Im�H� decrease as 1 /�H, which is slower
than 1 /H for the bulk. We have shown that Im�H� for a su-
perconducting quantum interference device �SQUID� made
of narrow thin-film strips with edge-type junctions differ re-
markably from the canonic Fraunhofer pattern.

In this paper, we expand the approach developed in Ref. 8
and apply it to treat Josephson junctions with critical current
density spatially alternating along the junction. In particular,
this is the case of faceted grain boundaries in YBCO
films,9–12 superconductor-ferromagnet-superconductor
heterostructures,17–22 and zigzag-type junctions between
high- and low-Tc superconductors.16 Our calculations of
Im�H� reproduce major features of experimental results.

The paper is organized as follows, In Sec. II, we describe
the method in Ref. 8 and reproduce major results for the
straight edge-type junction in thin-film strips with W
� �� ,�	 and a uniform critical current. We consider effects
imposed by periodic and random alternations of gc�y� on the
patterns Im�H�. We demonstrate by numerical calculations
the typical fingerprints of nonlocal Josephson electrodynam-
ics. Smearing of the typical structure of peaks in the depen-
dence Im�H� is considered. In Sec. III, we apply the approach
developed to treat a model rectangular SQUID of two narrow
thin-film edge-type Josephson junctions. A summary con-
cludes the paper.

II. JUNCTION IN NARROW STRIPS

A. Constant critical current density

We begin from the case when the Josephson critical cur-
rent density is constant along the junction. Since div g=0,
the sheet current density g= �gx ,gy� in thin films can be writ-
ten as g=curl Sẑ= ��yS ,−�xS�, where S�x ,y� is the stream
function. The sheet current normal to the strip edges �y
= 
W /2� is zero, i.e., S�x , 
W /2� are constants. The total
current through the strip is

I = �
−W/2

W/2

gxdy = S
W

2
� − S
−

W

2
� . �3�

Integrating London equations over the film thickness we
obtain

hz +
2��

c
curlz g =

�0

2�
��x����y� , �4�

where hz consists of the applied field H and the part related
to g by the Biot-Savart integral. The right-hand side here

�Appendix A� is a manifestation of a general rule: the field of
a Josephson junction is formally equivalent to the field of a
set of vortexlike singularities distributed along the junction
with the line density ���y� /2�.5,7

In strips with W��, the self-field of the current g is of
the order g /c, whereas the second term on the left-hand side
of Eq. �3� is of the order g� /cW
g /c. Hence, the self-field
can be disregarded, unlike the applied field H. Substituting
curlz g=−�2S in Eq. �4� one obtains

2��

c
�2S = −

�0

2�
��x����y� + H . �5�

This linear equation has solutions S=S1+S2 such that

2��

c
�2S1 = −

�0

2�
��x����y� , �6�

2��

c
�2S2 = H . �7�

Boundary condition �3� is satisfied if S1�
W /2�=0 and
S2�W /2�−S2�−W /2�= I.

Hence, we have

S1�r� =� d���u�
���v�

2�
G�r,�� , �8�

where r= �x ,y� and �= �x̃ , ỹ�. Green’s function G�r ,�� satis-
fies the equation

2��

c�0
�2G = − ��r − �� �9�

with zero boundary conditions25

G =
c�0

4�2�
tanh−1 cos X cos X̃

cosh�Y − Ỹ� − sin X sin X̃
, �10�

where the capitals stand for corresponding coordinates in
units of W /�. In fact, G�r ,�� gives the current distribution
of a single vortex at the point � of a narrow strip. Clearly, S1
describes the current perturbation due to the junction.

We further obtain

S2�r� =
cH

4��
y2 +

I

W
y . �11�

The first term here represents the screening currents due to
the applied field, whereas the second is due to a uniform
transport current.

Given the stream function we write the current through
the junction gx�0,y�=gc sin ��y�=�yS�0,y�. This results in
the integral equation for the phase ��y�,

W

�
sin � − i = �

−�/2

�/2

dỸ
���Ỹ�cos Ỹ

sin Ỹ − sin Y
+ hY , �12�

where
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h =
4W2

�0
H, i =

8�2�

c�0
I �13�

are the characteristic length, reduced field, and reduced total
current.

The boundary conditions for ��y� follow from the London
equation for gy�
0,y� on the two junction banks,

gy�
0,y� = −
c�0

4�2�
� ���
0,y�

�y
−

2�

�0
Ay
 , �14�

where ��x ,y� is the phase and A is the vector potential. We
subtract these equations and utilize the continuity of A to
obtain ���y��gy�0,y�. The current gy must vanish at the
junction edges, i.e., the boundary conditions for ���y� are
given by

���− W/2� = ���W/2� = 0. �15�

A remarkable feature of narrow �W��� junctions is to be
noticed: the length � along with gc, the material parameter of
the junction, enter only the left-hand side of Eq. �12�. If W
��, or which is the same gc�c�0 /8�2�2, the left-hand side
can be disregarded leaving an equation for � with no mate-
rial parameters,

�
−�/2

�/2

dỸ���Ỹ�
cos Ỹ

sin Ỹ − sin Y
+ hY = 0. �16�

In turn this means that the phase difference is just propor-
tional to the applied field h. Writing ���Y�=h�0��Y� we ob-
tain for the function �0��Y� an equation that does not contain
any physical parameters,

�
−�/2

�/2

dỸ�0��Ỹ�
cos Ỹ

sin Y − sin Ỹ
= − Y , �17�

and therefore �0��Y� is a universal function.
Equation �17� with boundary conditions �Eq. �15�� can be

solved exactly �see Appendixes B and C�,

�0��Y� =
1

�2 cos Y
2 − �
−�/2

�/2 Ỹ cos2 ỸdỸ

sin Y − sin Ỹ
� . �18�

The integral here is understood as Cauchy principal value
and can be done numerically. However, its value at the strip
middle is found exactly: �0��0�=4��2� /�2�0.371, where
��2� is Catalan’s constant. The universal function �0��Y� cal-
culated numerically is shown in Fig. 2�a�. The function
�0�Y� obtained requiring it to be odd in Y is shown in
Fig. 2�b�. In particular, this calculation gives �0�� /2�
−�0�−� /2��0.86.

We thus obtain for narrow thin-film junctions,

��Y� = h�0�Y� + � �19�

with an arbitrary constant �. The total current through the
junction is

I =
gcW

�
�

−�/2

�/2

dY sin�h�0�Y� + �� . �20�

Maximizing I with respect to � provides �=� /2 and the
maximum current Im,

Im

gcW
=

2

�
��

0

�/2

dY cos�h�0�Y��� . �21�

Hence, Im�H� can be evaluated numerically; the result is
shown as a solid line in Fig. 3.

A good approximation for Im�H� can be obtained as fol-
lows. The odd function �0�Y� can be written as the Fourier
series �an sin�2n+1�Y to satisfy boundary conditions �Eqs.
�15��. We take the lowest approximant

�0 = a0 sin Y �22�

with a0=0.43 to fit the difference �0�� /2�−�0�−� /2�
=0.86 that is found numerically. The panel �b� in Fig. 2
shows that this approximation is close to the phase found
numerically �see Appendix C�.

Using Eq. �22� we have

0.0

0.2

0.4

−π/2 −π/4 0 π/4 π/2

−0.4

−0.2

0.0

0.2

0.4
(b)

(a)ϕ0'

ϕ0

0.37

0.43

Y

FIG. 2. �a� The function �0��Y� calculated according to Eq. �18�.
�b� The solid line is �0�Y� obtained by numerical integration of
�0��Y� shown in the panel �a�. The dashed line is the approximation
�0=0.43 sin Y.

0 2 4 6 8
0.0

0.5

1.0
im

H

FIG. 3. The maximum supercurrent im= Im /gcW versus the nor-

malized applied field H̄=4a0W2H /��0. The dashed line is approxi-
mation �20�.
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Im

gcW
=

2

�
��

0

�/2

dY cos�ha0 sin Y�� = �J0�a0h�� . �23�

Figure 3 shows that this approximation is quite accurate as
compared to Im�H� calculated numerically with the help of
Eq. �21�. Zeros of the Bessel function J0�x� are equidistant
for large arguments, but they are spaced roughly by � every-
where. Hence zeros of Im�h� are separated by a0�h�� or in
common units by

�H � 1.8
�0

W2 . �24�

It is worth recalling that in bulk junctions of the length W the
zeros are separated by �H�2�0 /W	 that exceeds by much
the thin-film spacing. A similar purely numerical estimate is
given in Ref. 2.

In the high-field region one can use the large argument
asymptotics of J0�x� to obtain

Im � 0.61gc��0

H
�cos
1.72

HW2

�0
−

�

4
�� . �25�

Thus, the maxima of Im�H� decrease as 1 /�H, i.e., slower
than in the bulk case where Im�1 /H.

It is worth noting that in high fields the maxima of Im�H�
do not depend on the junction length W. Qualitatively, this
comes about because the tunneling current gx=gc sin�h�0
+�� oscillates fast for h
1 so that most of the junction
length does not contribute to the total current, unlike the
narrow belts of the width ����0 /H near the strip edges.

In practice the pattern shown in Fig. 3 might be distorted
by Pearl vortices trapped in the junction banks. The energy
of these vortices26–29 acquires a minimum in the strip middle
starting from fields of the order �0 /W2. However, estimates
of the energy �J of Josephson vortices as compared to Pearl
ones, �P, yield �J /�P�0.1 / ln�2W /��, where � is the coher-
ence length and ln�2W /�� is large. Physically, this makes the
Josephson contact a “weak spot” where vortices penetrate the
sample first. Hence the chances are good for recording quite
a few maxima of Im�H� provided the strip is homogeneous
and the pinning is weak.

B. Spatially varying critical current density

When the critical sheet current density varies along the
junction the maximum supercurrent is given by

Im =
W

�
max��

−�/2

�/2

dYgc�Y�sin�a0h sin Y + ��� . �26�

To demonstrate the basic features imposed upon the patterns
Im�H� by the coordinate dependence of gc�y�, we use a step-
wise model for gc�y� suggested in Ref. 30 and shown in Fig.
1�b�. gc�y� is assumed to take positive and negative values in
N interchanging intervals or “facets,”

gc�y� = g0�1, ai � y � bi

− 1, bi � y � ai+1,
� �27�

i=1,2 , . . . ,N /2. Thus, gc=g0 within N /2 facets with lengths
li
+=bi−ai and gc=−g0 within N /2 facets with lengths li

−

=ai+1−bi.
Two options are considered: periodic structures with li

+

= li
−= l=W /N and random ones with the lengths li

+ and li
−

randomly distributed around the length l. The randomness is
characterized by the standard deviation,

� =
1

l � 1

N
�
i=1

N/2

��li
+ − l�2 + �li

− − l�2��1/2

�28�

and by the average critical current �gc� defined in Eq. �2�. We
have evaluated numerically the maximum current Im�H� and
show the results in Figs. 4–6.
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FIG. 4. The maximum supercurrent im= Im /gcW versus normal-

ized applied field H̄=4a0W2H /��0 for thin-film junctions and ver-

sus H̄=2	WH /�0 for bulk junction with 50 periodically spaced
facets. Panels �a� and �b� are for �gc�=0, whereas panels �c� and �d�
are for �gc�=0.4g0. Calculations are performed using the local Jo-
sephson electrodynamics for the bulk case and the nonlocal one for
films.
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FIG. 5. The same as Fig. 4 for �gc�=0 and for the standard
deviations from periodicity � indicated in the panels.
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For a periodic gc�y�, �=0. The fingerprints of this period-
icity for the situation with �gc�=0 are the absence of the
central peak at H=0 and the presence of side peaks in pat-
terns Im�H�. For the bulk junctions, this pattern, considered
in Ref. 30, is shown in panel �a� of Fig. 4. As is shown in the
panel �b�, these features of the gc periodicity are still present
for the edge-type thin-film junction. However, the differ-
ences brought by the nonlocality are evident not only in the
different pattern of Im�H� between the side peaks but also in
a much slower decay of maxima following the major side
peaks.

The panels �c� and �d� of Fig. 4 show the results of the
same calculation for the bulk and thin-film junctions for �
=0 and �gc�=0.4g0. Again, the nonlocality causes a much
slower decay of the pattern maxima.

Deviations from the periodicity of gc�y� smear the peaks;
examples are shown in Figs. 5 and 6 and are compared to
patterns obtained using the local Josephson electrodynamics
for bulk junctions. Relevance of these examples comes out
clearly if one compares the calculated patterns of Im�H� with
the experimental data in Ref. 16: qualitatively calculated
Im�H� is similar to experimental patterns.

III. RECTANGULAR SQUID

Let us consider now current flowing through rectangular
SQUID made of narrow thin-film strips with two identical
junctions sketched in Fig. 7. In zero field the current distri-
bution is symmetric with respect to the SQUID center and
the line integral of g along any symmetric contour is zero.

When the field is applied, this symmetry is violated by the
screening currents. However, at the contour in the strips,
middle �shown in the figure�, the screening currents vanish
so that the contour integral of g remains zero. This contour
crosses the junctions at their middle. The flux � enclosed by
this contour does not change if the contour is shifted as a
whole by Y. Integrating the London equation for g over such
a contour we obtain

�2�Y� − �1�Y� = 2��/�0 �29�

�the coordinate Y is counted in each strip from its middle�.
The total current through the system is given by

�I

gcW
= �

−�/2

�/2

dY�sin �1 + sin �2�

= 2�
−�/2

�/2

dY sin
ha0 sin Y + � +
��

�0
�cos

��

�0
,

�30�

where � is a constant. The maximum current corresponds to
�=� /2−�� /�0 �see Fig. 8�,

Im = 2gcW�J0
4a0
W2

A0

�

�0
�cos

��

�0
� , �31�

where A0 is the area of the “central” contour. Note that Eq.
�31� is valid if L
W �see Fig. 4�.

An example of Im�� /�0� is shown in Fig. 5 for a SQUID
with A0 /W2=5. The standard SQUID pattern �cos��� /�0�� is
modulated in our case by a slow varying Bessel function. We
stress again that the pattern shown is obtained for large area
SQUIDs with two narrow thin-film junctions; for reduced
areas the interference patterns become more complex, a sub-
ject for further study.

IV. SUMMARY

To summarize, we have evaluated the field dependence of
the maximum supercurrent in narrow edge-type Josephson
junctions in thin-film strips; the strip width W is supposed to
be less than the Pearl length � and the thin-film Josephson
length � of Eq. �1�. Calculations are done in the framework
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FIG. 6. The same as Fig. 4 for �gc�=0.4g0 and for the standard
deviations from periodicity � indicated in the panels.
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FIG. 7. Sketch of a rectangular SQUID made of two narrow
thin-film strips with identical edge-type junctions 1 and 2.
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FIG. 8. The maximum supercurrent im= Im /2gcW versus flux
� /�0 for a rectangular SQUID �Fig. 4� with A0 /W2=5.
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of nonlocal Josephson electrodynamics. We demonstrate that
the stray fields cause a pattern Im�H� with much reduced
distance between zeros, �H��0 /W2, and with a slow de-
creasing maxima in high fields, Im�H��1 /�H. The flux de-
pendence of the maximum supercurrent through a SQUID
made of narrow thin-film strips with edge-type junctions dif-
fers by much from the standard periodicity. If the Josephson
critical current changes sign periodically or randomly, as it
does in grain boundaries of high-Tc materials and
superconductor-ferromagnet-superconductor heterostruc-
tures, Im�H� not only acquires the major side peaks, but due
to nonlocality the following peaks decay much slower than
in bulk junctions in qualitative agreement with existing data.
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APPENDIX A

The London equation everywhere on the film except the
junction reads

hz +
2��

c
curlz g = 0, x � 0. �A1�

At the junction line x=0, the current component gy is discon-
tinuous. One can write for the whole x , y plane,

hz +
2��

c
curlz g = f�y���x� , �A2�

where the function f�y� is to be determined. To this end,
integrate Eq. �A2� over the area within the contour following
the junction banks along x= 
0 and crossing the junction at
y1 and y2. The magnetic flux through this contour is zero, and
we obtain

2��

c
�

y1

y2

�gy�+ 0,y� − gy�− 0,y��dy = �
y1

y2

f�y�dy �A3�

for any y1 and y2. This gives

2��

c
�gy�+ 0,y� − gy�− 0,y�� = f�y� . �A4�

Use the London relation

g = −
c�0

4�2�

�� +

2�

�0
A� �A5�

and the definition of the gauge-invariant phase difference

��y� = ��− 0,y� − ��+ 0,y� −
2�

�0
�

−0

+0

dxAx�x,y� �A6�

to obtain

d�

dy
=

4�2�

c�0
�gy�+ 0,y� − gy�− 0,y�� . �A7�

Equations �A4� and �A7� yield

f�y� =
�0

2�
���y� . �A8�

APPENDIX B

To determine �0��Y� we introduce variables s=sin V and
t=sin Y and write Eq. �17� in the form

B��t� =
1

2�
�

−1

1 J�s�ds

t − s
, �B1�

where B��t�=−sin−1 t and J�s�=2��1−s2�d�0 /ds�. Clearly,
Eq. �17� is the Biot-Savart integral for the normal component
of the “field” B��t� at the surface of a strip −1�s�1 carry-
ing the “sheet current” J�s�. We, therefore, have to find J�s�
for a given B��t�. This problem is known to have a solution31

J�t� =
2

�
�

−1

1 B��s�ds

s − t
�1 − s2

1 − t2 . �B2�

However, this solution is not unique because J�s� is not de-
termined by one field component. Currents of the form
C /�1−s2 with an arbitrary constant C correspond to B�=0
and therefore can be added to Eq. �B2�. This flexibility al-
lows us to obtain �0� of the main text that satisfies boundary
conditions �Eq. �15��.

APPENDIX C

The universal phase �0�Y� is the solution of the linear
integral equation �Eq. �15�� matching boundary conditions
�Eq. �17��. Numerically �0�Y� can be obtained minimizing
the functional

L = �
−�/2

�/2 �
−�/2

�/2

dYdỸ�0��Y�F�Y,Ỹ��0��Ỹ�

+ �
−�/2

�/2

dY
Y2 −
�2

4
��0��Y� , �C1�

where

F�Y,Ỹ� =
cos Ỹ

sin Y − sin Ỹ
. �C2�

Minimization is done numerically using the finite element
method.32 We approximate the function �0��Y� by a finite set
of basis functions vi attached to a grid Yi+1=Yi+� with a
constant �. Inside the interval Yi−1�Y �Yi+1, vi is defined as

vi = 1 −
�Y − Yi�

�
�C3�

out of this interval vi=0.
Next, we define a matrix
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Fij = �
−�/2

�/2 �
−�/2

�/2

vi�Y�F�Y,Ỹ�v j�Ỹ�dYdỸ �C4�

and a vector

Ji = �
−�/2

�/2

vi�Y�
Y2 −
�2

4
�dY . �C5�

Further, we approximate �0 and the functional L by

�0� � �
i

aivi, L � �
i,j

aiFijaj + �
i

aiJi. �C6�

Clearly, L has a minimum at ai=Fik
−1Jk /2. The universal so-

lution �0�Y� calculated using the finite elements method is
shown in Fig. 2.

*mints@post.tau.ac.il
1 Y. M. Ivanchenko and T. K. Soboleva, Phys. Lett. A 147, 65

�1990�; Y. M. Ivanchenko, Phys. Rev. B 52, 79 �1995�.
2 P. A. Rosenthal, M. R. Beasley, K. Char, M. S. Colclough, and

G. Zaharchuk, Appl. Phys. Lett. 59, 3482 �1991�.
3 R. G. Mints and I. B. Snapiro, Phys. Rev. B 49, 6188 �1994�;

51, 3054 �1995�; 52, 9691 �1995�.
4 Y. E. Kuzovlev and A. I. Lomtev, J. Exp. Theor. Phys. 84, 986

�1997�.
5 V. G. Kogan, V. V. Dobrovitski, J. R. Clem, Y. Mawatari, and R.

G. Mints, Phys. Rev. B 63, 144501 �2001�.
6 A. A. Abdumalikov, Jr., M. V. Fistul, and A. V. Ustinov, Phys.

Rev. B 72, 144526 �2005�.
7 A. Gurevich, Phys. Rev. B 46, 3187 �1992�.
8 M. Moshe, V. G. Kogan, and R. G. Mints, Phys. Rev. B 78,

020510�R� �2008�.
9 J. Mannhart, H. Hilgenkamp, B. Mayer, C. Gerber, J. R. Kirtley,

K. A. Moler, and M. Sigrist, Phys. Rev. Lett. 77, 2782 �1996�.
10 D. J. Van Harlingen, Rev. Mod. Phys. 67, 515 �1995�.
11 C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 �2000�.
12 H. Hilgenkamp and J. Mannhart, Rev. Mod. Phys. 74, 485

�2002�.
13 A. A. Golubov, M. Yu. Kupriyanov, and E. Il’ichev, Rev. Mod.

Phys. 76, 411 �2004�.
14 R. G. Mints, Phys. Rev. B 57, R3221 �1998�.
15 R. G. Mints, I. Papiashvili, J. R. Kirtley, H. Hilgenkamp, G.

Hammerl, and J. Mannhart, Phys. Rev. Lett. 89, 067004 �2002�.
16 H. J. H. Smilde, Ariando, D. H. A. Blank, G. J. Gerritsma, H.

Hilgenkamp, and H. Rogalla, Phys. Rev. Lett. 88, 057004
�2002�.

17 S. M. Frolov, D. J. Van Harlingen, V. V. Bolginov, V. A.

Oboznov, and V. V. Ryazanov, Phys. Rev. B 74, 020503�R�
�2006�.

18 M. Weides, M. Kemmler, E. Goldobin, H. Kohlstedt, R. Waser,
D. Koelle, and R. Kleiner, Phys. Rev. Lett. 97, 247001 �2006�.

19 L. N. Bulaevskii, V. V. Kuzii, and A. A. Sobyanin, JETP Lett.
35, 290 �1977�.

20 A. I. Buzdin, L. N. Bulaevskii, and S. V. Panjukov, JETP Lett.
25, 178 �1982�.

21 A. I. Buzdin, Rev. Mod. Phys. 77, 935 �2005�.
22 F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys.

77, 1321 �2005�.
23 A. Barone and G. Paterno, Physics and Applications of the Jo-

sephson Effect �Wiley, New York, 1982�.
24 M. Tinkham, Introduction to Superconductivity, 2nd ed. �Dover,

New York, 2004�.
25 P. M. Morse and H. Feshbach, Methods of Theoretical Physics

�McGraw-Hill, New York, 1953�, Vol. 2, Chap. 10.
26 V. G. Kogan, J. R. Clem, and R. G. Mints, Phys. Rev. B 69,

064516 �2004�.
27 G. Stan, S. B. Field, and J. M. Martinis, Phys. Rev. Lett. 92,

097003 �2004�.
28 E. Bronson, M. P. Gelfand, and S. B. Field, Phys. Rev. B 73,

144501 �2006�.
29 K. H. Kuit, J. R. Kirtley, W. van der Veur, C. G. Molenaar, F. J.

G. Roesthuis, A. G. P. Troeman, J. R. Clem, H. Hilgenkamp, H.
Rogalla, and J. Flokstra, Phys. Rev. B 77, 134504 �2008�.

30 R. G. Mints and V. G. Kogan, Phys. Rev. B 55, R8682 �1997�.
31 E. H. Brandt, Phys. Rev. B 46, 8628 �1992�.
32 G. Strang and G. Fix, An Analysis of the Finite Element Method,

2nd ed. �Wellesley, Cambridge, 2008�.

THIN-FILM JOSEPHSON JUNCTIONS WITH… PHYSICAL REVIEW B 79, 024505 �2009�

024505-7


