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Abstract. We consider the edge-type Josephson junctions in thin films, for which the stray
fields significantly affect the screening and tunneling currents. It is demonstrated that the
spatial distribution of the phase difference ϕ across thin-film Josephson junctions is nonlocal.
We find that in the limit of weak tunneling and short junctions the phase difference ϕ is a
universal function. This function is proportional to the applied field H an depends only on the
junction geometry. In the case of narrow thin strips we find this dependence analytically. Using
this universal function we demonstrate that the maximum supercurrent across narrow junctions
in thin films decays as 1/

√
H, that is much slower than 1/H for bulk junctions.

1. Introduction
The interest in physics of edge-type Josephson junctions in high temperature superconducting
thin films (see Fig. 1) is driven by experiments probing the basic features of the Josephson grain
boundaries and, in particular, the symmetry of the order parameter [1-5]. Significant effect
on the basic properties of these junctions is caused by stray fields outside the sample. These
fields might result in nonlocal effects in the spatial distribution of phase difference ϕ across the
junction [6-12]. In particular, non-local fluxons were observed [13] in junctions wide compared to
the Pearl length Λ = 2λ2/d (λ is the London penetration depth, d is the film thickness). Under
similar conditions, existence of non-local Josephson vortices carrying fractional flux has been
predicted [10]. However, transport properties of nonlocal tunnel junctions were not discussed
theoretically.

In this paper we present a model for evaluating maximum supercurrents in junction containing
thin-film superconducting strips. The model enables us to evaluate the phase distribution in the
junction for low tunneling rates and narrow strips, for which the phase distribution turns out
to be universal.

2. The model
The edge-type junction in a thin strip of our interest is shown in Fig. 1. The system of coordinates
is defined in the figure so that 0 < y < W , 0 < z < d. The London penetration depth λ À d,
therefore, the thin film screening length is given by Λ = 2λ2/d À λ. The Josephson tunneling
sheet current is g = gc sinϕ, where gc is the critical sheet current. In the edge-type thin-film
junctions the Josephson penetration depth ` takes the form [12]

` = cφ0/8π2Λgc . (1)
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Figure 1. Sketch of a strip with an edge-type
junction at x = 0.
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Figure 2. The solid line is ϕ0(Y ) , which
is calculated by the finite element method.
The dashed line shows ϕ0 = −0.43 cosY .

Next, we introduce the stream function S(x, y) so that the sheet current g = (gx, gy) can be
written as g = curl (S ẑ) = (∂yS,−∂xS). It follows from the Maxwell and London equations
that the equilibrium current distribution in a thin-film narrow strip (W ¿ Λ) is given by [12, 9]

−hz

φ0
+

2πΛ
cφ0

∇2S = − 1
2π

δ(x)∂yϕ(y) , (2)

where hz is the normal component of the field at the strip surface. One can see that for W ¿ Λ
the self-fields of the currents in the strip can be discarded and hz can be replaced with the
applied field H. The boundary conditions for the stream function S are given in terms of the
total current running through the strip,

I =
∫ W

0
∂ySdy = S(W )− S(0) = S(W ) , (3)

where we take S(0) = 0. The solution of the linear equation (2) is S = Sϕ + SH with

Sϕ =
cφ0

8π3Λ

∫ W

0
ϕ′(v)G(x, y; 0, v)dv, SH =

cH

4πΛ
y(y −W ) + I

y

W
, (4)

where

G = tanh−1 sinV sinY

coshX − cosV cosY
. (5)

is the Green’s function for zero boundary conditions and (Y, V ) = (πy/W, πv/W ) (see [14] for
details). The stream function SH describes the screening currents generated by the applied field
and the uniform transport current, whereas Sϕ describes the current perturbations due to the
junction.

The current through the junction is gx(0, y) = gc sinϕ(y) = ∂yS(0, y). This results in the
integral equation for the phase ϕ(y):

W

`
sinϕ =

∫ π

0

dV ϕ′(V ) sinV

cosY − cosV
+ h

(
Y − π

2

)
+ i , (6)

where

` =
cφ0

8π2Λgc
, h =

4W 2

φ0
H , i =

8π2Λ
cφ0

I (7)
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are the characteristic length, reduced field and current.
The boundary conditions for the integral equation (7) are

ϕ′(0) = ϕ′(W ) = 0 ; (8)

they follow from the fact that ϕ′ ∝ gy(0, y), which vanish at the edges [12].
For narrow strips with W ¿ `, the tunneling current and the total current in Eq. (7) can be

neglected in the lowest approximation. The phase is then given by
∫ π

0

dV ϕ′(V ) sin V

cosY − cosV
= h

(
π

2
− Y

)
. (9)

Hence, the function f(Y ) = ϕ(Y )/h depends on the geometry of the problem only. Eq. (9) can
be inverted, see [14, 15]. Numerically, f(Y ) can be found by minimizing the functional

F =
∫ π

0

∫ π

0
f ′(V )G(0, Y ; 0, V )f ′(Y )dV dY +

∫ π

0
Y (Y − π/2)f ′(Y )dY. (10)

This can be done using the finite element method [16]. The universal phase ϕ(Y ) calculated
using this approach is shown in Fig. 2.
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Figure 3. The maximum current im = Im/gcW as a function of the normalized applied field
hn = 4a0W

2H/πφ0. The dashed line is the approximation (12) and the dotted line is the
maximum current for bulk junctions.

3. The maximum current
The maximum supercurrent across Josephson junction is

Im(h) = max
{∫

gc(y) sin [hf0(y) + θ] dy

}
. (11)

The result of this calculation for a constant critical sheet current gc is shown in Fig. 3.
There are two major differences between the maximal supercurrent of edge-type thin-film

junctions and junctions in the bulk. First, the zeros Im(H) for bulk junctions are periodic with
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the period φ0/2λW . In the edge-type thin-film junctions the zeros are equidistant only in large
fields where the period is ≈ 1.8φ0/W 2. Second, maxima of Im(H) for bulk junctions decay as
1/H. For edge-type thin-film junctions, the maximal current decays proportionally to 1/

√
H.

Our numerical study shows that with the accuracy better than 2% the universal phase can
be approximated by the function

ϕ(Y ) ' −a0h cosY, a0 = 0.43. (12)

In this case the maximal current Im for junctions with constant gc has a simple form

Im(h) = J0(a0h) , (13)

where J0 is the zero order Bessel function. The current (13) is shown in Fig. 3. It is seen that
the approximate analytical and numerical results nearly coincide.

4. Conclusions
We study the field dependence of the maximal supercurrent Im(H) in the edge-type Josephson
junctions in thin-film strips. The strip width W is supposed to be much less than the Pearl
length Λ and the thin-film Josephson length `. We find that due to the zero slope of the
phase at the edges of the junction, the maxima of Im(H) decay asymptotically as 1/

√
H. This

behavior is a signature of nonlocality caused by the stray fields and is very different from the
standard Fraunhofer pattern Im(H) ∝ 1/H observed in Josephson tunnel junctions in the bulk.
In addition, we find that the nonlocality of the problem affects the distance between the zeroes
of Im(H): in the edge-type thin-film junctions zeros are spaced by ∆H ∼ φ0/W 2, which is very
different from standard Fraunhofer patterns for bulk junctions.
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