
 

ISSN 1027-4510, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2008, Vol. 2, No. 4, pp. 611–615. © Pleiades Publishing, Ltd., 2008.

 

611

 

Recently, nanoscale superconducting specimens
(nanowires and nanofilms) with a high degree of crystal-
linity have been fabricated [1–5]. The superconducting
properties of such nearly clean nanosuperconductors are
governed by quantum confinement (QC) of electrons.
Since the classical papers by Gor’kov [6] and Bogoli-
ubov [7], it is well-known that the superconducting order
parameter 

 

∆

 

(

 

r

 

) can be seen as the wave function for the
center-of-mass motion of the Cooper pairs. Hence, one
can expect that in the presence of QC the order parameter
varies with the position. Such variations of 

 

∆

 

(

 

r

 

) have re-
cently been demonstrated for the case of cylindrical me-
tallic nanowires [8–10] and for metallic nanofilms [11]
by numerically solving the Bogoliubov–de Gennes equa-
tions. It was shown that spatial inhomogeneity in the spa-
tial distribution of the order parameter is strongly en-
hanced when size/shape dependent superconducting res-
onances come into play [9–11]. These resonances were
found [10] to be responsible for a width-dependent in-
crease of the critical temperature 

 

T

 

c

 

 as recently ob-
served in tin and aluminum nanowires [1, 12, 13].

As is well-known, spatial variations of the super-
conducting order parameter can give rise to the forma-
tion of Andreev states. Quasiparticles can “feel” a spa-
tial variation of the superconducting condensate as a
kind of potential barrier. This physical mechanism is
the basis for Andreev quantization and will be referred
to as the Andreev mechanism (AM) throughout this pa-
per. Andreev states were investigated (i) for an isolated
normal region of the intermediate state of a type-I super-
conductor [14] (or in a similar situation of superconduc-
ting-normal-superconducting (SNS) contacts [15]), and
(ii) in the core of a single vortex for the case of the mixed

state of a type-II-superconductor [16]. In both variants
the superconducting condensate: 

 

∆

 

(

 

r

 

)  

 

∆

 

bulk

 

 when

 

|

 

r

 

|

 

  

 

∞

 

. The exterior of a nanoscale specimen is dif-
ferent due to QC. As follows from our numerical inves-
tigations of the Bogoliubov–de Gennes equations for a
clean metallic cylindrical nanowire, in this case AM
manifests itself through the formation of new Andreev-
type states appearing due to spatial inhomogeneity of
the superconducting condensate induced by QC. These
Andreev-type states are mainly located beyond the re-
gions where the order parameter is enhanced. We re-
mark that such states cannot be localized in the regions
where 
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 is significantly decreased because the
characteristic length for spatial variations of the order
parameter in the case of interest is about the Fermi
wavelength 

 

λ

 

F
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 with 

 

ξ

 

 the Ginzburg–Landau co-
herence length; typically, for metallic densities of elec-
trons 

 

λ

 

F

 

 ~ 1 nm) in the case of interest. Our results
strongly suggest that the lowest quasiparticle states in a
clean nanosuperconductor are always such Andreev-
like states induced by QC.

In order to give more details about the role and fea-
tures of the new Andreev-type states, we investigate be-
low the quasiparticle spectrum, critical temperature and
superconducting order parameter in a clean cylindrical
nanowire, using the numerical self-consistent solution of
the Bogoliubov–de Gennes (BdG) equations [17]. In the
absence of a magnetic field, 

 

∆

 

(

 

r

 

) can be chosen as a real
quantity and the BdG equations [16] read:

(1a)

(1b)

Eiui r( ) �
2

2me

---------∇2– µ–⎝ ⎠
⎛ ⎞ ui r( ) ∆ r( )v i r( ),+=

Eiv i r( ) ∆ r( )ui r( ) �
2

2me

---------∇2– µ–⎝ ⎠
⎛ ⎞v i r( ),–=

 

Andreev-Type States Induced by Quantum Confinement

 

¶

 

A. A. Shanenko

 

a, b

 

, M. D. Croitoru

 

c

 

, R. G. Mints

 

d

 

, and F. M. Peeters

 

a

 

a

 

 TGM, Departement Fysica, Universiteit Antwerpen, Antwerpen, Belgium

 

b

 

 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, 141980 Russia

 

c

 

 EMAT, Departement Fysica, Universiteit Antwerpen, Antwerpen, Belgium

 

d

 

 School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, Tel Aviv, Israel

 

Received June 28, 2007

 

Abstract

 

—The properties of a clean superconductor with nanoscale dimensions are governed by quantum con-
finement of the electrons. This results in a spatially inhomogeneous superconducting condensate and in the for-
mation of new Andreev-type quasiparticle states. These states are mainly located beyond regions where the
superconducting condensate is enhanced. A numerical self-consistent solution of the Bogoliubov–de Gennes
equations for a cylindrical metallic nanowire shows that these new Andreev-type states decrease the ratio of the
energy gap to the critical temperature.

 

DOI: 

 

10.1134/S1027451008040216

 

¶

 

 The text was submitted by the authors in English.



 

612

 

JOURNAL OF SURFACE INVESTIGATION. X-RAY, SYNCHROTRON AND NEUTRON TECHNIQUES Vol. 2

 

 

 

 No. 4 2008

 

SHANENKO et al.

 

with 

 

E

 

i

 

 the quasiparticle spectrum, 

 

µ

 

 the chemical po-
tential (the Fermi level for nanowires) and 

 

m

 

e

 

 the elec-
tron band mass (it is set to the free electron mass below).
Equations (1a) and (1b) should be solved in a self-con-
sistent manner, using the supplemented self-consistency
relation

(2)

connecting 

 

∆

 

(
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) with the particle-like and hole-like
wave functions 

 

u

 

i
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) and 
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). In Eq. (2) 

 

g

 

 is the cou-
pling constant for the effective electron–electron attrac-
tion, and 

 

f

 

i

 

 = 

 

f

 

(

 

E

 

i

 

) stands for the Fermi function. Here
the summation is over the eigenstates that have a posi-
tive quasiparticle energy 

 

E

 

i

 

 

 

and the single-electron en-
ergy:
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within the interval [–�ωD, +�ωD] (see, for details, the
textbook [16]). The chemical potential is related to the
mean electron density n by

(4)

with V = πR2L the system volume. In Eq. (4) the sum-
mation involves all the states with positive excitation
energies Ei. Due to QC in the transverse directions we
have to put ui(r)|r ∈ S = vi(r)|r ∈ S = 0 on the wire surface.
In the longitudinal direction periodic boundary condi-
tions are applied. For the cylindrical geometry we have
∆(r) = ∆(ρ), where ρ, ϕ, z are the cylindrical coordi-
nates. So, it is seen from Eqs. (1a) and (1b) that

(5)

where i = {j, m, k} with j the quantum number associ-
ated with the transverse coordinate (the number of ze-
ros of ui(ρ) and vi(ρ) for ρ < R), m the azimuthal quan-
tum number, and k the wave vector of the quasi-free
electron motion parallel to the nanowire.

The superconducting properties are dependent on
the number of single-electron states (per unit volume
and per spin projection) located in the Debye “window”
[–�ωD, +�ωD] [16]. This number changes with the
nanowire width. The band of single-electron states in a
clean metallic nanowire splits up in one-dimensional
subbands. With increasing nanowire width, these sub-
bands move down in energy. While the bottom of a sub-
band passes through the Fermi surface, the number of sin-
gle-electron states in the energy interval [–�ωD, +�ωD] in-
creases abruptly. This results in a series of width-
dependent superconducting resonances [9, 10]. At a
resonant point the order parameter is strongly enhanced
as compared to its bulk value and has an extremely non-
uniform spatial distribution. Fig. 1 shows the supercon-
ducting condensate ∆(ρ) (a) and quasiparticle spatial
distribution |ujmk(ρ)|2 (b) calculated from Eqs. (1a) and
(1b) at zero temperature T = 0 for aluminum cylindrical
nanowire (�ωD = 32.31 meV and gN(0) = 0.18 with
N(0) the bulk density of states [16]) for the resonant ra-
dius R = 1.13 nm. For these parameters the bulk con-
densate is ∆bulk = 0.25 meV (T = 0). The bulk Fermi lev-
el was set as µbulk = 0.9 eV. This is the effective Fermi
level that should be used together with the BdG equa-
tions treated in the parabolic band approximation (see,
for details, Ref. 11). As seen from Fig. 1a, the super-
conducting order parameter is strongly enhanced with
respect to the bulk one and exhibits profound spatial
variations. There are eight relevant quasiparticle subbands
contributing to the superconducting properties: with the
quantum numbers j = 0, m = 0, j = 1, m = 0, j = 0, |m| = 1,
j = 0, |m| = 2 and j = 0, |m| = 3 (the corresponding exci-
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Fig. 1. The resonant point R = 1.13 nm: (a) the supercon-
ducting order parameter ∆(ρ) and (b) the square of the ab-
solute value of the transverse particle-like wave function
ujmk(ρ) for various quasiparticle branches (the lowest exci-
tation is presented for any given quasiparticle branch).
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tation energies Ejmk are given in Fig. 2). Note that only
low-lying states of these subbands contribute to the su-
perconducting quantities, while the others are excluded
due to the criterion that the corresponding single-electron
energies should belong to the interval [–�ωD, +�ωD].
The two branches with j = 0, |m| = 3 are specified by a
high density of states and, so, have a dominant contri-
bution to the superconducting characteristics, forming
the profile of the enhancement of the order parameter at
ρ = 0.65R. The bottoms of these single-electron sub-
bands corresponding to these two quasiparticle branch-
es are located in the Debye window. As seen from
Fig. 1b, the profile for |ujkm(ρ)|2 at j = 0, |m| = 3 is indeed
similar to the profile of the superconducting order pa-
rameter in the region of its enhancement. The other
quasiparticle states with j = 0, m = 0, j = 1, m = 0, j = 0,
|m| = 1 and j = 0, |m| = 2 contribute less to ∆(ρ). It is re-
markable that these quasiparticle states try to “escape” the
domain of enhanced order parameter (more or less suc-
cessfully because QC is the dominating factor), which is
a manifestation of AM. These quasiparticle branches are
lower in energy and can be interpreted as new Andreev-
type states induced by quantum confinement.

It is instructive to compare the results derived for
the resonant point R = 1.13 nm with the data for R =
1.23 nm (at this point the resonance appearing at R =
1.23 nm has completely decayed). Figures 3 and 4 show
∆(ρ), |ujkm(ρ)|2 and Ejmk calculated for R = 1.13 nm.
In this case we have the same relevant quasiparticle
branches and a similar profile of ∆(ρ) as before for R =
1.13 nm but the spatially averaged order parameter is
now only about 0.2 meV (close to the bulk value ∆bulk =
0.25 nm). Hence, we can expect a less important role of
AM in this situation. As seen from Fig. 4, the difference
in energy between the branches with j = 0, |m| = 3 and
j = 0, |m| = 1 is not so significant as in Fig. 2.

An important consequence of AM is a change in the
ratio ∆E(T)/(kBTc), where ∆E(T) is the temperature de-
pendent energy gap in the quasiparticle spectrum, kB is
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Fig. 2. The resonant point R = 1.13 nm: the excitations
energies as functions of k for the relevant quasiparticle
branches with j = 0, m = 0; j = 1, m = 0; j = 0, |m| = 1; j = 0,
|m| = 2 and j = 0, |m| = 3.
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Fig. 3. Beyond the resonant regime: R = 1.23 nm: (a) the or-
der parameter ∆(ρ) and (b) |ujmk(ρ)|2 for the relevant quasi-
particle branches (k corresponds to the lowest state in a giv-
en branch).
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Fig. 4. Beyond the resonant regime: R = 1.23 nm: the quasi-
particle energies versus k for j = 0, m = 0; j = 1, m = 0; j = 0,
|m| = 1; j = 0, |m| = 2 and j = 0, |m| = 3.
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the Boltzmann constant and Tc is the critical tempera-
ture. Indeed, AM results in a decrease of the energy gap
but has little effect on the critical temperature. In Fig. 5
the quantity ∆E(T)/(kBTc) calculated for an aluminum
cylindrical nanowire with R = 1.13 nm (the left panel)
and R = 1.23 nm (the right panel) is plotted versus the
relative temperature T/Tc. We remind the reader that in
bulk ∆bulk/(kBTc, bulk) = 1.76 at T = 0 [16]. The numerical
results for both R = 1.13 nm and R = 1.23 nm demon-

strate deviations (about 10–20%) from the bulk regime.
However, these deviations for the non-resonant R =
1.23 nm are less significant due to a smaller contribu-
tion from the AM.

So far we discussed the new Andreev-type states in-
duced by QC in extremely narrow nanowires, to avoid
discussion of an abnormal large number of quasiparti-
cle species. At present, such nanowires are not experi-
mentally attainable and, in addition, they are expected
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Fig. 5. The ratio ∆E(T)/(kBTc) versus T/Tc at the resonant radius R = 1.13 nm (the left panel) and beyond the resonant regime at
R = 1.23 nm (the right panel).
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Fig. 6. The resonant point R = 4.11 nm: (a) the order parameter versus ρ/R, (b) |ujmk(ρ)|2 for the lowest (j = 3, m = 0) and next-to-
lowest (j = 1, m = 0) quasiparticle branches, and (c) ∆E(T)/(kBTc) versus T/Tc.
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to exhibit a finite resistance coming from thermal and,
possibly, quantum fluctuations which should destroy
superconductivity (see, for example, Ref. 12). For R =
4–8 nm, corresponding to the narrowest superconduct-
ing nanowires fabricated in recent experiments [1, 12],
the resonances are much less profound as compared to
R ≈ 1 nm. However, they are still noticeable (see the
right panel of Fig. 6), and the Andreev-type states are
still of importance here. For example, ∆E(T)/(kBTc) cal-
culated at the resonant point R = 4.11 nm exhibits devia-
tions (about 10%) from the bulk BCS behavior (the right
panel of Fig. 6).

Concluding, quantum confinement is the major ef-
fect which governs the superconducting properties of a
clean nanoscale metallic specimen and results in a non-
uniform distribution of the order parameter. An order-
parameter inhomogeneity in a clean nano-supercon-
ductor leads to the formation of new Andreev-like states.
These new states are not localized. They try “to escape”
the regions of enhanced order parameter and are mainly
located beyond such regions. Appearance of such An-
dreev-like states results in a decrease of the energy gap in
the quasiparticle spectrum and in deviations of the ratio of
the energy gap to the critical temperature from the bulk
regime. Numerical self-consistent solution of the Bogoli-
ubov–de Gennes equations for a cylindrical nanowire has
demonstrated that such decrease is significant for nanow-
ires with width less than ~10 nm.
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