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We treat theoretically Shapiro steps in tunnel Josephson junctions with spatially alternating critical current
density. Explicit analytical formulas for the width of the first integer �normal� and half-integer �anomalous�
Shapiro steps are derived for short junctions. We develop a coarse-graining approach, which describes Shapiro
steps in the voltage-current curves of the asymmetric grain boundaries in yttrium barium copper oxide thin
films and different superconductor-ferromagnet-superconductor Josephson-type heterostructures.
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I. INTRODUCTION

Series of resonances exist in Josephson tunneling junc-
tions biased at an alternating voltage V�t�=V0+V1 cos �1t.1–3

In junctions of conventional superconductors, these reso-
nances appear at the frequencies �0=2eV0 /�=n�1, where n
is an integer. At the resonant values of the dc voltage V0
=n��1 /2e, the supercurrent has a dc component. In the
voltage-current curve, Shapiro resonances reveal themselves
as a “ladder” of equidistant values of V0 �integer Shapiro
steps�.1–3

The physical origin of Shapiro steps follows from the Jo-
sephson equations j= jc sin � and �̇=2eV /�, where j and jc
are the tunneling and critical current densities and � is the
phase difference across the junction. In order to find the cur-
rent across the junction we integrate the voltage V�t� and find
the time-dependent phase ��t�=�0+�0t+v1 sin �1t. In this
relation, �0=��0� is the initial value of the phase and v1

=2eV1 /��1 is the dimensionless parameter of the problem.
Knowing ��t�, we obtain the tunneling current density in the
form j�t�= jc sin��0+�0t+v1 sin �1t�. This formula demon-
strates that j�t� is a complex alternating function of time.
Fortunately, j�t� can be transferred into a series allowing for
an easy qualitative and quantitative analysis,2,3

j = jc �
n=−�

�

�− 1�nJn�v1�sin��0 + ��0 − n�1�t� , �1�

where Jn�x� is the first kind Bessel function of order n.
It is seen from Eq. �1� that for any resonant frequency

�0=n�1, the supercurrent density j has a dc component
�sin �0, which reaches its maximum jm at �0=� /2. As a
result, the maximum value of the dc density is given by jm
= jcJn�v1�.2,3

Anomalous Shapiro steps at the subharmonic resonant
frequencies �0= �n /q��1 �q�n, where q and n are integers�
were treated theoretically for short microbridges of conven-
tional superconductors assuming that the current-phase rela-
tion includes high-order harmonic terms.4 Qualitatively, the
effect of terms jq sin�q�� on the supercurrent density j fol-
lows from Eq. �1�. Indeed, substituting �0, �0, and v1 by
q�0, q�0, and qv1, we find that at any subharmonic fre-
quency �0= �n /q��1, the supercurrent density j has a dc
component �sin q�0. In this case, the maximum value of j

corresponds to the phase �0=� /2q and is given by jm
= jqJn�qv1�.

Observation of anomalous half-integer Shapiro steps has
been reported recently for asymmetric grain bound-
aries in yttrium barium copper oxide �YBCO� films5

and superconductor-ferromagnet-superconductor �SFS�
heterostructures.6–8

Qualitative explanations of the origin of the anomalous
Shapiro steps were proposed to understand the results of
these experiments mainly by revealing the existence of a
second harmonic term, sin 2�, in the current-phase relation
�CPR�. It was shown that data measured for the asymmetric
grain boundaries in YBCO are indeed consistent with the
existence of the term sin 2� in the CPR.9–11 In the case of
SFS junctions, it was assumed that there is doubling of the
Josephson frequency, which leads to a sin 2� term in the
CPR. It was suggested that this frequency doubling is caused
by the splitting of energy levels in the ferromagnetic ex-
change field.6 An alternative explanation8 assumes the exis-
tence of a resonance between the spontaneous currents and rf
modulation.12

Asymmetric grain boundary junctions in YBCO thin films
and SFS heterostructures are arranged in sequences of inter-
changing 0- and �-shift tunneling junctions, as shown in Fig.
1. � shifts spontaneously appearing across superconducting
banks of tunneling junctions were first considered for SFS
heterostructures.13,14 These � shifts lead to negatively biased
critical current density jc and anomalous Josephson proper-
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FIG. 1. Schematic diagrams: �a� Josephson junction made of
periodically interchanging 0- and �-biased fragments and �b� alter-
nating critical current density distribution.
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ties of sequences of 0-�-biased tunneling junctions.15–20 The
observed anomalies are especially significant if the lengths
of 0 and � fragments are much less than the Josephson pen-
etration depth 	J defined by the spatial average of �jc�.21–24

Thus, several qualitative explanations have been put for-
ward to understand the physics of fractional Shapiro steps.
However, to the best of our knowledge, there is, at present,
no theoretical model describing the anomalous Shapiro steps
and their basic features in Josephson junctions with alternat-
ing critical current density.

In this paper, we treat Shapiro steps in Josephson junc-
tions arranged in periodic or almost periodic sequences of
interchanging 0- and �-biased fragments with l
	J. We de-
velop a coarse-graining approach which is applicable to treat
time-dependent phenomena.

In our theoretical model, we assume that the tunneling
current density is given by the standard CPR dependence j
= jc�x�sin ��x , t�, but with a critical current density jc�x�, spa-
tially alternating along the Josephson junction. As an illus-
tration, we treat the case of a short junction that allows us to
obtain explicit analytical results. We demonstrate that in Jo-
sephson junctions with spatially alternating critical current
density, the half-integer �anomalous� Shapiro steps exist in
addition to the integer �normal� Shapiro steps. We calculate
the dependence of the width of these steps on the flux inside
the junction and the voltage across the junction.

The organization of this paper is as follows. In Sec. II, we
review briefly the coarse-graining approach to Josephson
junctions with spatially alternating critical density. In Sec.
III, this general approach is applied to calculate explicit for-
mulas for the width of the integer �normal� and half-integer
�anomalous� Shapiro steps in short junctions. Section IV dis-
cusses these results.

II. JOSEPHSON JUNCTION WITH SPATIALLY
ALTERNATING CRITICAL CURRENT DENSITY

Consider a tunneling junction of length L �0�x�L� with
a critical current density jc�x� alternating with a length scale
l�	, where 	 is the London penetration depth �see Fig. 1 for
the geometry of the problem�. It is convenient for the follow-
ing calculations to write

jc�x� = �jc��1 + g�x�� , �2�

where �jc� is the average value of jc�x� defined as

�f� =
1

L
	

0

L

dx f�x� . �3�

The function g�x� describes spatial variations of jc�x� and has
a zero average value, �g�x��=0. In what follows, we are in-
terested in the case of small average values of the critical
current density, i.e., we assume that �jc�x��
 ��jc�x���. This
condition means that the typical value of the dimensionless
function g�x� is big compared to unity or in other words
��g�x����1.

In the above notations the equation for the phase differ-
ence ��x , t� across the junction reads


2�̈ − �2�� + �1 + g�x��sin � = 0, �4�

where 1/
 is the Josephson frequency and � is the effective
Josephson penetration depth,

�2 =
c�0

16�2	�jc�
. �5�

We now treat a sample subjected to magnetic field Ha and
alternating voltage V�t�=V0+V1 cos �1t applied across the
junctions. It is assumed that 2eV1 is small compared to ��1,
i.e., v1=2eV1 /��1
1. In this case, coarse graining can be
applied to solve Eq. �4�.23

Two types of terms appear in Eq. �4�: terms alternating
over the length l and smooth terms varying over the length
�� l. The fast alternating terms cancel each other indepen-
dently of the smooth terms, which also cancel each other.
Therefore, we write23

��x� = ��x� + ��x� , �6�

where ��x� is a smooth function with the length scale of
order � and ��x� alternates with the length scale of order l.
Under the above assumptions, the average value of ��x� is
zero and the typical amplitude of variations of ��x� is small,
i.e., ���x��=0 and ����x���
1.23–26

Substituting Eq. �6� into Eq. �4� and keeping terms up to
first order in ��x�, we find23

�2�� −
j��x�
�jc�

= 0, �7�

�2�� −
j��x�
�jc�

= 0, �8�

where the smooth j��x� and alternating j��x� components of
the tunneling current density j= j�+ j� are

j� = �jc��sin � − � sin � cos �� , �9�

j� = �jc�g�x�sin � . �10�

The dimensionless constant � is equal to

� = �g�x��g�x�� = �2��g�
2�x�� � 0, �11�

and the rapidly alternating phase �g�x� is defined by

��x� = − �g�x�sin � . �12�

It follows from Eqs. �8�, �10�, and �12� that

�2�g� + g�x� = 0, �13�

i.e., the rapidly alternating phase shift �g�x� is a characteristic
of the sample.

To summarize the coarse-graining approach it is worth
noting that the typical values of �g�x� are small, but at the
same time the typical values of g�x� are big, i.e., ���g�x���

1 and ��g�x����1. As a result, the dimensionless parameter
�, which is proportional to the average of the product of the
two rapidly alternating functions �g�x� and g�x�, might be of
the order of unity.23,24 The value of �g� can be estimated as
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�g�
�g / l. It follows then from Eq. �11� that ��g
2�
�l2 /�2


1. Therefore, for �g�, we have the estimate ����g���
��

1.

III. SHAPIRO STEPS IN SHORT JUNCTIONS

In a short junction �L
��, ��x , t� is almost linear in x,
the time dependence of ��x , t� is given by V�t�, and

���x,t� =
4�	

�0
Hi�t� , �14�

�̇�L/2,t� =
2e

�
V�t� , �15�

where Hi�t� is the time-dependent field in the junction.
At the sample edges, the derivative ��=��+�� is propor-

tional to the field �H�0,L including the self-field generated by
the total current I.27 In the case of a short junction, we obtain

�Ha

Hs
�

1

2

I

Is



0,L
= �����0,L = �����0,L + �����0,L, �16�

where Hs=�0 /4�	� and Is= �jc��. It follows from Eq. �12�
that the derivative ��=−�g� sin �. In order to find �g�, we inte-
grate Eq. �13� from 0 to L and arrive at the relation �g��0�
=�g��L�, which allows us to rewrite the boundary condition
�Eq. �16�� in the final form,

�Ha

Hs
�

1

2

I

Is



0,L
= �����0,L − �� sin ��0,L, �17�

where the terms � sin���0,L are caused by the high-density
edge currents and � is a constant. It is worth noting here that
� is a characteristic of the sample. Next, using the above
estimate for �g�, we obtain

� = ���g��0,L 
 �� 
 1. �18�

To summarize the above analysis, we find that in the
coarse-graining approach, the Josephson junctions with spa-
tially alternating critical current density and l
	J are char-
acterized by two dimensionless parameters � �for the inner
part of the junction� and � �for the edges of the junction�,
where 	J=�c�0 /16�2	��jc��
� is the local Josephson
length.

Next, we find the derivative of ����0,L using the first in-
tegral of Eq. �7�, which can be written as

�2

2
��2 + cos � −

�

4
cos 2� = const. �19�

Finally, we combine Eqs. �17� and �19� relating the total
current I, applied field Ha, and phase � at the edges. In the
case of a short junction, we find

I = 2Is sin��
�i

�0

�� cos �m

−
L

2��

�0

�a
�1 − � cos �m cos��

�a

�0

�sin �m� , �20�

�i = �a +
�

2�

L

�
�0 cos��

�a

�0

sin �m, �21�

�m = ��L/2,t� = �0 + �0t + v1 sin �1t , �22�

where the “applied”, �a, and “internal”, �i, fluxes are de-
fined as �a,i=2L	Ha,i, �0=2eV0 /�, and �0 is a constant,
which is used to maximize the total current I.

Calculation of the width of Shapiro steps similar to the
one given by Tinkham3 leads to the following results: two
series of steps appear at frequencies

�0 = �n + 1/2��1 and �0 = n�1, �23�

where n is an integer.
In the case of low oscillating voltage �v1
1�, we obtain

the widths of the first half-integer, I1/2��a�, and the first in-
teger, I1��a�, Shapiro steps in the form

I1/2 = v1Ic��2 cos2��
�a

�0

 +

��0

2��a
sin�2�

�a

�0

� , �24�

I1 = v1Ic����

L

2

+ � �0

��a

2�sin��

�a

�0

� , �25�

where Ic= �jc�L. Explicit formulas �24� and �25� reveal quite
a few remarkable features of I1/2��a� and I1��a�. In what
follows, we discuss them in detail.

IV. RESULTS AND DISCUSSION

The function I1/2��a� is equal to zero for the two series:
�a= �n+1/2��0 and �a= �n−�� /���0, where n is an integer
and �� is defined by tan ��=��2�a /��0. The angle �� de-
pends on �a; i.e., in general, the roots of equation I1/2��a�
=0 are not equidistant, and the actually observed dependence
I1/2��a� is defined by the dimensionless ratio �a=� /2��2.

Next, it follows from Eq. �24� that for �a=0, the width of
the first anomalous half-integer step I1/2�0� equals v1Ic��
+�2�. In the low-flux region ��a /�0
�a�, the main contri-
bution to I1/2��a� comes from the second term in Eq. �24�.
This term originates from the alternating currents flowing
across all junctions. As a result, in the low-flux region, we
have I1/2� ��0 /2��a��sin�2��a /�0��, i.e., I1/2��a� is de-
scribed by the Fraunhofer pattern but with a double fre-
quency. In Fig. 2�a�, we show I1/2��a� in the low-flux region
��a /�0
250� for the data �=0.03 and �=1.5, which lead to
�a�250.

In the high-flux region ��a /�0��a�, the main contribu-
tion to I1/2 comes from the first term in Eq. �24�. This term
originates from the high-density currents flowing across the
edge junctions. As a result, in the high-flux region, we have
I1/2�cos2���a /�0�, i.e., I1/2��a� is a periodic function. In
Fig. 2�c�, we show I1/2��a� in the high-flux region ��a /�0

�0.25� for the data �=1 and �=1.5, which lead to �a

�0.25.
In Fig. 2�b�, we show the function I1/2��a� for the inter-

mediate values of the applied flux ��a /�0
�a�. Using the
data �=1.5 and �=0.3, we find that �a�2.5. In this case, ��
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is strongly flux dependent. As a result, the function
I1/2��a /�0� is manifestly aperiodic.

We now discuss the width of the first integer Shapiro step
I1. It follows from Eq. �25� that I1��a� is equal to zero for the
series �a=n�0, where n is an integer.

In the high-flux region ��a /�0�L /����, the main con-
tribution to I1 comes from the first term in Eq. �25�. This
term originates from the high-density currents flowing across
the edge junctions. As a result, in the high-flux region, we
obtain I1��a�� �sin���a /�0��, i.e., I1��a� is a periodic func-
tion. In Fig. 3�a�, we show I1��a� in the high-flux region
��a /�0�0.2� for the data �=0.3 and L /�=0.2, which lead
to L /����0.2.

Next, it follows from Eq. �25� that the width of the first
integer step I1�0� equals v1Ic. In the low-flux region
��a /�0
L /����, the main contribution to I1 comes from
the second term in Eq. �25�. This term originates from
the alternating currents flowing across all junctions. As
a result, in the low-flux region, we obtain I1/2
� ��0 /��a�sin���a /�0�; i.e., I1��a� is described by the
Fraunhofer pattern. In Fig. 3�b�, we show I1��a� in the low-
flux region ��a /�0
20� for the data �=0.003 and L /�
=0.2, which lead to L /����20.

Let us now illustrate the above calculations by using a
model dependence for alternating critical current density,

jc�x� = j0 + j1 sin�2�

l
x + �
 , �26�

where j0= �jc�x��, j1 are constants, � is an angle from the
interval 0����, and L / l=N is an integer �N�1�. It fol-
lows from Eqs. �2� and �13� that

g�x� =
j1

j0
sin�2�

l
x + �
 , �27�

�g�x� =
4	l2j0

c�0
g�x� . �28�

Next, knowing g�x� and �g�x�, we use Eqs. �11� and �20� and
find the parameters

� =
2	l2j1

2

c�0j0
, �29�

� = �2� cos � . �30�

It follows from Eqs. �24� and �25� that the widths of the
first half-integer I1/2 and integer I1 Shapiro steps are

I1/2 =
v1j1L

cos ��

l1
2

�1
2�cos���a

�0

cos���a

�0
− ��
� , �31�

I1 = v1�� j0L
�0

��a

2

+ � j1l1

4�

2�sin���a

�0

� , �32�

where we define tan ��= ��0 /2��a� / cos2 �, l1= l cos �, and
�1

2=c�0 /4	j1.
An interesting feature follows from Eq. �32� for the lim-

iting case j0=0. Using Eq. �32�, we find that if the average
value of the critical current density j0=0, then the width of
the first integer Shapiro step equals

Ĩ1��a� =
2eV1

��1

j1l

2�
cos ��sin���a

�0

� . �33�

This current is the contribution coming from the edge frag-

ments, and therefore, the value of Ĩ1 does not depend on the
total length of the junction L.

V. SUMMARY

The anomalous Shapiro steps in our model exist due to �a�
successful interference between the spatial alternations of the
critical current density jc�x� and phase factor sin ��x , t�,
leading to generation of the second harmonic in the Joseph-
son current density and �b� high current density at the edges
of the junction, resulting in anomalous dependencies I1/2�Ha�
in terms of periodicity at low fields and asymptotic behavior
at high fields.

To summarize, we demonstrate the existence of anoma-
lous half-integer Shapiro steps for short Josephson junctions
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FIG. 2. Dependence of the width of the first half-integer Shapiro
step I1/2 on applied flux �a given by Eq. �24� for �=1.5 and �a�
�=0.03, �b� �=0.3, and �c� �=1.

0 1 2 3 4 5

0

0.5

1
0

1

2
(a)

(b)

0

aφ
φ

1

1 c

I

v I

FIG. 3. Dependence of the width of the first integer Shapiro step
I1 on applied flux �a given by Eq. �25� for L /�=0.2 and �a� �
=0.3 and �b� �=0.003.
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with spatially alternating critical current density jc�x�. We
derive explicit formulas given by Eqs. �24� and �25� for the
width of the first integer and half-integer Shapiro steps. The
general approach is applied to the case of a simple model for
the critical current density dependence on the coordinate
along the junction �see Eq. �26��. The results obtained in the
framework of this model might be useful for analysis of the
experimental data for the asymmetric grain boundaries in

YBCO thin films and different superconductor-ferromagnet-
superconductor Josephson-type heterostructures.
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