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Properties of mesoscopic superconducting thin-film rings: London approach
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Superconducting thin-film rings smaller than the film penetration depth~the Pearl length! are considered.
The current distribution, magnetic moment, and thermodynamic potentialF(H,N,v) for a flat, washer-shaped
annular ring in a uniform applied fieldH perpendicular to the film are solved analytically within the London
approach for a state with winding numberN and a vortex at radiusv between the inner and outer radii.
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I. INTRODUCTION

Small flat rings made of thin superconducting films are
interest for a variety of mesoscopic experiments.1,2 SQUID-
type devices is an example; another one is the study of fl
oid dynamics in rings, as discussed by Kirtleyet al.3 The
basic physics of such rings is governed by flux quantizati
as in the Little-Parks experiment; see, e.g., Ref. 4 or la
publications5–8 based on the Ginzburg-Landau theory.

There is a resurgence of experimental interest in this s
ject: The interacting dipole moments in an array of superc
ducting rings provide a model system for magnetism in Is
antiferromagnets.1,2 Moreover, there is considerable intere
in quantum coherence effects in superconducting rings
their arrays for potential applications in quantu
computing.9–11

Many quantitative details specific to the thin-film geom
etry can be treated within the London approach, which is
bound by the strict temperature restriction of Ginzbu
Landau models. In the thin-film limit, for which the Londo
penetration depthl obeysl@d, the film thickness, the fields
and currents are governed by the Pearl lengthL52l2/d.12

As we show below, when the inner and outer radiia andb of
the annular ring are smaller thanL, it is possible to obtain
analytic solutions for the energy of the ring in a unifor
magnetic fieldH applied perpendicular to the ring plane wi
a vortex sitting in an arbitrary position at the annular reg
betweena and b. The motion of vortices betweena and b
provides the means for the ring to switch between disc
states with different winding numbersN defined below.
Study of these transitions is relevant for understanding
telegraph noise observed in multiply connected mesosc
superconducting devices in general and in thin-film rings
particular.3

II. CURRENT DISTRIBUTION

Let us consider a small thin-film ring of thicknessd!l
situated in the planez50 with inner and outer radiia andb,
whereb is much smaller than the Pearl lengthL52l2/d.
The ring is in a uniform applied fieldH perpendicular to the
film plane; it may contain a vortex~or antivortex!, the posi-
tion of which can be taken asx5v, y50 ~with the origin at
0163-1829/2004/69~6!/064516~9!/$22.50 69 0645
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the ring center anda,v,b). The London equations for the
local magnetic fieldb in the film interior read13

b1
4pl2

c
curl j56f0ẑd~x2v,y!. ~1!

Here,j is the current density,ẑ is the unit vector perpendicu
lar to the film plane, andf05p\c/ueu is the value of the
flux quantum. The upper sign holds for a vortex whereas
lower one is for an antivortex, the convention retain
throughout this paper. Averaging this over the thicknessd,
one obtains

bz1
2pL

c
curlz g56f0d~r2v !, ~2!

where g(r) is the sheet current density,r5(x,y), and v
5(v,0). Equations~1! and ~2! are valid everywhere in the
film except within a distance of the order of the coheren
length j ~vortex core! from the vortex or antivortex axis
where the London equation~1! no longer holds.

The distributiong(r) can be found by solving Eq.~2!,
combined with the continuity equation and the Biot-Sav
integral that relates the fieldbz to the surface current,

div g50, bz~r!5E @g~r8!3R/cR3#zd
2r81H, ~3!

whereR5r2r8.

A. The stream function

In principle, Eqs.~2! and~3! determine the current distri
bution. To solve these equations for the general case
difficult task, even for a disk.14 However, for small samples
as in our case for whichb!L, the problem can be solved.15

To this end, let us introduce a scalar stream functionG(r),
such that

g5curl~Gẑ!. ~4!

The first of Eqs.~3! is then satisfied. It is easily seen that th
contoursG(x,y)5const coincide with the current stream
lines. Substituting Eq.~4! into ~2!, we obtain
©2004 The American Physical Society16-1
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2pL

c
¹2G57f0d~r2v !1bz . ~5!

The radial component of the current at the ring edges m
be zero; this means that the values ofG(x,y) at the edges are
constants,

G~r 5a,w!5Ga , G~r 5b,w!5Gb , ~6!

where (r ,w) are polar coordinates. Sincegw52]G/]r , the
total counterclockwise current~in thew direction! around the
ring is

I 5Ga2Gb . ~7!

The self-field of the ring currentswithin the ring can be
estimated using the Biot-Savart law:*d2rg/cR2;g/c. Sub-
stitution ofbz;H1g/c into Eq.~2! reveals that the self-field
can be disregarded becauseR!L; i.e., we can setbz5H in
Eq. ~5!,

2pL

c
¹2G57f0d~r2v !1H. ~8!

Since this equation is linear, we can look for a solution
the formG5Gv1GH , such thatGv satisfies

¹2Gv57
cf0

2pL
d~r2v !, ~9!

and

¹2GH5
c

2pL
H. ~10!

One can say thatGv describes the currents due to the vort
or antivortex, whereasGH is the response to the applie
field.

The boundary conditions~6! are imposed on the sumGv
1GH . It is convenient to require that

Gv~a!5Gv~b!50, ~11!

and

GH~a!5Ga , GH~b!5Gb . ~12!

In a uniform field H, GH can be taken as cylindrically
symmetric. Aside from an unimportant additive constant,

GH~r !5
cH

8pL
r 21G0ln

r

a
, ~13!

where the constantG0 is expressed in terms of the tot
current~7!,

I 52
cH~b22a2!

8pL
2G0ln

b

a
. ~14!

To evaluateI we use the London equation in the form,

g52
cf0

4p2L
S ¹u1

2p

f0
AD . ~15!
06451
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Hereu is the order parameter phase, the topology of wh
plays a major role in our problem.

When the ring is traversed around a circle of radiusr in
the positive direction of the azimuthw, the phase changes b
22pN, whereN is an integer which is commonly called th
winding number or the vorticity. If there are no vortices
the annulus, the integerN is the same for any contour within
the annulus and we consider the state as having wind
numberN. In other words, the state of the system is char
terized by the integerN and the continuous variableH. In
zero field, N.0 corresponds to positive currentsgw and
positive magnetic momentsmz .

In the presence of a vortex, however, the situation is d
ferent. For contours encircling the ring’s hole, the windi
number isN at contours that do not include the vortex po
tion; the number isN11 for those that do. The state is no
characterized by the vortex positionv in addition toN and
H. In this paper, when the state of the ring with a vortex
characterized by the variablesN,H, andv, it is implied that
the integerN describes the phase topology on contours t
do not include the vortex. The generalization to antivortic
is obvious.

Coming back to evaluation of the total current, we int
grateI 5*a

bgw(r ,w)dr over w to get

I 5E
a

b

ḡw~r !dr, ~16!

where the azimuthal average ofgw(r ,w) is

ḡw~r !5E
0

2p

gw

dw

2p
5

cf0

4p2L
S N

r
2

pH

f0
r D , ~17!

for r ,v, and

ḡw~r .v !5
cf0

4p2L
S N61

r
2

pH

f0
r D . ~18!

We now readily evaluate the total current and the cons
G0,

G052
cf0

4p2L
FN6

ln~b/v !

ln~b/a!G . ~19!

Note thatG0, which determines the partGH of the stream
function, depends on whether or not a vortex is present at
ring and on its position. In other words, the current distrib
tion is not a simple superposition of the currents genera
by a vortex in zero field and of those existing in the sta
(N,H) in the vortex absence.

B. Electrostatic analogy and exact solution

To find the solution of Eq.~9! for the vortex-generated
stream functionGv subject to the boundary conditions~11!,
we observe that the problem is equivalent to the tw
dimensional one for the electrostatic potential generated b
line charge6cf0/8p2L at the pointv situated between two
6-2
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coaxial grounded metallic cylinders with radiia andb. The
necessary conformal mapping procedure is given in Ref.

Gv~w,v !56
cf0

4p2L
ReF ln

A~w,v !

B~v ! G , w5reiw,

A~w,v !5
cn@2g ln~v/a!,m#

sn@2g ln~v/a!,m#
2

cn@g ln~v/w!,m#

sn@g ln~v/w!,m#
,

~20!

B~v !5
cn@2g ln~v/a!,m#

sn@2g ln~v/a!,m#
2

cn@g ln~v/a!,m#

sn@g ln~v/a!,m#
,

where cn(x),sn(x) are the Jacobi elliptic functions,g
5K(m)/ ln(b/a) with K(m) being the complete elliptic inte
gral ~in the notation of Ref. 17!, and the parameterm is
chosen to satisfy

K~12m!ln~b/a!5pK~m!. ~21!

As an example, we find that forb/a52 ~such rings were
studied in Ref. 3!, m51.04831025, andg52.266.

For rings with 1,b/a,2, we have 0, ln(b/a),1. Solv-
ing Eq. ~21! numerically, one can see thatm!1. Expanding
functions K(m) and K(12m) for small m, one obtains with
a high accuracy,

m516 expF2
p2

ln~b/a!G , g5
p

2 ln~b/a!
. ~22!

One can now setm50 in Eq. ~20! to obtain

Gv'6
cf0

4p2L
ReH ln

sin@p ln~vw/a2!/2 ln~b/a!#

sin@p ln~v/w!/ ln~b/a!# J .

~23!

At the vortex positionr 5v, w50, this function diverges
logarithmically. One can findGv(v) @and the self-energy
ev5f0uGv(v)u/2c] by introducing the standard cutoff at
distancej from the vortex axis atv:

ev'
f0

2

8p2L
lnF2v ln~b/a!

pj
sin

p ln~v/a!

ln~b/a! G . ~24!

The relative difference between this expression and the e
energy is less than 2310212 for b/a<2.18 Formally, the
logarithmic factor in Eq.~24! goes to2` if v→a or v
→b. However, this expression fails when the vortex
within roughly j of the inner or outer radius. In fact,ev of
Eq. ~24! becomes equal to zero atva5a(11j/2a) and vb
5b(12j/2a).

Thus, the problem of the current distribution in the ring
solved: the vortex-generated partGv of the stream function
is given in Eqs.~20!, while GH is determined by Eqs.~13!
and ~19!. The current streamlines are given by the conto
G(r ,w)5Gv(r ,w)1GH(r )5const; Fig. 1 shows example
of current streamlines for a vortex and an antivortex.

It is worth mentioning that the same method based
application of conformal mapping to problems of the tw
06451
6
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s
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dimensional electrostatics can be utilized to obtain curr
distributions forn vortices equally spaced along a circle
radiusa,v,b of the ring.16

III. ENERGY

A. Zero applied field

Let us first consider the energyE(N,v) of the ring with a
vortex atv in the stateN in zero applied field. This energy i
a sum of the magnetic and kinetic contributions. The m
netic part is19

Em5
1

2cE A•gd2r

52
1

2cE S 2pL

c
g1

f0

2p
¹u D •gd2r,

~25!

FIG. 1. Current streamlines in a ring withb/a52, N52, and
vortex or antivortex positionv/a51.2 in the normalized fieldh
5H/H052.3 @see Eq.~39!#. The streamlines are plotted as contou
of G5Gv1GH5const. The left panel is for a vortex; the stream
lines shown that encircle the hole have clockwise flow, whereas
flow around the vortex is counterclockwise. The right panel sho
an antivortex; all streamlines shown have clockwise flow.
6-3
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where we use Eq.~15! to express the vector potentialA at the
ring in terms ofg and the phaseu. The supercurrent kinetic
energyEk is the integral over the film volume of the quanti
2plL

2 j 2/c25pLg2/c2d.13 We find readily that this energy i
equal in value and opposite in sign to the term containingg2

in Eq. ~25!, so that

E~N,v ![Em1Ek52
f0

4pcE ~¹u•g!d2r. ~26!

The integrand here can be further transformed in term
the stream functionG,

¹u•curl~Gz!5div~Gz3¹u!1Gz•curl¹u. ~27!

Substituting this into Eq.~26!, we use Gauss theorem t
evaluate the contribution of the first term,

E div~Gz3¹u!d2r5E
0

2pF2G~b,w!
]u

]w Ub

1G~a,w!
]u

]wU
a
Gdw

52p@~N61!Gb2NGa#.
~28!

Here we have used the boundary conditions~6! and the
phase change is22pN upon circling the inner radius and
22p(N61) the outer radius, provided a single vortex~an-
tivortex! is present in the annulus.

Integrating the second term of Eq.~27!, we use the basic
quantization property of the phase@curlz ¹u572pd(r
2v)#, take the curl of Eq.~15!, and compare the result wit
Eq. ~2!. Then, we obtain the magnetic and kinetic energy
the persistent currents in the ring,

E~N,v !5
f0

2c
@G~v !2~N61!Gb1NGa#. ~29!

Note thatG(v)5Gv(v)1GH(v), and the vortex self-energ
is ev5f0uGv(v)u/2p ~see Ref. 15!. Utilizing Eqs. ~13! and
~19!, we obtain

E~N,v !5ev~v !1e0FN6
ln~b/v !

ln~b/a!G
2

, ~30!

where we introduce the energy scale

e05
f0

2ln~b/a!

8p2L
. ~31!

If v5b, i.e., if there is no vortex in the annulus, we ha

E05
f0

2c
~Ga2Gb!N5

f0

2c
NI. ~32!
06451
of
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B. Magnetic moment

By definition, thez directed magnetic moment reads19

m5
1

2cEa

b

drr 2E
0

2p

dwgw~r ,w!5
p

c Ea

b

r 2ḡw~r !dr.

~33!

This is easily evaluated using Eqs.~17! and ~18!,

m5
f0~b22a2!

8pL S N6
b22v2

b22a2D 2
H

16L
~b42a4!. ~34!

It is worth noting that the magnetic moment is evaluated h
without need to employ the explicit current distributio
which could have been obtained from the known stre
function Gv1GH .

Setting v5b, we obtain the momentm0 in the ‘‘pure’’
stateN with no vortex at the ring:

m0~N,H !5
f0~b22a2!

8pL
N2

H

16L
~b42a4!. ~35!

The result can be verified by direct calculation ofm using the
current distribution in the absence of vortices. If we setv
5a in Eq. ~34!, we obtainm0(N61,H).

It is instructive to observe that the exact moment~34! in
the presence of a vortex atv can be considered as a sum
the magnetic moment of a vortex-free ring with inner a
outer radiia and v having winding numberN and another
ring with inner and outer radiiv and b with vorticity N
11.

C. Free energy in field

The thermodynamic potentialF which is minimum in
equilibrium at a given applied field is defined by a differe
tial relation

dF52m•dH52mdH, ~36!

wherem(N,v,H) is the system magnetic moment.19 Using
Eq. ~34!, we readily obtainF by integrating Eq.~36! overH
from 0 to H,

F65E~N,v !2
f0H~b22a2!

8pL S N6
b22v2

b22a2D
1

H2

32L
~b42a4!, ~37!

where the zero-field energyE(N,v) is given in Eq. ~30!.
After simple algebra we arrive at our main result,

F6~N,v,H !5ev~v !1e0F S N6
ln~b/v !

ln~b/a! D
2

22hS N6
b22v2

b22a2D 1h2xG , ~38!
6-4
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where we have introduced a dimensionless fieldh5H/H0,
where

H05
2f0 ln~b/a!

p~b22a2!
, ~39!

and a geometric factorx given by

x5
b2/a211

b2/a221
ln

b

a
. ~40!

For a narrow ringb/a215h!1, x511O(h2). With in-
creasingb/a, x grows slowly: forb/a52, x'1.155, and
x' ln(b/a) for large values ofb/a.

D. Vortex-free state

For the vortex-free state, Eq.~38! yields

F0~N,h!5e0~N222Nh1h2x!. ~41!

It is seen thatF0(N1 ,h)5F0(N2 ,h) at the field h5(N1
1N2)/2 for any N1 and N2. In particular, forN15N and
N25N11, the energiesF0(N,h)5F0(N11,h) at h5N
11/2. In other words, at this field the system might be
either of the statesN or N11 having the same energy.

One can readily check that the thermodynamic poten
F0(N,h) of the vortex-free state coincides with thekinetic
energy of the supercurrents in the ring.

A transition from a state with vorticityN to one with
vorticity N11 can happen when a vortex, carrying unit vo
ticity, enters at the outer radius, crosses the ring, and ann
lates at the inner radius. Alternatively, such a transition
be accomplished, starting with initial vorticityN, when an
antivortex, carrying vorticity –1, enters the annulus at
inner radiusa, crosses the ring, and annihilates at the ou
radiusb, leaving behind vorticityN11 trapped in the ring.

The field dependence ofF0 for 0<N<4 is shown in Fig.
2, which illustrates the above features. It shows that in fie
N21/2,h,N11/2, the minimum energy belongs to th
stateN. However, the first excited state isN21 for N21/2
,h,N, whereas it isN11 for N,h,N11/2. It should be
also noted that in a given fieldh, the ground statewinding
number is the integer nearest toh.

Although the ground state vorticityN changes with field,
the energydifferencebetween the lowest and the ‘‘first ex
cited state’’ is, in fact, periodic inh with the periodDh
51. It is easy to check that the differenceF0(N,h)2F0(N
21,h)5F0(N11,h11)2F0(N,h11). This fact has impli-
cations for the transition probabilities from the ground st
to the nearest excited state.

It is worth observing that the energy~38! differs from that
of the vortex-free state,F0 of Eq. ~41!, by the vortex self-
energyev(v) and by the addition toN of the v-dependent
terms that vary from unity to zero as the vortex moves fr
a to b.
06451
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E. Potential barriers for vortices crossing the ring

We are now in a position to evaluate the energy bar
that must be overcome for a vortex or an antivortex to mo
between the inner and outer radii of the ring. SinceGv50 at
both a andb, we have atv5b,

F1~N,b!5F2~N,b!5F0~N!, ~42!

where the energyF0(N) of the vortex-free states is given b
Eq. ~41!; the subscript ‘‘1’’ is for a vortex, whereas ‘‘–’’
stands for an antivortex~the field argumentH is suppressed
for brevity!. In other words, the addition of either a vortex
an antivortex at the outer radius does not change the vort
of the system. On the other hand, atv5a we have

F1~N,a!5F0~N11!, F2~N,a!5F0~N21!; ~43!

i.e., moving a vortex~antivortex! from b to a changes the
vorticity by 11 (21), an obvious consequence of the sy
tem topology.

Starting from a vortex-free stateN, the motion of a vortex
betweena andb can change the system energy in two wa
If a vortex moves in, starting from the outer radiusb, the
spatial dependence of the potential energy barrier aga
vortex entry is given by the difference

F1~N,v !2F0~N!5Vin
1~N,v !, ~44!

so that Vin
1(N,b)50, while Vin

1(N,a)5e0(2N1122h),
which corresponds to the energy of transition betwe
‘‘pure’’ states N and N11. On the other hand, if a vorte
moves out, starting from the inner radiusa, the spatial de-
pendence of the potential energy barrier against vortex ex
given by the function

Vout
1 ~N,v !5F1~N21,v !2F0~N!, ~45!

FIG. 2. The energyF0 of vortex-free states of a ring withb/a
52 for vorticities N from 0 to 4 versus applied field. The energ
and field units are defined in Eqs.~31! and ~39!. Note that e.g. for
0.5,h,1.5, N51 corresponds to the ground state. The near
‘‘excited’’ state isN50 for 0.5,h,1, whereas for 1,h,1.5 it is
N52.
6-5
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such that Vout
1 (N,a)50, while Vout

1 (N,b)5e0(2h22N
11), which corresponds to the energy of transition from
stateN to the stateN21.

When h5N11/2, we obtainVin
1(N,a)5Vin

1(N,b)50,
Vout

1 (N11,b)5Vout
1 (N11,a)50 for any N. Moreover, the

potential barriersVin
1(N,v) andVout

1 (N11,v) are identical.
Similarly, the motion of an antivortex betweena and b

can change the system energy in two ways. If an antivo
moves in, starting from the outer radiusb, the spatial depen
dence of the potential energy barrier against antivortex e
is given by the function

Vin
2~N,v !5F2~N,v !2F0~N!, ~46!

so that Vin
2(N,b)50, while Vin

2(N,a)5e0(2h22N11),
which corresponds to the energy of transition from the s
N to the stateN21. On the other hand, if an antivorte
moves out, starting from the inner radiusa, the spatial de-
pendence of the potential energy barrier against vortex ex
given by the function,

Vout
2 ~N,v !5F2~N11,v !2F0~N!, ~47!

such that Vout
2 (N,a)50, while Vout

2 (N,b)5e0(2N11
22h), which corresponds to the energy of transition fro
the stateN to the stateN11.

Note thatVout
2 (N,v) differs from Vin

2(N11,v) only by a
constant: Vout

2 (N,v)2Vin
2(N11,v)5F0(N11)2F0(N)

5e0(2N1122h). When this constant is zero, i.e., whenh
5N11/2, the barriersVout

2 (N21,v) and Vin
2(N,v) become

identical.
We conclude the discussion of barriers by pointing o

that although the total energiesF6(N,H,v) are quadratic in
N and H, the barrier functions are linear in these variabl
For example, we have for a vortex entry atb,

Vin
1~N,H,v !5ev~v !1e0H F2N1

ln~b/v !

ln~b/a!G ln~b/v !

ln~b/a!

22h
b22v2

b22a2J . ~48!

IV. NARROW RINGS

The energy~38! simplifies for narrow rings of widthW
5b2a!a, i.e., for

h5W/a!1. ~49!

We obtain in the linear approximation inh,

F65ev~z!1e0~N6z2h!2, ~50!

ev5
f0

2

8p2L
lnS 2ah

pj
sinpzD , z5

b2v
b2a

. ~51!

Here, 0,z,1; the energy and field scales are
06451
e
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e0'
f0

2

8p2L
h, H0'

f0

pa2
. ~52!

In particular, we have for the vortex-free state (z50),

F0'
f0

2h

8p2L
~N2h!25

f0
2h

8p2L
S N2

pa2H

f0
D 2

, ~53!

an expression similar to that for thin cylinders.4,20

The potential barriers defined in Eqs.~44!–~47! are now
easily evaluated. We focus here onVin

1 for a vortex, which
reads in linear approximation inh,

Vin
1'ev1e0z~2N22h1z!. ~54!

One readily verifies that this potential reaches maximum
zm51/21O(h), i.e., atvm5(b1a)/2.

To study the behavior of the potentialVin
1(N,H,v) near its

maximum in increasing fields, one should go to higher or
terms in the smallh. To avoid cumbersome algebra, we u
the fact that in the ground stateuh2Nu<1/2 so that in large
fields we can setN'h and study the behavior of the functio
Vin

1(h,h,v). Of a particular interest is the curvature of th
potential barrier at v5vm . Numerical experimentation
shows that in large fields, the maximum ofVin

1 is situated
close to vm5(b1a)/2. Differentiating twice the function
Vin

1(h,h,v) with respect tov ~this is easily done using Math
ematica! and settingv5vm5a1W/2, we find that the cur-
vature turns zero at

H'H15
pf0

4W2
. ~55!

For H.H1, the potential barrierVin
1(h,h,vm) acquires a lo-

cal minimum. Examples are shown in Fig. 3. A vortex at th
minimum is in a metastablestate providedVin

1(h,h,vm)
.0.

FIG. 3. The energy barriersVin
1(N,H,v) for the vortex entry at

the outer radiusb calculated numerically according to Eq.~44!. The
energyVin

1 is given in units off2/8p2L. The vortex positionv is
normalized on the inner radiusa. The left panel:b/a51.2; the
parameters from top to bottom areh5N53, 110, 295, and 450;h
is normalized toH0 of Eq. ~39!. The right panel:b/a52; the pa-
rameters from top to bottom areh5N53, 10, 28, and 50. Note: the
normalization fieldH0 for the second panel differs from the first.
6-6
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With increasing field, the depth of the minimum increas
and at a field that may be called the low critical field,Hc1 ,
Vin

1(h,h,vm) becomes equal to zero. This is the minimu
field at which vortices can nucleate at the ring and stay th
in stableequilibrium. We can estimate this field by settin
Vin

1(h,h,vm)50 in Eq. ~48!. For narrow rings we obtain

Hc1'
2f0

pW2
ln

2W

pj
. ~56!

Clearly, with the further field increase, the barriers
both sides of the minimum are suppressed, while the po
v0 whereVin

150 are pushed towards the annulus edgesa
andb. The critical fieldH* at which the ‘‘edge barrier’’ near
b disappears can be estimated by settingVin

1(h,h,v0)50 in
Eq. ~48! and considering the limitv0'b2j. After straight-
forward algebra we obtain

H* '
f0 ln 2

pjb

ln~b/a!

2 ln~b/a!211a2/b2
. ~57!

For narrow rings, this reduces to

H* '
f0 ln 2

2pjW
, ~58!

whereas for rings with a small hole,a!b,

H* '
f0 ln 2

2pjb F11
1

2 ln~b/a!G . ~59!

It is of interest to note that the fieldH1 of Eq. ~55! is
temperature independent,Hc1 of Eq. ~56! is only weakly
depends onT, whereasH* vanishes asT→Tc asA12T/Tc.
The last two are to be compared with the bulkHc1 andH* ,
the bulk characteristics of the Bean-Livingston barrier, b
of which are linear in 12T/Tc nearTc .13

V. DISCUSSION

The behavior of narrow rings is closely related to that
long strips. The field given in Eq.~55! was derived previ-
ously in a study of long strips of widthW, whereH1 was
called thevortex exclusion field.21 According to this theory,
when a superconducting strip is cooled throughTc in an
ambient magnetic fieldHa , vortices should be exclude
from the strip whenHa is less thanH1, because the free
energy then has a global maximum at the strip center~at vm
in our notation!. On the other hand, whenHa is greater than
H1, there is a local free-energy minimum atvm , where the
probability of finding a vortex is proportional to ex
(2Vmin

1 /kBT). Near Tc , this probability is close to unity
However, asT decreases, the characteristic energy sc
f0

2/8p2L(T), increases rapidly. The vortices are then ‘‘fr
zen in’’ a potential well similar to those shown in Fig. 3 at
characteristic freeze-in temperatureTf , which for most su-
perconductors is estimated as being very close toTc . The
value ofL(Tf) turns out larger than strip widths of the ord
of a few mm, which justifies calculations done in the thin
06451
s

re

ts

h

f

e,

film limit. The above arguments suggest that SQUIDs to
cooled and operated in the Earth’s magnetic field should
made entirely of narrow lines in order to avoid flux noise d
to thermal agitation of vortices trapped in the lines. Expe
ments by Dantskeret al.22 are consistent with this conclu
sion.

The solutions presented here for currents and energie
thin mesoscopic superconducting rings are of importance
the physics of isolated rings~such as in Ref. 3!, as well as for
understanding the behavior of large ensembles of interac
rings.1,2 The statistical mechanics of these systems requ
knowledge of ring energy levels and probabilities of qua
tum or thermally activated transitions between the states
different energies. Our work should be useful for such sta
tical modelling. Despite the known shortcomings of the Lo
don approach, this is the only method that is of practical
for temperatures away from the critical temperature. A k
advantage of the London equations is their linearity, wh
makes exact solutions for mesoscopic rings possible.

The electrostatic analogy we employed, may prove use
for various mesoscopic sample shapes. A number of th
shapes~as squares, rectangles, or polygons! can be found in
textbooks on applications of the theory of complex functio
to the two-dimensional electrostatics, see, e.g., Ref. 16.
example of a thin-film disk is considered in the Appendix
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APPENDIX: THIN FILM DISK

It is worth stating upfront that the solution for a dis
cannot be obtained by setting the inner radiusa50 in the
solutions for a ring. The ring topology differs from that of
disk, and there is no continuous transition from the one
another. In fact, for a disk with no vortices the vorticityN
[0. The state of a disk is determined by the continuo
variableH, the applied field, and by the vortex position~or
positions, if any!.

Consider a thin-film disk of a radiusb!L with a vortex
at an arbitrary positionv. To find the current distribution one
has to solve Eq.~8! with the boundary conditionG(r 5b)
5const5Gb , or alternatively, Eq.~9! for Gv and ~10! for
GH under boundary conditionsGv(b)50 andGH(b)5Gb .

The partGH reads

GH~r !5
cH

8pL
r 21G0 ln

r

r 0
, ~A1!

where the constantsG0 andr 0 are to be determined using th
fact that the total current isI 52Gb . EvaluatingI with the
6-7



e

a

is
x

ain

e

s

st

the

V. G. KOGAN, JOHN R. CLEM, AND R. G. MINTS PHYSICAL REVIEW B69, 064516 ~2004!
help of London equation~15! one should take the phas
change on circlesr ,v as zero, whereas forr .v as 22p.
Doing this algebra we obtain

G052
cf0

4p2L
, r 05v, ~A2!

and

GH~r !5
cH

8pL
r 22

cf0

4p2L
ln

r

v
. ~A3!

The problem of finding the partGv is equivalent to one
for the electrostatic potential of a linear chargecf0/8p2L at
the pointv parallel to the grounded metallic cylinder of
radiusb. The solution is given, e.g., in Ref. 19,

Gv52
cf0

4p2L
lnS b

vAr 21v222rv cosw

r 21x222rx cosw
D , ~A4!

where r ,w are cylindrical coordinates, the zero azimuth
taken as that ofv, and x5b2/v. As discussed, the vorte
self-energy ev5f0uGv(w50,r→v)u/2c is logarithmically
divergent, so that we setr 5v1j andw50 to obtain

ev5
f0

2

8p2L
ln

b22v2

bj
. ~A5!

The following is obtained in the same way as in the m
text. The energy in zero field is

E~0,v !5ev~v !1
f0

2

8p2L
ln

b

v
, ~A6!

and the magnetic moment is
C.

C.

nd

er.

si
h-

l,

06451
m5
f0~b22v2!

8pL
2

Hb4

16L
. ~A7!

The thermodynamic potentialF5E(0,v)2*0
HmdH follows:

F5
f0

2

8p2L
S ln

b22v2

bj
2h

b22v2

b2
2

h2

4 D , ~A8!

whereh5pb2H/f0 ~note that the field normalization her
differs from the main text!. In the vortex absence,F0

5(f0
2/32p2L)h2, so that the barrier for the vortex entry i

Vin
15

f0
2

8p2L
S ln

b22v2

bj
2h

b22v2

b2 D . ~A9!

It is now easy to find the field at which a local minimum fir
appears in the disk center (d2Vin

1/dr250 at v50),

H15
f0

pb2
. ~A10!

The fieldHc1 is determined byVin
1(0)50,

Hc15
f0

pb2
ln

b

j
, ~A11!

the result given by Fetter.14

Thus forH1,H,Hc1, the vortex in the disk center is in
metastable state, which becomes stable forH.Hc1. Finally,
the barrier to the vortex entry disappears altogether when
point v0 at whichVin

150 moves to the edge,v05b2j,

H* 5
f0 ln 2

2pjb
. ~A12!
n,
ci-

s

nite
er-

s

un

es
1D. Davidovic̀, S. Kumar, D.H. Reich, J. Siegel, S.B. Field, R.
Tiberio, R. Hey, and K. Ploog, Phys. Rev. Lett.76, 815 ~1996!.

2D. Davidovic̀, S. Kumar, D.H. Reich, J. Siegel, S.B. Field, R.
Tiberio, R. Hey, and K. Ploog, Phys. Rev. B55, 6518~1997!.

3J.R. Kirtley, C.C. Tsuei, V.G. Kogan, J.R. Clem, H. Raffy, a
Z.Z. Li, Phys. Rev. B68, 214505~2003!.

4M. Tinkham, Introduction to Superconductivity~McGraw–Hill,
New York, 1996!.

5A. Bezryadin, A. Buzdin, and B. Pannetier, Phys. Lett. A195, 373
~1994!.

6J. Berger and J. Rubinstein, Philos. Trans. R. Soc. London, S
355, 1969~1997!.

7J.J. Palacios, Phys. Rev. Lett.84, 1796~2000!.
8F.M. Peeters, V.A. Schweigert, B.J. Baelus, and P.S. Deo, Phy

C 332, 255 ~2000!; B.J. Baelus, F.M. Peeters, and V.A. Sc
weigert, Phys. Rev. B61, 9734~2000!; 63, 144517~2001!.

9L.B. Ioffe, V.B. Geshkenbein, M.V. Feigel’man, A.L. Fauche`re,
and G. Blatter, Nature~London! 398, 679 ~1999!.

10J.E. Mooij, T.P. Orlando, L. Levitov, Lin Tian, C.H. Van der Wa
and S. Lloyd, Science285, 1036~1999!.
A

ca

11C. Van der Wal, A.C.J. ter Haar, F.K. Wilhelm, R.N. Schoute
C.J.P.M. Harmaks, T.P. Orlando, S. Lloyd, and J.E. Mooij, S
ence290, 773 ~2000!.

12J. Pearl, Appl. Phys. Lett.5, 65 ~1964!.
13P.G. de Gennes,Superconductivity of Metals and Alloy

~Addison–Wesley, New York, 1989!.
14A.L. Fetter, Phys. Rev. B22, 1200~1980!.
15V.G. Kogan, Phys. Rev. B49, 15874~1994!. One should mention

that the general result for a vortex near the edge of a half-infi
thin film of this paper is erroneous; still, the discussion of en
gies and of the samples small on the scale ofL is correct.

16P.M. Morse and H. Feshbach,Methods of Theoretical Physic
~McGraw–Hill, New York, 1953!, Part II, Chap. 10.

17Handbook of Mathematical Functions, Natl. Bur. Stand. Appl.
Math. Ser. No. 55, edited by M. Abramowitz and A. Steg
~U.S. GPO, Washington, D.C., 1965!.

18It is instructive to compare the vortex energy at the ring, Eq.~24!
with an expression for a narrow straight strip:ev

5(f0
2/8p2L)ln@(2W/pj)sin(pv/W)#, where W!L is the strip

width and v is the vortex distance from one of the edg
6-8



s

e

PROPERTIES OF MESOSCOPIC SUPERCONDUCTING . . . PHYSICAL REVIEW B69, 064516 ~2004!
~see Ref. 15!.
19L.D. Landau and E.M. Lifshitz,Electrodynamics of Continuou

Media ~Pergamon, Oxford, New York, 1984!.
20A. Barone and G. Paterno,Physics and Applications of th
06451
Josephson Effect~Wiley, New York, 1982!, p. 355.
21J.R. Clem~unpublished!.
22E. Dantsker, S. Tanaka, and J. Clarke, Appl. Phys. Lett.70, 2037

~1997!.
6-9


