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Properties of mesoscopic superconducting thin-film rings: London approach
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Superconducting thin-film rings smaller than the film penetration dépih Pearl lengthare considered.
The current distribution, magnetic moment, and thermodynamic poteftiaIN,v) for a flat, washer-shaped
annular ring in a uniform applied field perpendicular to the film are solved analytically within the London
approach for a state with winding numhbiérand a vortex at radius between the inner and outer radii.
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[. INTRODUCTION the ring center and<<v<b). The London equations for the
local magnetic fieldb in the film interior read®
Small flat rings made of thin superconducting films are of
interest for a variety of mesoscopic experimertsSQUID-
type devices is an example; another one is the study of flux-
oid dynamics in rings, as discussed by Kirtleyal® The .
basic physics of such rings is governed by flux quantizationHere,j is the current density, is the unit vector perpendicu-
as in the Little-Parks experiment; see, e.g., Ref. 4 or latelar to the film plane, andp,= w#c/|e| is the value of the
publications~® based on the Ginzburg-Landau theory. flux quantum. The upper sign holds for a vortex whereas the
There is a resurgence of experimental interest in this subower one is for an antivortex, the convention retained
ject: The interacting dipole moments in an array of superconthroughout this paper. Averaging this over the thicknéss
ducting rings provide a model system for magnetism in Isingone obtains
antiferromagnet$? Moreover, there is considerable interest N
in quantum coherence effects in superconducting rings and 2w
their arrays for potential applications in quantum b+ Tcurlz 9=+ ¢od(r—v), (2)
computing® !
Many quantitative details specific to the thin-film geom- where g(r) is the sheet current density=(x,y), andv
etry can be treated within the London approach, which is not= (v,0). Equations(1) and (2) are valid everywhere in the
bound by the strict temperature restriction of Ginzburg-film except within a distance of the order of the coherence
Landau models. In the thin-film limit, for which the London length ¢ (vortex core from the vortex or antivortex axis,
penetration depth obeys\>d, the film thickness, the fields Where the London equatioid) no longer holds.
and currents are governed by the Pearl lengyth2)?/d.? The distributiong(r) can be found by solving Ed2),
As we show below, when the inner and outer radiindb of combined with the continuity equation and the Biot-Savart
the annular ring are smaller thay, it is possible to obtain integral that relates the field, to the surface current,
analytic solutions for the energy of the ring in a uniform
magnetic fieldH applied perpendicular to the ring plane with —— _ , 2.1
a vortex sitting in an arbitrary position at the annular region divg=0, bZ(r)_f [9(r)XRICRLAT +H, (3
betweena andb. The motion of vortices betweea and b
provides the means for the ring to switch between discreté/NereR
states with different winding numberll defined below.
Study of these transitions is relevant for understanding the A. The stream function
telegraph noise observed in multiply connected mesoscopic | principle, Eqs(2) and(3) determine the current distri-
superconducting devices in general and in thin-film rings inytion, To solve these equations for the general case is a
particular’ difficult task, even for a disk! However, for small samples,
as in our case for which<A, the problem can be solvéd.
Il. CURRENT DISTRIBUTION To this end, let us introduce a scalar stream funct(n),
such that

2

b+ curlj= = ¢oz8(x—v,y). 1)

=r—r’.

Let us consider a small thin-film ring of thickneds<\
situated _in the plane=0 with inner and outer rada andb, g=curl(G2). (4)
whereb is much smaller than the Pearl length=2)\?%/d.
The ring is in a uniform applied fielth perpendicular to the The first of Eqs(3) is then satisfied. It is easily seen that the
film plane; it may contain a vortetor antivortey, the posi-  contoursG(x,y)=const coincide with the current stream-
tion of which can be taken as=v, y=0 (with the origin at  lines. Substituting Eq(4) into (2), we obtain
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27 A Here 0 is the order parameter phase, the topology of which
TVZG: + ¢od(r—v)+b,. (5  plays a major role in our problem.
When the ring is traversed around a circle of radius
The radial component of the current at the ring edges mushe positive direction of the azimuth, the phase changes by
be zero; this means that the valuesgi,y) at the edges are — 27N, whereN is an integer which is commonly called the
constants, winding number or the vorticity. If there are no vortices in
the annulus, the integét is the same for any contour within
G(r=a,¢)=G,, G(r=b,¢)=GCy, ®  the annulus and we consider the state as having winding
where ,¢) are polar coordinates. Singg = —3dG/dr, the numberN. In other words, the state of the system is charac-
total counterclockwise currefin the ¢ direction around the  terized by the integeN and the continuous variabld. In

ring is zero field, N>0 corresponds to positive currengs, and
positive magnetic momenis, .
1=G,—Gy. (7) In the presence of a vortex, however, the situation is dif-

ferent. For contours encircling the ring’s hole, the winding

! ) g 5 > number isN at contours that do not include the vortex posi-
estimated using the Biot-Savart lafd“rg/cR*~g/c. Sub-  tjon: the number isu+ 1 for those that do. The state is now

stitution ofb,~H+g/c into Eq.(2) reveals that the self-field  characterized by the vortex positienin addition toN and
can be disregarded becalReA; i.e., we can seb,=H in | this paper, when the state of the ring with a vortex is

The self-field of the ring currentwithin the ringcan be

Eq. (5), characterized by the variabl&sH, andv, it is implied that
2 A the integerN describes the phase topology on contours that
——V2G=F ¢d(r—v)+H. (8) do not include the vortex. The generalization to antivortices
c is obvious.

Coming back to evaluation of the total current, we inte-

Since this equation is linear, we can look for a solution of b
gratel = [2g9,(r,¢)dr over ¢ to get

the formG=G,+ Gy, such thatG, satisfies

) _ Coyo |=fb§(r)dr (16)
VG, =75 a(r-v), (9) L gelr)ar,
and where the azimuthal average @f(r,¢) is
c
V2Gy =5 H. (10 = _J” de_ Céo (N_mH
2mA gu(r)= Tm 2 A\ T do' ) 17

One can say thab, describes the currents due to the vortex
or antivortex, wherea$s,, is the response to the applied for r<v, and

field.
The boundary condition&) are imposed on the suf@, — Chpyg (N1 =H
+Gy. It is convenient to require that g (r>v)= I ok (18
G,(a)=G,(b)=0, (1) We now readily evaluate the total current and the constant
and Go,
Gh(a)=Ga, Gu(b)=Gy. (12) Cdo [ In(b/v)
=— + . (19
In a uniform fieldH, G, can be taken as cylindrically O axA In(b/a)

symmetric. Aside from an unimportant additive constant,
Note thatG,, which determines the pa@,, of the stream

cH r function, depends on whether or not a vortex is present at the
Gu(r)=s—=r“+Ggyln—, (13 . X - o
8TA a ring and on its position. In other words, the current distribu-

. i tion is not a simple superposition of the currents generated
where the constanB, is expressed in terms of the total py 4 vortex in zero field and of those existing in the state
current(7), (N,H) in the vortex absence.

cHIE™ &), 14
=————F—Gyln—-. i i
BA olny (149 B. Electrostatic analogy and exact solution

To find the solution of Eq(9) for the vortex-generated
stream functiorG, subject to the boundary conditio$l),
we observe that the problem is equivalent to the two-
=— ﬂ( Vo+ Z_WA) _ (15  dimensional one for the electrostatic potential generated by a
41 A ®o line charge* c¢y/8m2A at the point situated between two

To evaluatd we use the London equation in the form,
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coaxial grounded metallic cylinders with radiiandb. The

necessary conformal mapping procedure is given in Ref. 16

A(w,v)
B(v)

co Re{ln
47°A
cn2ylIn(v/a),m] cnyIn(v/w),m]

sf2yIn(v/a),m] s yIn(v/w),m]’
(20)

G,(w,v)==* , w=re'?,

A(w,v)=

cn2yln(v/a),m] cnvyIn(v/a),m]
sM2yln(v/a),m] sqylIn(v/a),m]’

B(v)=

where cnk),sn(x) are the Jacobi elliptic functionsy
=K(m)/In(b/a) with K(m) being the complete elliptic inte-
gral (in the notation of Ref. 1)/ and the parametem is
chosen to satisfy

K(1—m)In(b/a)=aK(m). (21)

As an example, we find that fds/a=2 (such rings were
studied in Ref.  m=1.048<10 %, andy=2.266.

For rings with I<b/a<2, we have &In(b/a)<1. Solv-
ing Eq.(21) numerically, one can see thai<1. Expanding
functions K(m) and K(1—m) for smallm, one obtains with
a high accuracy,

=16 —772 T 22
m=16ex0— i orm” ¥ 2inbia) 22
One can now sein=0 in Eq.(20) to obtain
G Ceho md | sin 7 In(vw/a?)/2 In(b/a)]
v 2) N N s In(u/w)/in(bla) ]
(23

At the vortex positiorr =v, ¢=0, this function diverges
logarithmically. One can find5,(v) [and the self-energy
€,= ¢o|G,(v)|/2c] by introducing the standard cutoff at a
distance¢ from the vortex axis ab:

¢
8m2A

2vIn(b/a) . wIn(v/a)
& " n(bla) |

€, (29
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FIG. 1. Current streamlines in a ring witha=2, N=2, and
vortex or antivortex positionv/a=1.2 in the normalized fielch
=H/H,=2.3[see Eq(39)]. The streamlines are plotted as contours
of G=G,+Gy=const. The left panel is for a vortex; the stream-
lines shown that encircle the hole have clockwise flow, whereas the
flow around the vortex is counterclockwise. The right panel shows
an antivortex; all streamlines shown have clockwise flow.

dimensional electrostatics can be utilized to obtain current
distributions forn vortices equally spaced along a circle of
radiusa<v<b of the ring®

The relative difference between this expression and the exact

energy is less than 210 2 for b/a<2.!® Formally, the
logarithmic factor in Eq.(24) goes to—« if v—a or v

—Db. However, this expression fails when the vortex is

within roughly ¢ of the inner or outer radius. In fact, of
Eq. (24) becomes equal to zero at=a(l+¢/2a) andvy,
=b(1-¢/2a).

Ill. ENERGY
A. Zero applied field

Let us first consider the ener@®(N,v) of the ring with a
vortex atv in the stateN in zero applied field. This energy is
a sum of the magnetic and kinetic contributions. The mag-

Thus, the problem of the current distribution in the ring is netic part is®

solved: the vortex-generated p&, of the stream function
is given in Egs.(20), while Gy is determined by Eqq13)

and (19). The current streamlines are given by the contours

G(r,¢)=G,(r,¢)+Gy(r)=const; Fig. 1 shows examples
of current streamlines for a vortex and an antivortex.

It is worth mentioning that the same method based on

application of conformal mapping to problems of the two-

En= 55 A-gd?r
1((2mA & ,
——ZJ (Tg-FEVG)gd r,

(25
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where we use E(15) to express the vector potentidlat the
ring in terms ofg and the phas@. The supercurrent kinetic
energyE, is the integral over the film volume of the quantity
2m\?j2Ic?=wAg?/c?d.* We find readily that this energy is
equal in value and opposite in sign to the term contaimjhg
in Eq. (25), so that

E(N,v)=E,+E,=— fTOCf (Vo-g)d2r. (26)

The integrand here can be further transformed in terms of

the stream functioi,

Vé-curl(Gz)=div(GzxVe)+ Gz curl V. (27)
Substituting this into Eq(26), we use Gauss theorem to
evaluate the contribution of the first term,

b

fd' GxV&dz—fzw b
iv(Gz yd<r= . (JP)@

de

a0
TG@.e) 70

a

= 27[(N*1)G,—NG,].
(28

Here we have used the boundary conditidég and the
phase change is 27N upon circling the inner radius and
—2mw(N=1) the outer radius, provided a single vort@n-
tivortex) is present in the annulus.

Integrating the second term of E@®7), we use the basic
qguantization property of the phasgcurl, Vo=352745(r
—v)], take the curl of Eq(15), and compare the result with

PHYSICAL REVIEW B89, 064516 (2004

B. Magnetic moment

By definition, thez directed magnetic moment redds

1 (b ) 2w a (b —
p=e | dre? [ ago,ir.e= 1 [ g, mar
(33
This is easily evaluated using Eq4.7) and(18),

n

It is worth noting that the magnetic moment is evaluated here
without need to employ the explicit current distribution
which could have been obtained from the known stream
functionG,+ Gy .

Settingv=Db, we obtain the momenf, in the “pure”
stateN with no vortex at the ring:

Po(b*—a?)
8m7A N

b2_U2
*
2

b?—

H
~16A

 ¢g(b2—a?)
K="78mA

(b*—a%). (34

a

H

_ 4_ .4
16A(b a®).

mo(N,H)= (35
The result can be verified by direct calculatiorpotising the
current distribution in the absence of vortices. If we set
=a in Eq. (34), we obtainug(N=1,H).

It is instructive to observe that the exact momé&¥) in
the presence of a vortex atcan be considered as a sum of
the magnetic moment of a vortex-free ring with inner and
outer radiia andv having winding numbeN and another
ring with inner and outer radibv and b with vorticity N
+1.

C. Free energy in field

The thermodynamic potentiaF which is minimum in

Eg. (2). Then, we obtain the magnetic and kinetic energy ofequilibrium at a given applied field is defined by a differen-

the persistent currents in the ring,

E(N,v)=%[G(v)—(Ntl)Gb-i-NGa]. (29

Note thatG(v)=G,(v) +Gx(v), and the vortex self-energy
is €,= ¢o|G,(v)|/27 (see Ref. 15 Utilizing Egs. (13) and
(19), we obtain

(N — N+In(b/v) 2 20
(N,v)=¢€,(v)+ € “inbia)| (30
where we introduce the energy scale
#2In(b/a)
= 31
T gmA 39

If v=Db, i.e., if there is no vortex in the annulus, we have

bo

2—CNI.

o= 22 (Ga=GyIN= (32

tial relation

SF=—p - SH=—udH, (36)

where u(N,v,H) is the system magnetic momeéritlUsing
Eq. (34), we readily obtainF by integrating Eq(36) overH
from O toH,

B doH(b%—a?) b2—v?
H2
+ﬁ(b4—a“), (37)

where the zero-field energi(N,v) is given in Eq.(30).
After simple algebra we arrive at our main result,

. N _In(blv) 2
=(N,v,H)=¢€,(v)+ € ~In(b/a)
2.2
—Zh(Nin_az +h%x|, (38)
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where we have introduced a dimensionless fielH/H,,
where

2¢oIn(b/a)
0:%, (39
m(b*—a%)
and a geometric factoy given by
b%a?+1 b 40
=———In—.
X prai-1 a

For a narrow ringb/a—1=5<1, y=1+O(%?). With in-
creasingb/a, y grows slowly: forb/a=2, y~1.155, and
x~In(b/a) for large values ob/a.

D. Vortex-free state FIG. 2. The energyF, of vortex-free states of a ring with/a

=2 for vorticitiesN from 0 to 4 versus applied field. The energy

and field units are defined in Eq&1) and(39). Note that e.g. for

0.5<h<1.5, N=1 corresponds to the ground state. The nearest

Fo(N,h)=eo(N2—2Nh+h2y). (41)  “excited” state isN=0 for 0.5<h<1, whereas for £h<1.5 it is
N=2.

For the vortex-free state, E(38) yields

It is seen thatFy(N¢,h)=F,(N,,h) at the fieldh=(N;

+N,)/2 for anyN; and N,. In particular, forN,=N and E. Potential barriers for vortices crossing the ring

N,=N+1, the energiesFy(N,h)=F,(N+1h) at h=N We are now in a position to evaluate the energy barrier
+1/2. In other words, at this field the system might be inthat must be overcome for a vortex or an antivortex to move
either of the statebl or N+ 1 having the same energy. between the inner and outer radii of the ring. Sige=0 at

One can readily check that the thermodynamic potentiaboth a andb, we have av =b,
Fo(N,h) of the vortex-free state coincides with theetic
energy of the supercurrents in the ring. F+(N,b)=F_(N,b)=Fo(N), (42

A transition from a state with vorticiN to one with  here the energyr,(N) of the vortex-free states is given by
vorticity N+1 can happen when a vortex, carrying unit vor- £q *(41); the subscript *-” is for a vortex, whereas “~"
ticity, enters at the outer radius, crosses the ring, and annihisiands for an antivortegthe field argumenH is suppressed
lates at the inner radius. Alternatively, such a transition cafor previty). In other words, the addition of either a vortex or
be accomplished, starting with initial vorticity, when an 4, antivortex at the outer radius does not change the vorticity

antivortex, carrying vorticity —1, enters the annulus at theys e system. On the other hand,iat a we have
inner radiusa, crosses the ring, and annihilates at the outer

radiusb, leaving behind vorticityN+ 1 trapped in the ring. Fi(N,a)=Fo(N+1), F_(N,a)=Fy(N-1); (43

The field dependence ¢, for 0=N=4 is shown in Fig.
2, which illustrates the above features. It shows that in field
N—1/2<h<N+1/2, the minimum energy belongs to the
stateN. However, the first excited state —1 for N—1/2
<h<N, whereas it idN+ 1 for N<h<N+1/2. It should be
also noted that in a given field, the ground statewinding
number is the integer nearestho

Although the ground state vorticity changes with field,
the energydifferencebetween the lowest and the “first ex-
cited state” is, in fact, periodic irh with the periodAh Fo(Nw) = Fo(N)=V:(N,v), (44)
=1. It is easy to check that the differengg(N,h) — F,(N
—1h)=Fo(N+1h+1)—Fo(N,h+1). This fact has impli- so that V;;(N,b)=0, while V; (N,a)=eo(2N+1-2h),
cations for the transition probabilities from the ground statewhich corresponds to the energy of transition between
to the nearest excited state. “pure” statesN and N+ 1. On the other hand, if a vortex

It is worth observing that the energ$9) differs from that moves out, starting from the inner radiasthe spatial de-
of the vortex-free statef, of Eq. (41), by the vortex self- pendence of the potential energy barrier against vortex exit is
energye,(v) and by the addition tdN of the v-dependent given by the function

terms that vary from unity to zero as the vortex moves from .
atob. Voul N.v) =F(N=1p) = Fo(N), (45

g.e., moving a vortexantivortey from b to a changes the
vorticity by +1 (—1), an obvious consequence of the sys-
tem topology.

Starting from a vortex-free staté, the motion of a vortex
betweena andb can change the system energy in two ways.
If a vortex moves in, starting from the outer radibsthe
spatial dependence of the potential energy barrier against
vortex entry is given by the difference
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such that VJ,(N,a)=0, while Vg (N,b)=ey(2h—2N {v+ 1
+1), which corresponds to the energy of transition from the °7 ™ %7
stateN to the stateN—1. ] ]

When h=N+1/2, we obtainV;.(N,a)=V;,(N,b)=0, ] ]
Vo (N+1b)=VJ (N+1a)=0 for any N. Moreover, the 0] 0
potential barriers/;,(N,v) andV_,(N+1p) are identical. ] \/ ]

Similarly, the motion of an antivortex betweenand b ] ]
can change the system energy in two ways. If an antivortex _1 via ] via

moves in, starting from the outer radibsthe spatial depen- DR ] ‘1‘ T 1 5 _5_1 T 1'5 C 5
dence of the potential energy barrier against antivortex entry ' ’ '
is given by the function FIG. 3. The energy barriefg;.(N,H,v) for the vortex entry at
the outer radiud calculated numerically according to Eg4). The
Vi, (N,v)=F_(N,v)—Fy(N), (46) energyV;, is given in units of¢?/8w?A. The vortex position is

normalized on the inner radiua The left panel:b/a=1.2; the
so that V,(N,b)=0, while V;,(N,a)=¢€q(2h—2N+1), parameters from top to bottom ahe=N=3, 110, 295, and 450
which corresponds to the energy of transition from the statés normalized toH, of Eq. (39). The right panelb/a=2; the pa-
N to the stateN—1. On the other hand, if an antivortex rameters from top to bottom ahe=N=3, 10, 28, and 50. Note: the
moves out, Starting from the inner radias the Spatial de- normalization fleldHo for the second panel differs from the first.
pendence of the potential energy barrier against vortex exit is
given by the function,

Vo N,w)=F_(N+10)— Fo(N), 47) o b5 b o 52
0 o~ -

~ 7
such that V;,(N,a)=0, while Vy,(N,b)=eo(2N+1 8 7a

—2h), which corresponds to the energy of transition from|n particular, we have for the vortex-free stae=0),
the stateN to the stateN+1.

Note thatV,,(N,v) differs from V,,(N+21v) only by a 27 27 raH
constant:  V (N,v) =V (N+1p)=Fy(N+1)—Fu(N) Fo~——, = ( =
=¢o(2N+1—2h). When this constant is zero, i.e., when 8mA 8m°A o
=N+1/2, the barriers/,(N—1v) andV;,(N,v) become an expression similar to that for thin cylindér&’
identical. The potential barriers defined in Eq44)—(47) are now

We conclude the discussion of barriers by pointing Outeasily evaluated. We focus here ¥, for a vortex, which
that although the total energi€s. (N,H,v) are quadratic i reads in linear approximation in,
N andH, the barrier functions are linear in these variables.

2
, (53

(N—h)?

For example, we have for a vortex entrylat V;%EU+ €0z(2N—2h+72). (54)
In(b/v)]In(b/v) One readily verifies that this potential reaches maximum at
Vi;(N,H,v)ZeU(v)-I—eO[ 2N-|—I b/a) lin(b/ Zn=12+O(7n), i.e., atv,=(b+a)/2.
n(b/a)in(b/a) To study the behavior of the potentM},(N,H,v) near its

(48)  termsin the small. To avoid cumbersome algebra, we use
the fact that in the ground stae— N|<1/2 so that in large
fields we can sel=~h and study the behavior of the function
V;(h,h,v). Of a particular interest is the curvature of the
potential barrier atv=v,,. Numerical experimentation

The energy(38) simplifies for narrow rings of widthV  shows that in large fields, the maximum gf, is situated
=b—a<a, i.e., for close tov,,=(b+a)/2. Differentiating twice the function
V;,(h,h,v) with respect ta (this is easily done using Math-
n=W/a<1. (49 ematica and settingy =v,,=a-+W/2, we find that the cur-
vature turns zero at

] maximum in increasing fields, one should go to higher order

IV. NARROW RINGS

We obtain in the linear approximation imn,

F.=e,(2)+eg(NE2—h)2, (50) HeH, = %0 (55)
4W?
B b5 2any _ _b-v For H>H,, the potential barrie¥;,(h,h,v,,) acquires a lo-
T g 20 In W_gs'nwz » T pa G cal minimum. Examples are shown in Fig. 3. A vortex at this
minimum is in a metastablestate providedV;,(h,h,v )
Here, 0<z<1; the energy and field scales are >0.
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With increasing field, the depth of the minimum increasesfilm limit. The above arguments suggest that SQUIDs to be

and at a field that may be called the low critical fiel,

cooled and operated in the Earth’'s magnetic field should be

V. (h,h,u,) becomes equal to zero. This is the minimummade entirely of narrow lines in order to avoid flux noise due
field at which vortices can nucleate at the ring and stay theréo thermal agitation of vortices trapped in the lines. Experi-

in stable equilibrium. We can estimate this field by setting ments by Dantskeet a

Vi (h,h,v,) =0 in Eq.(48). For narrow rings we obtain

H 2¢g 2W
~ n—.
ot aW2  m§

(56)

Clearly, with the further field increase, the barriers on
both sides of the minimum are suppressed, while the point
vo whereV, =0 are pushed towards the annulus edges at

andb. The critical fieldH* at which the “edge barrier” near
b disappears can be estimated by set¥jgh,h,v,)=0 in
Eq. (48) and considering the limit o~b— £. After straight-
forward algebra we obtain

¢pln2 In(b/a)
mED 2 In(b/a)—1+a2/b?

*

(57)
For narrow rings, this reduces to

dpIn2
2mEW’

*

(58)

whereas for rings with a small hola<b,

¢pIn2
 2mwéb

1
* 2 In(bla)

*

. (59

It is of interest to note that the fieldl; of Eq. (55) is
temperature independerti;; of Eq. (56) is only weakly
depends o, whereaH* vanishes a§— T, asy1—-T/T..
The last two are to be compared with the bilk; andH*,

122 are consistent with this conclu-

sion.

The solutions presented here for currents and energies in
thin mesoscopic superconducting rings are of importance for
the physics of isolated ringsuch as in Ref. 3 as well as for
understanding the behavior of large ensembles of interacting
rings}? The statistical mechanics of these systems requires
gnowledge of ring energy levels and probabilities of quan-
tum or thermally activated transitions between the states of
different energies. Our work should be useful for such statis-
tical modelling. Despite the known shortcomings of the Lon-
don approach, this is the only method that is of practical use
for temperatures away from the critical temperature. A key
advantage of the London equations is their linearity, which
makes exact solutions for mesoscopic rings possible.

The electrostatic analogy we employed, may prove useful
for various mesoscopic sample shapes. A number of these
shapegas squares, rectangles, or polygocan be found in
textbooks on applications of the theory of complex functions
to the two-dimensional electrostatics, see, e.g., Ref. 16. An
example of a thin-film disk is considered in the Appendix.
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the bulk characteristics of the Bean-Livingston barrier, both

of which are linear in +T/T, nearT,.3

V. DISCUSSION

The behavior of narrow rings is closely related to that of

long strips. The field given in Eq55) was derived previ-
ously in a study of long strips of widthV, whereH,; was
called thevortex exclusion field* According to this theory,
when a superconducting strip is cooled throughin an

ambient magnetic fieldH,, vortices should be excluded
from the strip whernH, is less thanH,, because the free-

energy then has a global maximum at the strip cetae ,,
in our notation. On the other hand, whed, is greater than
H,, there is a local free-energy minimum@t,, where the

probability of finding a vortex is proportional to exp

(—Vii/ksT). Near T, this probability is close to unity.

APPENDIX: THIN FILM DISK

It is worth stating upfront that the solution for a disk
cannot be obtained by setting the inner radius0 in the
solutions for a ring. The ring topology differs from that of a
disk, and there is no continuous transition from the one to
another. In fact, for a disk with no vortices the vorticiy
=0. The state of a disk is determined by the continuous
variableH, the applied field, and by the vortex positi¢or
positions, if any.

Consider a thin-film disk of a radius<A with a vortex
at an arbitrary positiow. To find the current distribution one
has to solve Eq(8) with the boundary conditiois(r = b)
=const=G,, or alternatively, Eq(9) for G, and (10) for
Gy under boundary conditions,(b)=0 andGy(b)=G,.

The partGy reads

However, asT decreases, the characteristic energy scale,
(2)/8772A(T), increases rapidly. The vortices are then “fro-
zen in” a potential well similar to those shown in Fig. 3 at a
characteristic freeze-in temperatufe, which for most su-
perconductors is estimated as being very clos& o The
value of A(Ts) turns out larger than strip widths of the order where the constants, andr, are to be determined using the
of a few um, which justifies calculations done in the thin- fact that the total current is= — G, . Evaluatingl with the

cH r
Gu(r)==—-r2+Gyln—,

87TA rO (Al)
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help of London equatior(15) one should take the phase do(b2—0v?) Hb*
change on circles<v as zero, whereas far>v as — 2. m= - : (A7)
. ; i 8wA 16A
Doing this algebra we obtain
The thermodynamic potentigt= E(O,v)—fg',udH follows:
__ Cb
TN ro=v, (A2) 2 b2—p2  p2—p2 h2
F=—| —h———== (A8)
and 8mA b¢ b 4
whereh=7b?H/ ¢, (note that the field normalization here
Gy(r) = cH (2 oo n- (a3) differs from the main tejt In the vortex absencef,
87mA AxA v = (¢3/32%A)h?, so that the barrier for the vortex entry is
The problem of finding the pass, is equivalent to one ¢§ h2— 2 h2— 2
for the electrostatic potential of a linear chargg,/8m?A at V= 5 I b 5 (A9)
the pointv parallel to the grounded metallic cylinder of a 8m A b
radiusb. The solution is given, e.g., in Ref. 19, It is now easy to find the field at which a local minimum first
appears in the disk centedV,./dr?=0 atv=0),
Coo b [r2+v%—2rv cose PP Wi v=0)
GU: - |I’] - ’ (A4)
472N \V N r2+x%2—2rx cose bo
Hi=—. (A10)
wherer,¢ are cylindrical coordinates, the zero azimuth is mh
taken as that ob, andx=b?/v. As discussed, the vortex . . . oA
self-energy €,= ¢|G,(¢=0r—v)|/2c is logarithmically The fieldH, is determined by, (0)=0,
divergent, so that we set=v + ¢ and ¢ =0 to obtain
H =ﬂln9 (A11)
¢(2) b2—v? 4 ap2 &
&= In bz (A5)
8w A § the result given by Fettéf.
The following is obtained in the same way as in the main 1hus forH,<H<H.,, the vortex in the disk center is in
text. The energy in zero field is metastable state, which becomes stableHorH ;. Finally,
the barrier to the vortex entry disappears altogether when the
¢>S b point v, at whichV,,=0 moves to the edge,=b— ¢,
E(Qp)=¢,(v)+ > In—, (AB)
8m°A U doIn2
. . =, (A12)
and the magnetic moment is 2wéb
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