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Josephson vortices with fractional flux quanta at YBaCu;0O,_, grain boundaries
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We report numerical simulations of magnetic flux patterns in asymmetri¢ @&E-tilt grain boundaries in
YBa,Cu;0;_, superconducting films. The grain boundaries are treated as Josephson junctions with a critical
current density .(x) alternating rapidly along the junctions with a typical length scale which is much less than
Josephson penetration depth. We demonstrate the existence of Josephson vortices with fractional flux quanta
for both periodic and randorji(x). A method is proposed to extract these “fractional” vortices from experi-
mental flux patterns.
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[. INTRODUCTION of the neighboring facets. In the case of an asymmetric fac-
eted 45° grain boundary we have an interchange-eD and

Numerous recent studies of electromagnetic properties ofr andj(x) = j.(x)sin¢(x), where the alternating critical cur-
grain boundaries in higii,, superconducting films are driven rent densityj.(x)= cosa(x). This spatially alternating de-
by the necessity to probe the fundamental symmetry of th@endence(x) is imposed by a particular sequence of facets
order parameter and the flux quantizatiofAlthough inter- ~ along the boundary and thereforgx) has the same typical
pretation of the results is nontrivial, most of the data can bdength scald as the facets.
understood in terms of a conventional model of a strongly N this paper we report numerical simulations of flux pat-

coupled superconductor-insulator-superconductor Josephs&#ns in the asymmetric 45[001J-tilt grain boundaries in
junction” YBa,Cu;0;_ superconducting films. The boundaries are

The asymmetric 45°[001}tilt grain boundaries in treated as superconductor-insulator-superconductor Joseph-

YBa,Cu;0, , films are a notable exception to this rule son junctions with an alternating critical current density
x S . T .
First, they exhibit an anomalous dependence of the criticaJIC(X)' Wwe con_S|de_r the limiting case when the_ typical length

. L 8.9 scale of facetind is much less than the effective Josephson
currentl; on the applied magnetic field,.®~ Contrary to : : )
the usual Fraunhoffer-type dependence these boundari enetration depth, given by Eq.(2). Two types of frac

yp P : nal Josephson vortices are found for each stationary state

demonstrate a patFern ywthout a central major pe'ak..lnstea ith a spontaneous flux in the grain boundaries for both
two symmetric major side peaks appear at certain fields  erjgdic and random sequences of facets. One type of vorti-
== H_p;eo. Another rlemarkable feature is the spontane-.Ces contains the magnetic flys < $o/2; the other type car-
ous dlsordered magnetic flyx generated at the asymmetriges 4.~ /2 with a complementarity conditiorb,+ ¢,
45° [9101}“"[ grain boundaries in YBZ0;, (YBCO) = ¢ wheregy is the flux quantum. We suggest a method to
films.” It is worth noting that spontaneous flux is observedextract the fractional vortices from the data on flux patterns.
only in samples exhibiting the anomalous dependence

le(Ha)- . . o II. PERIODICALLY ALTERNATING CRITICAL

Clearly, the major side peaks reveadecificheterogene- CURRENT DENSITY
ity of the Josephson properties. Indeed, a fine-scale faceting
of grain boundaries in YBCO thin films has been recorded by It is convenient to write the alternatirjg(x) as
transmission electron microscopy’ 1 The facets have a
typical length scalé of the order of 10—100 nm and a variety je=({l1+g(x)], 1)
of orientations. This grain boundary structure combined with o N _
a predominant d,2_,>-wave symmetry of the order where(j.) is the average value of the critical current density
parameteér'®17 forms a basis for understanding both the Over distances.>1. The dimensionless functiog(x) char-
anomalous dependencd (H,) and the spontaneous acterizes the Josephson properties of the grain boundary, al-
flux, 10.11,18,19 ternates with a typical length scdleand has a zero average:

In the case of al,> ,>-wave superconductor the phase (9(x))=0. We assume that<I<A,;, where\ is the Lon-
difference of the order parameter across the grain bounda§on penetration depth, and
consists of two terms. The first terig(x) is caused by a
magnetic flux inside the junction and the second tes(w) is A2= Coo )
caused by a misalignment of the anisotropic banks of the I 167N (] o)
junction. The Josephson current dengity) depends on the ] ) ] )
tota' phase diﬁerence QD(X)‘l‘ CY(X). Assuming J(X) |.S an effectlve Jqsephson penet-ratllon depth With th|S nota-
« sin¢(X)+a(x)] one can develop a model of the electro- tion, the phase difference(x) satisfies
magnetic properties of the grain boundaries in YBCO fifms. 5
Values of the phase(x) depend on the relative orientation AJe"—[1+9(x)]sing=0. 3
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A model grain boundary with a periodic critical current ¢ [Cdmiy, TS
densityj.(x) has been considered analytically by means of a 4
two-scale perturbation theory which requitesA ;.8 In this ¥,

approximation, we write the phasg(x) as ¢(x)=(x)
+£&(x), where the smooth patk(x) has a length scald
and the rapidly oscillating pag(x) has a length scaleand
a small amplitude&(x)|<1.

We have, for the phaseg(x) and £(x),8

A3y"—siny+ ysiny cosy=0, (4)
£(x)=E&g(x)siny, (5

and the functioréy(x) and parametey>0 are defined by
ASgg=g(x), (6)

y==(900&(0)) = AJ(ég?). ()

Both £4(x) and y depend only on the spatial distribution of
jc and therefore characterize thdividual Josephson prop-
erties of a particular grain boundary. We stress that this ap-

proximation is valid ifl <A j and|&(x)| <|¢(x)| [the latter
condition results ifg(x)|<4m?A3/12].

A. Single fractional Josephson vortex

~
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FIG. 1. The phase distributiorp(x) computed usingg(x)
=gpsin(2mx/l) and y~1.27. Two fractional vortices withg,
~0.21¢, and ¢,~0.79¢, are clearly seen; the fine structure of
¢(x) is demonstrated in the magnified insets.

driving the system into one of the stable stationary states
described by the solutions of E(B).

We begin our numerical simulations with verification of
the results obtained by means of the two-scale approximation
for a periodicj.(x). To study the fractional vortices we start
the simulations from a certain initial phagg(x) under the
condition ¢;(£) — ¢;(0)=2mn, where the boundary length
L£>Aj. In this case the numerical procedure converges well

In the framework of the two-scale perturbation theory, ato a final stationary state.
single Josephson vortex is described by the solution of Eq. In Fig. 1 we show a stable stationary solution for a pair of

(4) under the boundary conditiong’ (+«)=0. The latter
can be written as si..(1—ycosy.)=0, where .=y
(*20). It is convenient to assume that <, .

fractional vortices. We compute(x) using the modeg(x)
=ggsin(2mx/l) with go=100 andl=0.1A;. The parameter
v calculated by means of Eq(7) is given by y

In the case ofy<1, there is only one single-vortex solu- =g§|2/87-r2A§. This yieldsy~1.27 andy,~0.66 and thus
tion, for which the phasé(x) increases monotonically from ¢,~0.21¢,, ¢,~0.79¢,. The numerical simulation results
¢-=0 to ¢, =2m. This solution describes the Josephsonin the same value of,; the insets in Fig. 1 demonstrate that

vortex with one flux quantung,.

In the case ofy>1, the spatial distribution ofs(x) de-
scribes two fractional vortices. For tlfiest fractional vortex
the phase/(x) increases fromy_=— ¢, to 4, = ¢, where
¥,=arccos(1y). The differenceyr, —¢_ =24, and thus
this vortex carries the flu, = i, ¢/ m<$o/2. For thesec-
ondfractional vortexy_ =, ¥, =2m—,, the phase dif-

ference being zZ—2¢,, and thus this vortex contains the
flux ¢,=(1—4,/m) P> ¢o/2. These two fractional vorti-

ces arecomplementarymeaning thaip, + ¢,= ¢q.

¢(x) indeed consists of a smooth part superimposed with a
small fast oscillating term.

Thus, we conclude that the simulations for single frac-
tional vortices confirm the qualitative and quantitative results
of the analytic approach described above.

B. Chain of fractional Josephson vortices

Consider now a dilute chain of fractional vortices. Let a
vortex with the flux¢, be situated somewhere in the chain.

Thus, a periodically alternating critical current density The phasey of this vortex changes from2n— ¢, to 2zn
j<(x) can result in the existence of two vortices with comple-+ ¢, with an integem. Therefore, one expects the phase of
mentary fractional flux quanta. Note that an alternativean adjacent vortex to start with the valuer2+ ¢, and to
mechanism which may lead to the fractional vortices at theend up with 2r(n+1)— ¢, the total phase accumulation of
grain boundaries in the copper oxide high-temperature supethese two vortices being7 In other words, the chain con-

conductors is related to the broken

symmetry?~®

In our numerical study we solve E¢B) exactly. We treat

time-reversalsists of a sequence of pairs of vortices with fluxgs and

.

This qualitative picture is confirmed by numerically solv-

the stationary states as well as the relaxation to the stationaipg Eqg.(3). Figure 2a) shows the result of such a calculation

states using a time-dependent mddel

¢+ap—@"+[1+g(x)]sing=0, (8)

for which we tookg(x)=150sin(20mx/A ;), which corre-
sponds toy~2.85, #,~1.21 and the fluxesp;~0.3%,
(252%0.6.‘]450.

The final stationary state of our numerical procedure

wherea is a decay constant which we take from the intervalsimulating the relaxation process depends on the choice of
0.1<a<1. The termae in Eq. (8) describes dissipation the initial phase difference;(x). By taking a proper non-
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FIG. 3. Two stationary solutiong(x) developed in a zero mag-

FIG. 2. Two chains of fractional vortices in a grain boundary netic field for a stepwise randomly alternatiggx) for two initial

with a periodically alternating critical current densitya) an
“ideal” chain, (b) a chain with vortex-antivortex “defects.” Open

conditions:(a) preventing,(b) stimulating creation of vorticesgg
=200, 1=0.1A;,, ~0.06l, ¢,~1515, ¢;~0.48py, ¢,

triangles mark the positions of the fractional vortices with the fluxes=0.52¢).

$1<¢y/2; solid triangles correspond t$,> ¢o/2. The up-down

orientation of the triangles indicates the field direction of vortices.

For this particular calculation we usg(x)=ggsin(2mx/l), go
=150, 1=0.1A,, which result in y~2.85, ,~1.21 and ¢,

~0.3%g, ¢,~0.61¢,.

monotonic dependencg;(x), we may end up with the sta-
tionary solution shown in Fig.(®). A remarkable feature of
this solution is the existence dfactional vortex-antivortex
pairs clearly seen in the simulation of Fig.l8; the pair
keeping the fluxest ¢, is followed by the pair keeping the
fluxes * ¢,.

III. RANDOMLY ALTERNATING CRITICAL CURRENT
DENSITY

It is convenient to represent the phase differepgex) as
es(X) =, + E((x) with ¢, =const and the variable part
£4(x) having zero averagééy(x))=0, and a typical ampli-
tude | &y(X) | < /2.

An example of a computeg(x) is shown in Fig. 8).
For this simulation we toolkp;(x) = const+ &;(x) with an ar-
bitrary small¢;(x). As stated above, the resulting signature
solution ¢4(x) is independent ob;(x).

It is worth mentioning that the spontaneous self-generated
flux ¢s(X) = poés(x)/27 has a wide range of length scales
imposed by the randorji(x). Note also that randomness of
jc(X) results in a considerably higher amplitude of the flux
variation ¢4(x) as compared to a periodjg(x); this is seen
from comparison of Fig. @) with the insets in Fig. 2.

Next, we study flux patterns for a more realistic case of a

grain boundary with R facets and a nonperiodic alternating
critical current densityj.(x). We treat this case numerically

and use astepwise ¢x) defined asg(x)=gq if a;<x<b;
and g(x)=—gp if bj<x<a;;; (i=1,...N). It is conve-
nient to introduce the random distanasandb; with (a;)
=(b;)=0 and a standard deviatiom, such thatb,—a,
=0.5(+3;) and a;,;—b;=0.5(1+b;). The simulations
start with an initial phasep;(x) matching the condition

B. Random fractional vortices patterns

It follows from Eg. (3) that the stationary solutio@g(x)
generates two series of solutions having the same Josephson
energy aseg(X): ¢n (X)=2mn+¢(x) and ¢, (X)=2mn
—¢4(X), where n is an integer. The average values
(@n (X))=2mn+¢, and (¢, (X))=2mn—, interchange,
being separated by(e, (X))—(¢,(X))=2¢, or by
(@ 100)—(op (X))=27— 24, as is shown in Fig. 2 for

@i(£)— ¢;(0)=2an. Then the numerical procedure of solv- @ periodicj(x). The gaps between the average values of the
ing Eq. (8) converges well to a stationary state which de-stationary phases, (x) ande, (x) allow for fractional vor-

pends on bothp;(x) and « due to the flux pinning induced
by the nonuniformity of the critical current density.

A. “Signature” solution

tices with the fluxesp, = ¢oif, /7 and ¢, = ¢do— ¢1 as so-
lutions of Eq.(3), varying with a typical length scale d;.

An example of a computed(x) with two clearly pro-
nounced fractional vortex-antivortex pairs and small varying
part £(x) is shown in Fig. &).

A special role in the description of Josephson boundaries Consider now a typical flugphase pattern for a chain of
with random alternating.(x) belongs to the stationary state vortices for a randomly alternating.(x). Assume that the

¢s(X) which corresponds to the zero togpontaneouglux

chain starts with a domain witla(x) = ¢4(X); i.e., the phase

and to the absolute minimum of the Josephson energyaries slightly[|£4(x)|<#/2] around its average valug, .

E[@(x)}.2° Our numerical simulations show thaty(x) is
uniquefor a given boundarystable andindependentither
of initial guessesp;(x) or of the damping constart. There-
fore, the phasepy(x) can serve as aignatureof each indi-
vidual boundary.

Therefore, s, is the value of(¢(x)) at the “tail” of the
neighboring vortex or antivortex. If the neighbor carries the
flux ¢,, the average phase should increase fripmto 27
— 4, in the neighbor’s domain. Alternatively the neighbor
may carry the flux— ¢, generating a decrease 0b(x))
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¢ A A A A cording to Eq.(3), ¢"(x)=0]. Then we take a domain situ-

anr o ated between linesrn and w(n+1) and form ¢,(X)

3t /A/W =@(X)* &4(X), choosing minuses if the random parts of

arl /\W/\fw ¢(x) and ¢4(x) are identical and plus otherwise. The curve
- ¢,(x) shown by a thick curve at Fig.(8) is remarkably

oy 'W'\f\,\/\/\ii?/\- J(f)\ smooth clearly it represents the fractional vortices described

0~ by a periodicj(x).

4n - 2, J
i V’ N4 IV. SUMMARY

3| 2n-2y, A

Sl Jm S The two-scale perturbation theory and the numerical
z T— simulations exhibit the spontaneous flux and Josephson vor-

A (b) tices with fractional flux quanta only > 1. The latter con-

o =5 s . . s ! s dition requires for strong alternations of the critical current

=30 =20 -10 0 10 20 x/A]

densityj.(x). Indeed, it follows from Eqs(6) and(7) that if
FIG. 4. (a) The “signature” ¢s(x) and the phase(x) with the y>1, then the typical amplitude g(x) is bigger tha(jc),

total flux ¢=2 ¢, at the boundary calculated fog,=90, I at least by a factor oA, /1>1. )
=0.1A;, 0;~0.015l, which gives ¢,~1.21 and ¢,~0.3%, The spontaneous flux was observed at the asymmetric 45°

$,~0.61¢,. (b) The thin line depictsp(x); the thick line depicts [001-tilt  grain  boundaries in  zero-field-cooled

the phasep, (x) generated by the fractional vortices and extractedYBa;CusO;_ thin films™ In the framework of the above

from the phasep(x). approach it means that for these grain boundaffiggx)|)
>(j.). The origin of so strong alternations of the critical

from ¢, to — ... In general, this flux pattern is similar to Current density along the asymmetric 4B001}-tilt grain
the one arising for a periodig.(x). However, the relatively Pboundaries in YBgCu;O;_, films is not perfectly clear. For
large amplitudes of the spontaneous flux and the absence B}iS reason, an important argument to verify the existence of

periodicity within the chain may mask the fractional vortices. Josephson vortices with fractional flux quanta is the fact that
At the top panel of Fig. 3 we show(x) obtained numeri- these vortices and the spontaneous flux arise under the same

cally for go=90, |=0.1A,, and;=0.015; the calculated ~conditions as follows from our analytical and numerical cal-
value of ¢, is 1.21. The bottom curve is the “signature” culations.

@<(x) corresponding to the zero total flub=0. The upper In conclusion, we have shown by num_erical si_mulations
curve is calculated with the same set of input parameters fdhat two types of Josephson vortices with fractional flux
b=2,. quantag, < ¢o/2 andd,= do— 1> Ppl2 exist at asymmet-

Even a brief examination of the curves shows a striking'¢ 49° [001}-tilt grain boundaries in YBzCuO;_ films
correlation between the two: there are domdies., — 10 exh|b|t|ng spontaneous flux in zero—fleld—coole_d sa_mples_.
<x/A,<10) in which the “noise” patterns are nearly iden- The grain poundapes are treated as Josephson junctions with
tical, whereas in other¢e.g., 16<x/A,<30) the patterns &0 alternating cr|t|cgl currept denslty. We show how to ex-
repeat each other, being flipped. This suggests that one clract Josephson vortices with fractional flux quanta from ex-
extract the smooth part of the upper cukwéx) by properly ~ Perimental flux patterns.
subtracting the “signaturel(x).

The subtraction is done as follows. First, we draw the
straight lines 2rn= ¢, at the graph ofp(x); see Fig. 4b). One of us(R.G.M) is grateful to H. Hilgenkamp, A.V.
We see that “random” variations ap(x) are nested on one Gurevich, J.R. Clem, J.R. Kirtley, V.G. Kogan, and J. Man-
of these lines everywhere, except a few relatively sharmhart for useful and stimulating discussions. This research
jumps from one line to the next; in particular, the “signa- was supported in part by Grant No. 96-00048 from the
ture” og(x) is nested aty, . @s(X)=,+&(X). The jumps  United States—Israel Binational Science Foundati®8h),

(or vortices should be centered ap(x)=mn [where, ac- Jerusalem, Israel.
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