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Josephson vortices with fractional flux quanta at YBa2Cu3O7Àx grain boundaries
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~Received 23 May 2001; published 28 August 2001!

We report numerical simulations of magnetic flux patterns in asymmetric 45°@001#-tilt grain boundaries in
YBa2Cu3O72x superconducting films. The grain boundaries are treated as Josephson junctions with a critical
current densityj c(x) alternating rapidly along the junctions with a typical length scale which is much less than
Josephson penetration depth. We demonstrate the existence of Josephson vortices with fractional flux quanta
for both periodic and randomj c(x). A method is proposed to extract these ‘‘fractional’’ vortices from experi-
mental flux patterns.
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I. INTRODUCTION

Numerous recent studies of electromagnetic propertie
grain boundaries in high-Tc superconducting films are drive
by the necessity to probe the fundamental symmetry of
order parameter and the flux quantization.1–6 Although inter-
pretation of the results is nontrivial, most of the data can
understood in terms of a conventional model of a stron
coupled superconductor-insulator-superconductor Josep
junction.7

The asymmetric 45° @001#-tilt grain boundaries in
YBa2Cu3O72x films are a notable exception to this rul
First, they exhibit an anomalous dependence of the crit
current I c on the applied magnetic fieldHa .8,9 Contrary to
the usual Fraunhoffer-type dependence these bound
demonstrate a pattern without a central major peak. Inst
two symmetric major side peaks appear at certain fieldsHa

56HpÞ0.8–10 Another remarkable feature is the spontan
ous disordered magnetic flux generated at the asymm
45° @001#-tilt grain boundaries in YBa2Cu3O72x ~YBCO!
films.11 It is worth noting that spontaneous flux is observ
only in samples exhibiting the anomalous depende
I c(Ha).

Clearly, the major side peaks reveal aspecificheterogene-
ity of the Josephson properties. Indeed, a fine-scale face
of grain boundaries in YBCO thin films has been recorded
transmission electron microscopy.3,12–14 The facets have a
typical length scalel of the order of 10–100 nm and a varie
of orientations. This grain boundary structure combined w
a predominant dx22y2-wave symmetry of the orde
parameter2,15–17 forms a basis for understanding both t
anomalous dependenceI c(Ha) and the spontaneou
flux.10,11,18,19

In the case of adx22y2-wave superconductor the pha
difference of the order parameter across the grain boun
consists of two terms. The first termw(x) is caused by a
magnetic flux inside the junction and the second terma(x) is
caused by a misalignment of the anisotropic banks of
junction. The Josephson current densityj (x) depends on the
total phase difference w(x)1a(x). Assuming j (x)
} sin@w(x)1a(x)# one can develop a model of the electr
magnetic properties of the grain boundaries in YBCO film9

Values of the phasea(x) depend on the relative orientatio
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of the neighboring facets. In the case of an asymmetric f
eted 45° grain boundary we have an interchange ofa50 and
p and j (x)5 j c(x)sinw(x), where the alternating critical cur
rent density j c(x)} cosa(x). This spatially alternating de
pendencej c(x) is imposed by a particular sequence of fac
along the boundary and thereforej c(x) has the same typica
length scalel as the facets.

In this paper we report numerical simulations of flux pa
terns in the asymmetric 45°@001#-tilt grain boundaries in
YBa2Cu3O72x superconducting films. The boundaries a
treated as superconductor-insulator-superconductor Jos
son junctions with an alternating critical current dens
j c(x). We consider the limiting case when the typical leng
scale of facetingl is much less than the effective Josephs
penetration depthLJ given by Eq.~2!. Two types of frac-
tional Josephson vortices are found for each stationary s
with a spontaneous flux in the grain boundaries for b
periodic and random sequences of facets. One type of v
ces contains the magnetic fluxf1,f0/2; the other type car-
ries f2.f0/2 with a complementarity conditionf11f2
5f0, wheref0 is the flux quantum. We suggest a method
extract the fractional vortices from the data on flux patter

II. PERIODICALLY ALTERNATING CRITICAL
CURRENT DENSITY

It is convenient to write the alternatingj c(x) as

j c5^ j c&@11g~x!#, ~1!

where^ j c& is the average value of the critical current dens
over distancesL@ l . The dimensionless functiong(x) char-
acterizes the Josephson properties of the grain boundary
ternates with a typical length scalel, and has a zero average
^g(x)&50. We assume thatl! l !LJ , wherel is the Lon-
don penetration depth, and

LJ
25

cf0

16p2l^ j c&
~2!

is an effective Josephson penetration depth. With this n
tion, the phase differencew(x) satisfies

LJ
2w92@11g~x!#sinw50. ~3!
©2001 The American Physical Society01-1
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A model grain boundary with a periodic critical curre
densityj c(x) has been considered analytically by means o
two-scale perturbation theory which requiresl !LJ .18 In this
approximation, we write the phasew(x) as w(x)5c(x)
1j(x), where the smooth partc(x) has a length scaleLJ
and the rapidly oscillating partj(x) has a length scalel and
a small amplitudeuj(x)u!1.

We have, for the phasesc(x) andj(x),18

LJ
2c92sinc1g sinc cosc50, ~4!

j~x!5jg~x!sinc, ~5!

and the functionjg(x) and parameterg.0 are defined by

LJ
2jg95g~x!, ~6!

g52^g~x!jg~x!&5LJ
2^jg8

2&. ~7!

Both jg(x) andg depend only on the spatial distribution o
j c and therefore characterize theindividual Josephson prop
erties of a particular grain boundary. We stress that this
proximation is valid if l !LJ and uj(x)u!uc(x)u @the latter
condition results inug(x)u!4p2LJ

2/ l 2#.

A. Single fractional Josephson vortex

In the framework of the two-scale perturbation theory
single Josephson vortex is described by the solution of
~4! under the boundary conditionsc8(6`)50. The latter
can be written as sinc6(12g cosc6)50, where c65c
(6`). It is convenient to assume thatc2,c1 .

In the case ofg,1, there is only one single-vortex solu
tion, for which the phasec(x) increases monotonically from
c250 to c152p. This solution describes the Josephs
vortex with one flux quantumf0.

In the case ofg.1, the spatial distribution ofc(x) de-
scribes two fractional vortices. For thefirst fractional vortex
the phasec(x) increases fromc252cg to c15cg , where
cg5arccos(1/g). The differencec12c252cg and thus
this vortex carries the fluxf15cgf0 /p,f0/2. For thesec-
ond fractional vortexc25cg , c152p2cg , the phase dif-
ference being 2p22cg , and thus this vortex contains th
flux f25(12cg /p)f0.f0/2. These two fractional vorti-
ces arecomplementary, meaning thatf11f25f0.

Thus, a periodically alternating critical current dens
j c(x) can result in the existence of two vortices with comp
mentary fractional flux quanta. Note that an alternat
mechanism which may lead to the fractional vortices at
grain boundaries in the copper oxide high-temperature su
conductors is related to the broken time-rever
symmetry.4–6

In our numerical study we solve Eq.~3! exactly. We treat
the stationary states as well as the relaxation to the statio
states using a time-dependent model19

ẅ1aẇ2w91@11g~x!#sinw50, ~8!

wherea is a decay constant which we take from the inter
0.1,a,1. The termaẇ in Eq. ~8! describes dissipation
13450
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driving the system into one of the stable stationary sta
described by the solutions of Eq.~3!.

We begin our numerical simulations with verification
the results obtained by means of the two-scale approxima
for a periodicj c(x). To study the fractional vortices we sta
the simulations from a certain initial phasew i(x) under the
condition w i(L)2w i(0)52pn, where the boundary length
L@LJ . In this case the numerical procedure converges w
to a final stationary state.

In Fig. 1 we show a stable stationary solution for a pair
fractional vortices. We computew(x) using the modelg(x)
5g0sin(2px/l) with g05100 andl 50.1LJ . The parameter
g calculated by means of Eq.~7! is given by g
5g0

2 l 2/8p2LJ
2 . This yieldsg'1.27 andcg'0.66 and thus

f1'0.21f0 , f2'0.79f0. The numerical simulation result
in the same value ofcg ; the insets in Fig. 1 demonstrate th
w(x) indeed consists of a smooth part superimposed wit
small fast oscillating term.

Thus, we conclude that the simulations for single fra
tional vortices confirm the qualitative and quantitative resu
of the analytic approach described above.

B. Chain of fractional Josephson vortices

Consider now a dilute chain of fractional vortices. Let
vortex with the fluxf1 be situated somewhere in the chai
The phasec of this vortex changes from 2pn2cg to 2pn
1cg with an integern. Therefore, one expects the phase
an adjacent vortex to start with the value 2pn1cg and to
end up with 2p(n11)2cg , the total phase accumulation o
these two vortices being 2p. In other words, the chain con
sists of a sequence of pairs of vortices with fluxesf1 and
f2.

This qualitative picture is confirmed by numerically sol
ing Eq.~3!. Figure 2~a! shows the result of such a calculatio
for which we tookg(x)5150 sin(20px/LJ), which corre-
sponds tog'2.85, cg'1.21 and the fluxesf1'0.39f0 ,
f2'0.61f0.

The final stationary state of our numerical procedu
simulating the relaxation process depends on the choic
the initial phase differencew i(x). By taking a proper non-

FIG. 1. The phase distributionw(x) computed usingg(x)
5g0sin(2px/l) and g'1.27. Two fractional vortices withf1

'0.21f0 and f2'0.79f0 are clearly seen; the fine structure
w(x) is demonstrated in the magnified insets.
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JOSEPHSON VORTICES WITH FRACTIONAL FLUX . . . PHYSICAL REVIEW B64 134501
monotonic dependencew i(x), we may end up with the sta
tionary solution shown in Fig. 2~b!. A remarkable feature o
this solution is the existence offractional vortex-antivortex
pairs clearly seen in the simulation of Fig. 2~b!; the pair
keeping the fluxes6f1 is followed by the pair keeping the
fluxes7f2.

III. RANDOMLY ALTERNATING CRITICAL CURRENT
DENSITY

Next, we study flux patterns for a more realistic case o
grain boundary with 2N facets and a nonperiodic alternatin
critical current densityj c(x). We treat this case numericall
and use astepwise g(x) defined asg(x)5g0 if ai,x,bi
and g(x)52g0 if bi,x,ai 11 ( i 51, . . . ,N). It is conve-
nient to introduce the random distancesãi and b̃i with ^ãi&
5^b̃i&50 and a standard deviations l such that bi2ai

50.5(l 1ãi) and ai 112bi50.5(l 1b̃i). The simulations
start with an initial phasew i(x) matching the condition
w i(L)2w i(0)52pn. Then the numerical procedure of sol
ing Eq. ~8! converges well to a stationary state which d
pends on bothw i(x) anda due to the flux pinning induced
by the nonuniformity of the critical current density.

A. ‘‘Signature’’ solution

A special role in the description of Josephson bounda
with random alternatingj c(x) belongs to the stationary sta
ws(x) which corresponds to the zero totalspontaneousflux
and to the absolute minimum of the Josephson ene
E$w(x)%.20 Our numerical simulations show thatws(x) is
uniquefor a given boundary,stable, and independenteither
of initial guessesw i(x) or of the damping constanta. There-
fore, the phasews(x) can serve as asignatureof each indi-
vidual boundary.

FIG. 2. Two chains of fractional vortices in a grain bounda
with a periodically alternating critical current density:~a! an
‘‘ideal’’ chain, ~b! a chain with vortex-antivortex ‘‘defects.’’ Open
triangles mark the positions of the fractional vortices with the flux
f1,f0/2; solid triangles correspond tof2.f0/2. The up-down
orientation of the triangles indicates the field direction of vortic
For this particular calculation we useg(x)5g0sin(2px/l), g0

5150, l 50.1LJ , which result in g'2.85, cg'1.21 and f1

'0.39f0 , f2'0.61f0.
13450
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It is convenient to represent the phase differencews(x) as
ws(x)5cg1js(x) with cg5const and the variable par
js(x) having zero average,^js(x)&50, and a typical ampli-
tude ujs(x)u,p/2.

An example of a computedws(x) is shown in Fig. 3~a!.
For this simulation we tookw i(x)5const1j i(x) with an ar-
bitrary smallj i(x). As stated above, the resulting signatu
solutionws(x) is independent ofw i(x).

It is worth mentioning that the spontaneous self-genera
flux fs(x)5f0js(x)/2p has a wide range of length scale
imposed by the randomj c(x). Note also that randomness o
j c(x) results in a considerably higher amplitude of the fl
variationfs(x) as compared to a periodicj c(x); this is seen
from comparison of Fig. 3~a! with the insets in Fig. 2.

B. Random fractional vortices patterns

It follows from Eq. ~3! that the stationary solutionws(x)
generates two series of solutions having the same Josep
energy asws(x): wn

1(x)52pn1ws(x) and wn
2(x)52pn

2ws(x), where n is an integer. The average value
^wn

1(x)&52pn1cg and ^wn
2(x)&52pn2cg interchange,

being separated by^wn
1(x)&2^wn

2(x)&52cg or by
^wn11

2 (x)&2^wn
1(x)&52p22cg , as is shown in Fig. 2 for

a periodicj c(x). The gaps between the average values of
stationary phaseswn

1(x) andwn
2(x) allow for fractional vor-

tices with the fluxesf15f0cg /p and f25f02f1 as so-
lutions of Eq.~3!, varying with a typical length scale ofLJ .
An example of a computedw(x) with two clearly pro-
nounced fractional vortex-antivortex pairs and small vary
part j(x) is shown in Fig. 3~b!.

Consider now a typical flux~phase! pattern for a chain of
vortices for a randomly alternatingj c(x). Assume that the
chain starts with a domain withw(x)5ws(x); i.e., the phase
varies slightly@ ujs(x)u,p/2# around its average valuecg .
Therefore,cg is the value of^w(x)& at the ‘‘tail’’ of the
neighboring vortex or antivortex. If the neighbor carries t
flux f2, the average phase should increase fromcg to 2p
2cg in the neighbor’s domain. Alternatively the neighb
may carry the flux2f1 generating a decrease of^w(x)&

s

.

FIG. 3. Two stationary solutionsw(x) developed in a zero mag
netic field for a stepwise randomly alternatingg(x) for two initial
conditions:~a! preventing,~b! stimulating creation of vortices (g0

5200, l 50.1LJ , s l'0.06l , cg'1.515, f1'0.48f0 , f2

'0.52f0).
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from cg to 2cg . In general, this flux pattern is similar t
the one arising for a periodicj c(x). However, the relatively
large amplitudes of the spontaneous flux and the absenc
periodicity within the chain may mask the fractional vortice

At the top panel of Fig. 3 we showw(x) obtained numeri-
cally for g0590, l 50.1LJ , ands l50.015l ; the calculated
value of cg is 1.21. The bottom curve is the ‘‘signature
ws(x) corresponding to the zero total flux,f50. The upper
curve is calculated with the same set of input parameters
f52f0.

Even a brief examination of the curves shows a strik
correlation between the two: there are domains~e.g., 210
,x/LJ,10) in which the ‘‘noise’’ patterns are nearly iden
tical, whereas in others~e.g., 10,x/LJ,30) the patterns
repeat each other, being flipped. This suggests that one
extract the smooth part of the upper curvew(x) by properly
subtracting the ‘‘signature’’ws(x).

The subtraction is done as follows. First, we draw t
straight lines 2pn6cg at the graph ofw(x); see Fig. 4~b!.
We see that ‘‘random’’ variations ofw(x) are nested on one
of these lines everywhere, except a few relatively sh
jumps from one line to the next; in particular, the ‘‘sign
ture’’ ws(x) is nested atcg : ws(x)5cg1js(x). The jumps
~or vortices! should be centered atw(x)5pn @where, ac-

FIG. 4. ~a! The ‘‘signature’’ws(x) and the phasew(x) with the
total flux f52 f0 at the boundary calculated forg0590, l
50.1LJ , s l'0.015l , which gives cg'1.21 andf1'0.39f0 ,
f2'0.61f0. ~b! The thin line depictsw(x); the thick line depicts
the phasewv(x) generated by the fractional vortices and extrac
from the phasew(x).
ta

.
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cording to Eq.~3!, w9(x)50#. Then we take a domain situ
ated between linespn and p(n11) and form wv(x)
5w(x)7js(x), choosing minuses if the random parts
w(x) andws(x) are identical and plus otherwise. The cur
wv(x) shown by a thick curve at Fig. 4~b! is remarkably
smooth; clearly it represents the fractional vortices describ
by a periodicj c(x).

IV. SUMMARY

The two-scale perturbation theory and the numeri
simulations exhibit the spontaneous flux and Josephson
tices with fractional flux quanta only ifg.1. The latter con-
dition requires for strong alternations of the critical curre
density j c(x). Indeed, it follows from Eqs.~6! and~7! that if
g.1, then the typical amplitude ofj c(x) is bigger than̂ j c&,
at least by a factor ofLJ / l @1.

The spontaneous flux was observed at the asymmetric
@001#-tilt grain boundaries in zero-field-coole
YBa2Cu3O72x thin films.11 In the framework of the above
approach it means that for these grain boundaries^u j c(x)u&
@^ j c&. The origin of so strong alternations of the critic
current density along the asymmetric 45°@001#-tilt grain
boundaries in YBa2Cu3O72x films is not perfectly clear. For
this reason, an important argument to verify the existence
Josephson vortices with fractional flux quanta is the fact t
these vortices and the spontaneous flux arise under the s
conditions as follows from our analytical and numerical c
culations.

In conclusion, we have shown by numerical simulatio
that two types of Josephson vortices with fractional fl
quantaf1,f0/2 andf25f02f1.f0/2 exist at asymmet-
ric 45° @001#-tilt grain boundaries in YBa2Cu3O72x films
exhibiting spontaneous flux in zero-field-cooled sampl
The grain boundaries are treated as Josephson junctions
an alternating critical current density. We show how to e
tract Josephson vortices with fractional flux quanta from
perimental flux patterns.
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