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Buckling instability in type-1l superconductors with strong pinning
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We predict a buckling instability in the critical state of thin type-ll superconductors with strong pinning.
This elastic instability appears in high perpendicular magnetic fields and may cause an almost periodic series
of flux jumps visible in the magnetization curve. As an illustration we apply the obtained criteria to a long
rectangular strip.

In high magnetic fields a noticeable deformation of super-onuniform flux distribution is not in equilibrium and under
conductors occurs in the critical state because of the magertain conditions a thermomagnetic flux-jump instability
netic force densityf=j X B, wherej is the current density may occur producing a sudden intensive heat release. This
and B is the magnetic field. This results in an anomalousheat pulse decreases the critical current density and drives
irreversible magnetostrictiofi‘suprastriction?) and shape the system towards the equilibrium state with a uniform flux.
distortior?® of type-Il superconductors with strong pinning. A sudden buckling of a superconductor in the critical state
Similar as in magnetic fluid dynamitshe stress tensor of a may also lead to a heat pulse and thus to a sudden flux
superconductor in a magnetic field includes an additionapenetration into the sample, which shows as a flux jump
term, the Maxwell stress tensor of the magnetic field withinstability in the magnetization curve.
components of ordeB?/ u,. Since this is quadratic iB, the In this paper we predict a Euler buckling instability
Maxwell stress tensor in the critical state can be importantaused by the longitudinal magnetic compression force act-
for elasticity in strong magnetic fiefd® However, even in a ing in the critical state of a thin superconducting strip in a
field of 10 T the value oB?/u, is small compared to the strong transverse magnetic field. We discuss several sce-
Young modulusk of the material. We estimate the ratio narios how the buckling instability develops, including the
B2/ uoE~10"2 for B~10 T and E~100 GPa which cases when a sudden buckling shows as a flux jump instabil-
is a typical value for YBaCusO,_, high-temperature ity in the magnetization curve. A series of buckling induced
superconductors. flux jumps almost periodic in an increasing applied magnetic

The effect of the magnetic field on the elastic behaviorfield is predicted.
may be much higher if one considers bending of thin We consider first the elastic stability of a long rectangular
samples since the effective elastic modulus for benfiig ~ Strip I Xwxd(I>w>d) in an increasing transverse mag-
much less than the Young modulus. In particular, for a longnetic field B,/|z, assuming that the strip is glued to the sub-
rectangular strip of extensionxwxd (I>w>d) one has strate at the left edgey&0) as shown in Fig. 1. A longitu-
E~E(d/I)2<E. If for instanced/| ~10 2 andE~100 GPa, dinal compression force acts near the right edge of the strip

thenB?/ uq is of the order of the effective bending modulus (Y=1) in the area where the electromagnetic force density
f=] X B has ay component due to the U-turning current, thus

EatB~35T.
An important consequence of a small value of the effec-
tive elastic modulus for bending is the classical Euler F=—Fy=Badf fjxdxdy, D

buckling instability®’ This elastic instability occurs for rods
and thin strips when the longitudinal compression fdfcat

the edges of the sample exceeds a critical valyeE. In
particular, one haf,= m?Ewd®/48/? for a long rectangular
strip with one edge clamped and the other edge free as
shown in Fig. 157 The buckling instability manifests itself at
F=F, by a sudden bending with amplitude: yF —F,.

The magnetization of type-1l superconductors with strong
pinning and the associated magnetic forces are successfully
described by the Bean critical state m&desing a critical
current densityj . which decreases with increasing tempera-
ture and magnetic field. In the transverse geometry of a thin
strip in a perpendicular field one has=j. in the region
where the magnetic flux has penetrated and screening sheetFIG. 1. Buckling of a thin superconductor strip with a clamped
currentsJ with 0<J<j.d in the flux-free regiofi-'* This  left edge in a transverse magnetic fidg.

F<F.
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F=jBada’

BO_Ba
1-2 tanh———2|, (4
2B,

going throughF=0 atB,~By—1.1B.. For a narrow strip
the field of full penetration $

w
szsc( 1+Ina). (5)

In the case of a curved strif-ig. 1(b)] in the formulas
(2)—(4) for F the factorB,=F/M means the component of
B,, while in the argument of tanh{-) the B, should be
replaced by the compone®, of B, perpendicular to the
strip near its right endwhere the U-turning currents flow
In general, the magnetic momekit and the forcd==B,M
depend on the prehistory &f (t) and may relax with time.

If the buckling instability for a zero-field cooled strip oc-
curs at a field,>B,,, the force is

F=j.da’B,. (6)

The critical forceFy, for the buckling instability of a strip

FIG. 2. The current streamlines in the critical state of a type-llwith one edge clamped and the other edge fr&é is

superconductor thin strip in a transverse magnetic field computed
by the method(Ref. 9. The arrows indicate the magnetic forces
acting on the strip. Top: Meissner stat®,<B.. Middle: Fully
penetrated critical stat®,>B.. Bottom: Applied field decreasing
from Bo>B, to Bo—2.4B., which yields penetrating fronts with Equating the force§ andF, we find that the magnetic field
inverse flux atx|=a/cosh 2.4<0.56 and a negative forcé, Eq. By at which the first buckling instability occurs is

(4).

mad’E
szw- (7)
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where the integral is over the U-turn area. As shown in Fig.
2, in the fully penetrated critical state this area is a triangle
wherej, =], butin general the integral is over the right half :
of the strip §/>1/2). If w<I the deformation of the strip can ~4 T using the data for YB£LU;0; supze:rcondugt:gorE
be obtained assuming thiatis applied to the very end of the ~ 107 ﬁpa’ and assuming thgt~ 1_09 Alm?, w~10"°m,
strip aty=1. For such narrow strips one can show that ex-d~10"" m, andd/I~10"“. This estimate verifies our initial

We estimate the fieldB.~0.04 T,B,~0.15 T, andB,,

actly F=B,M, whereM is the total magnetic moment of the Suggestion thaB,<B,.

strip divided by its length.

The heights of the right end of the buckled strisee Fig.

Depending on the magnetic prehistory of the sample thé(P)] can be found analytically if the maximum ang#g,

dependence of the longitudinal compression fdteen B, is
described by the following three formulds!?

(i) For a zero-field cooled straight stfipig. 1(a)] with B,
increasing from zero one has

B
F=j.B.d aztaana, 2)
Cc

where we introduca=w/2 andB.= woj.d/7. The longitu-
dinal force F(B,), Eg. (2), has the IimitsF~7rB§a2/,u0
(B,<B., Meissner stateand F~j.B,da? (B,>B., fully
penetrated critical state

(ii) For B, increasingfrom a field-cooled valud,, one
has the force

. 2 Ba_ BO
F=j.Bda tanhB—. 3
C

(iii) For B, decreasingfrom a fully penetrated critical
state withB,=B,, the forceF=B_,M decreases as

between the tangent to the buckled strip and the substrate is
small®’ Assuming that the forcE slightly exceeds the criti-
cal valueF,, we obtain a sinusoidal bending with the ampli-

tude
84\F\/F 118\/F 1 9
AT e T, ©

and
Om~212 S (10

Now assume that the external magnetic field is increased
with constant ramp ratB, and the threshold of the buckling
instability is reached wheR=F,. One can consider several
scenarios how the buckling evolves, depending on the value
of Ba and on the ratio of the time constants for bending of
the strip, 7,, for magnetic flux diffusion,r,,,, and for heat
diffusion, 7,, see Ref. 13 for detalils.

The first scenario applies to a very low ramp ra&g
<B,/m,, where the current and magnetic field distributions
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inside the strip, and thus the magnetic forces, follow thethe risingB, is overcompensated by the growidg,. In the
increasing fieldB, without delay. In this case the strip starts present scenarid®, has reached the higher threshdig

to bend as soon as the magnetic compression ereaches > B, before it drops down, and this drop is solely due to the
the critical valueF,. The forceF=B,M via the magnetic growing tilt angle §,, while B,=B is constant in this ap-
momentM depends on the perpendicular field componeniproximation. As a consequence, the self-consistent tilt angle
near the tilted tip of the long stripB, =B,cos6é,. This ¢, is reduced much more in this case, by a fac{@./4B
means that ir9,,(F), Eq.(10), F depends o, and one has <1.

to find the value off,, self-consistently. To do this we need  This strong feedback mechanism requires that the change
the appropriate dependené&(B,). We shall see that the of the current density occurigistantaneouslymuch faster
resultingB, decreasesvith increasingB, (or time); thus we  than the mechanical buckling;,< 7. In reality the redis-
have to use Eq(4) with Bo=B,, (the field where buckling tribution of the currents will lag behind the buckling. In the
startg and with B, replaced byB, in tanh(--). Expanding extreme limit7,,> 7, the tilt angle would first jump to its

the hyperbolic tangent we thus find fBf,— B,<B., original large valued’=8(F4/F,—1), Eq. (10), and then
relax to the small value of Eq14), or to zero, or to some

e Fb%( 1o Bp— BL) (11) other value. The theoretical problem is intricate since a quan-

By B, | titative treatment requires the self-consistent time dependent

. . . 5 solution of the equations fdB, (t) with a relaxing, history
Inse.rtmg this fo'rce into Eq(lO),2 0m=8(F/F,—1), and dependent magnetic momeM{B, ()}, using B, =B,(t)
sqlvmg for 6,,, usingB, ~B,(1— 6;/2) andB,>B. we ob- X(1—62/2) and 62=8(F/F,—1) with F=B,M. This
tain yields the implicit equation foB, (t),

6.~ 2 %_ 1 12 B, (1)=Ba(D)[5—4B,()M{B, (D}/F,], (15
° from which the tilt angleerzn(t)=2(BL /B,—1) is obtained.
This self-consistent tilt anglé,, is two times less than the To solve this one requires a realistic model for the relaxing
tilt angle Eg.(10) for constant compression forde. The  history dependent magnetization.
physical origin of this negative feedback is the reduction of From our numerical work we expect the magnetic relax-
the total U-turning current and thus of the foféecaused by ation to be very fast and nonexponential wheB, /Jt
the decrease d8, when the end of the strip tilts, compare changes sigi? as it is the case during buckling. During very
the current distributions in Fig. 2. fast switching ofB, (t), the electric field is so large that,
A different scenario appears when the buckling occurdrrespective of pinning, the vortices exhibit usual flux-flow
with a delay at a force=4 slightly aboveF, (“overheat- behavior, with flux-flow resistivityp;~(B/B,)p,, where
ing” ). Several reasons for such a delay are conceivable, e.dB,, is the upper critical field ang,, is the resistivity in the
sticking of the strip to the substrate by adhesion, or a misnormal state. In this case the magnetic relaxation time of an
alignment of the perpendicular applied magnetic figlg  ohmic strip applies,rm~ 7o=0.24%duy/p;.** This time
such that the forc& in Fig. 1 points slightly downward to has to be compared with the buckling timg, which we
the substrate. A small misalignment is probably inevitableestimate from the lowest resonance frequetgyof the strip
for a typical experiment. (a cantilevered reéd, r,~w; !, w>~1.0Ed*/(pl*) where
When after zero-field cooling=F4=j.Byda’isreached p is the specific weight. Inserting here numbers for
atB,=By, the buckling amplitude jumps almost instantly to YBa,Cu;,0,_, at B,=4 T, we estimater,<r,, i.e., the
a finite values~ \F4/F,—1. To obtain this amplitude self- magnetic relaxation initially is instantaneous. With proceed-
consistently one may combine EQ.0) for 6,,(F) with Eq.  ing relaxation, the electric field and the effective resistivity
(4) for F(6,,), like in the first scenario, noting thil and  decrease, and thus the magnetic relaxation time increases.
thus the forc&==B,M depend orB, =B,cos#f,,. The sud- We thus expect that the real behavior of the strip is some-
den jump off,, atB,=By means thaB, is reduced fronBy  where between the two considered limitg<<7, and 7,
toBy(1— an/2) (if 0§1< 1) and thus Eq(4) is required yield- > 7y.
ing Therefore, if buckling starts delayed at a forgg and
disappears at a smaller forEg<<F4, the tilt angle at the tip
H%Bd of the strip may oscillate between a maximum valjg,,
F:Fd{l_z ta”hﬁ} (13 <6y and zero. Such oscillation may occur sinceégtthe
reduction ofB, is so large that the currents tend to change
with Fy4=]j.Bgda®. Inserting this into Eq(10) and solving  sign and thus the forcE rapidly decreases. The tilt angle
for 0%<4BC/Bd one obtains foBy>B,: then may drop to zero, undershooting the small equilibrium
value, Eq.(14). With continuously increasing applied field
» 2B¢[Fq 1 B,(t), the tilt angled,, thus makes a sudden jump from zero
mT By |\ Fp ' t0 Oax, then drops rapidly back to zero, where it remains
until the next excursion occurs whén again reache§ .
Equation(14) differs from Eq.(12) because of the differ- These buckling instabilities should occur at nearly equidis-
ent history of the perpendicular fieB, (t) and thus of the tant field values with period of the order of the penetration
magnetic moment: In the first scenaBo started to decrease field B, Eq.(5), and they will show up in the magnetization
from the lower threshold,, and the decrease occurs sincecurve as a periodic set of flux jumps.

(14
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So far we assumed that the temperatliref the strip  tions of the strip. Indeed, a sudden buckling leads to a heat
stays constanfT=T,. However, buckling of a strip in the pulse increasing the temperatufeand decreasing the force
critical state causes some heat release which increases thé€T). If because of the temperature increase the f&1€CE)
temperature and decreases the fofd@)«=j.(T). A com- falls below the buckling threshol, then the strip straight-
plete solution of the buckling instability in type-Il supercon- €ns and the next instability occurs after the strip has cooled
ductors with high critical current density should thereforedown. o
include a self-consistent treatment of the magnetic field and !N Summary, we have shown that a strong magnetic field
temperature variations. applied perpendicular to a cantilevered superconductor strip

For a rough estimate of the decrease of the f6T€E) we will lead to Euler buckling of this strip. We give the thresh-
assume here that(T)=(T.—T), the critical temperature is old field at which this elastic instability occurs. During buck-
N g v L . , . ling, the effective applied field at the tip of the strip de-
Jv%i;‘é ?hﬁ :liuhdedae“r??ilf{othaensetlrrllp IS ?:;26}[20 In this CaSCreases due to tilting. As a consequence, the buckling force is
o reduced. This feedback mechanism may lead to mechanical

. 2 oscillations of the strip and its magnetization, which depend
F(T)—F(To) ~ JoWBg O (16) on the magnetic and thermal relaxation times of the specific

F(Ty  C(TeTe 2° experiment. At sufficiently low temperatures this sudden

- ) . buckling may trigger a periodic series of flux-jump instabili-
Combining Eqs(10), (13), and(16) we find that self-heating ,: ; ; o
affects the buckling instability threshold iC(T)T, ties which should show in the magnetization curve.
<jWB;, which results inT;=3 K for a heat capacity R.G.M. acknowledges numerous stimulating discussions
C(T)=7X T2 J/Km?.1® with Dr. A. Gerber and support from the Max-Planck-Institut
The temperature dependenceR{(T) may cause oscilla- fur Metallforschung.
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