
8, Israel

PHYSICAL REVIEW B 1 JULY 1999-IIVOLUME 60, NUMBER 2
Josephson junction between anisotropic superconductors
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Sin-Gordon equation for Josephson junctions with arbitrary misaligned anisotropic banks is derived. As an
application, the problem of Josephson vortices at twin planes of a Y-Ba-Cu-O-like material is considered. It is
shown that for an arbitrary orientation of these vortices relative to the crystal axes of the banks, the junctions
should experience a mechanical torque which is evaluated. This torque and its angular dependence may, in
principle, be measured in small fields, since the flux penetration into twinned crystals begins with nucleation of
Josephson vortices at twin planes.@S0163-1829~99!08925-0#
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I. INTRODUCTION

The high-Tc superconductors are often used as polycr
tals made of anisotropic grains touching each other with v
ous degrees of crystallographic misalignment. As a rule,
contacts have Josephson properties. Hence, physical ch
teristics of Josephson junctions with misaligned anisotro
banks are of considerable interest. To our knowledge,
only publications on this subject were by one of us and w
concerned with a relatively simple situation of a juncti
between perfectly aligned anisotropic superconductors.1,2

In this paper we consider two misaligned grains of t
same uniaxial material forming a Josephson contact. The
terial is characterized by the dimensionless ‘‘mass tens
with eigenvaluesma5mb,mc which are normalized so tha
ma

2mc51. The mass ratios are defined asmi /mk5l i
2/lk

2 , so
that the actual penetration depths can be written asl i

5lAmi wherel5(la
2lc)

1/3.
The paper is organized as follows. We first consid

aligned banks not only to establish notation and to dem
strate the approach; we have in mind a material of the Y-
Cu-O family which usually contains sets of nearly paral
twinning planes having Josephson properties. We show
the gauge-invariant phase difference still satisfies the s
Gordon equation, however, the squared Josephson lengt
quires tensor properties which are discussed in detail. N
the case of a general misalignment is treated and the te
for the squared Josephson length is expressed in term
mass tensors of the banks and their misalignment.

In twinned materials of the Y-Ba-Cu-O kind, in increa
ing from zero magnetic field, the first vortices entering m
terial are usually situated on the twin planes and have
sephson properties. We consider the problem of a Josep
vortex between anisotropic grains and evaluate the tor
which should act on the system of such vortices and via th
on the sample. Although this torque is small, given rec
developments in improving sensitivity of the torqu
magnetometry,3 it is a measurable quantity, from which th
Josephson characteristics of grain boundaries can, in p
ciple, be extracted.
PRB 600163-1829/99/60~2!/1394~6!/$15.00
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II. MAIN EQUATIONS

A. Aligned banks

Let us first consider the simplest possible situation: a
sephson junction with superconducting banks made of
sameanisotropic material;mik are the same on both side
and the banks are perfectly aligned. Moreover, let the axy
perpendicular to the junction planexz be the principal direc-
tion, sayb. Let us assume further that a Josephson vorte
directed at an angleu relative to the crystal axisc. We
choose thez axis along the vortex.

The coordinatesx,z are related toa,c: x5a cosu
1csinu andz52a sinu1ccosu. Then the nonzero compo
nents of the mass tensor in the framexyz are

mxx5ma cos2 u1mc sin2 u,

mzz5ma sin2 u1mc cos2 u, ~1!

mxz5~mc2ma!cosu sinu, myy5ma .

Note a useful property

mxxmzz2mxz
2 5mamc , ~2!

which follows from det(mik)5ma
2mc .

We proceed by calculating the London energyFL associ-
ated with a Josephson vortex alongz in terms of the gauge-
invariant phasew. We then minimize the total energyFL
1FJ where

FJ5
f0 j c

2pcE2`

`

dx ~12cosw!, ~3!

with respect tow to obtain the tunneling currentj y in terms
of w along with the equation governing the phase; heref0 is
the flux quantum andj c is the Josephson critical curren
density.

For a straight vortex alongz, all gauge-invariant quanti-
ties arez independent: the field componentshx,z are func-
tions of x andy, hy50, while w depends only onx.
1394 ©1999 The American Physical Society
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We begin with the general expression for the Lond
energy4

FL5
1

8pE S h21
4pl2

c
mik j icurlkhDdV, ~4!

and integrate the kinetic part by parts to obtain

FL5
l2

2c
mikeklm R r j ihmdSl , ~5!

wheredS56dx ŷ is an area element on two junction side
This gives

FL5
l2

2cE2`

`

dx $Hx @mzkj k#2Hz @mxkj k#% ~6!

per unit length in thez direction. Hereafter,Hx,z(x) are the
field components at the junction planey50; y is directed
from the side 1 to the side 2 of the junction. The symb
@•••# denotes the difference of a quantity on two sides, e
@mxy#5mxy

(2)2mxy
(1) .

We now utilize the London equations

Ai1
f0

2p

]x

]xi
52

4pl2

c
mik j k , ~7!

wherex is the phase of the order parameter. Also, we use
gaugeAy50 and the continuity of the tangential compone
of the vector potential to obtain

mxx@ j x#1mxz@ j z#52
cf0

8p2l2

dw

d x
, ~8!

mzx@ j x#1mzz@ j z#50; ~9!

here we introduced the phase differencew5@x#, utilized the
alignment, and the condition@ j y#50. Note that for the uni-
form alongz solutions, the discontinuities of the tangent
currents j x and j z at the junction are proportional to eac
other. Solving the system~8!, ~9! we obtain

@ j x#52
mzz

mxz
@ j z#52

cf0mzz

8p2l2mamc

w 8~x!, ~10!

where the property~2! has been used.
With the help of Eqs.~8! and~9! the London energy take

the form

FL5
f0

16p2E2`

`

dx Hz~x! w 8~x!. ~11!

To make further progress one has to turn to the field
current distributions in the banks. Assume that

l!lJ , ~12!

where the lengthlJ is the characteristic distance at whichHW
changes in the junction plane. In this case one can cons
the field penetration into the banks as the standard Meis
problem of a uniform ‘‘applied’’ fieldHW 5$Ha ,Hc% penetrat-
ing in two half-spaces y.0 and y,0. Since ha
5Ha exp(2uyu/lc) andhc5Hc exp(2uyu/la), we obtain
.

l
.,

e
t

l

d

er
er

hx5Hae2uyu/lc cosu1Hce
2uyu/la sinu,

hz52Hae2uyu/lc sinu1Hce
2uyu/la cosu, ~13!

wherela,c5lAma,c. In terms ofHx,z we have

hx5Hx~e2uyu/lc cos2 u1e2uyu/la sin2 u!1Hz~e2uyu/la

2e2uyu/lc!sinu cosu, ~14!

hz5Hx~e2uyu/la2e2uyu/lc!sinu cosu

1Hz~e2uyu/lc sin2 u1e2uyu/la cos2 u!. ~15!

The field is continuous at the junction planey50 whereas
the tangential currentsj x,z are not. One finds

4p

c
@ j x#5HxS 1

lc
2

1

la
D sin 2u22HzS 1

lc
sin2 u1

1

la
cos2 u D ,

~16!

4p

c
@ j z#52HxS 1

lc
cos2 u1

1

la
sin2 u D1HzS 1

lc
2

1

la
D sin 2u.

~17!

Note that the coefficients ofHx,z in these expressions do no
reduce to componentsmik of Eq. ~1! because they contain
1/Ama,c instead ofma,c . It is convenient to introduce an
other tensormab (a,b5x,z) with eigenvalues 1/Ama,c @to
obtainmab replacema,c in Eq. ~1! with 1/Ama,c]. Then, Eqs.
~16!, ~17! take a compact form:

2p

c
@ j x#l5Hxmxz2Hzmxx , ~18!

2p

c
@ j z#l5Hxmzz2Hzmxz . ~19!

Since the ratio@ j x#/@ j z# is fixed by Eq.~9!, we obtain a fixed
ratio Hx /Hz :

Hx~mxzmxz1mzzmzz!5Hz~mxxmxz1mxzmzz!. ~20!

Clearly, the transverse fieldHx vanishes if the vortex axis
coincides with eithera or c.

We now go back to Eq.~10! and obtain using Eqs.~18!
and ~20!

f0

4pl̃
w 8~x!5Hz , ~21!

where

l̃5
l

mc sin2 u1ma cos2 u
5

l

mxx
. ~22!

Thus, the London energy

FL5
f0

2

64p3l̃
E

2`

`

dx ~w 8!2. ~23!

We complement this with the Josephson energy~3! and
minimize the sum with respect to the phase to obtain
result of Ref. 1:
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lJ
2mxxw 95sinw, ~24!

where the lengthlJ is defined as

lJ5A cf0

16p2l j c
. ~25!

It follows from Eq. ~24! that the Josephson length is

LJ~u!5lJAmxx~u!, ~26!

where

mxx5k22/3sin2 u1k1/3cos2 u, ~27!

andk5lc /la is the anisotropy parameter. Note thatlJ has
now the meaning of anaverageJosephson length. We se
therefore, that even in the case of aligned banks consid
here, the Josephson lengthLJ(u) depends on the orientatio
of the Josephson vortex within the junction planeac. In
particular, we have

LJ~0!

LJ~p/2!
5Ak. ~28!

Using Eqs.~3! and ~23! and the classical vortex solutio
of Eq. ~24!, w(x)54 tan21@exp(x/LJ)#, we calculate the line
energy of the Josephson vortex as

e5
1

4p3k1/3

f0
2

llJ
Asin2 u1k cos2 u. ~29!

B. Misaligned banks

Consider now a simple misalignment: the banks are m
of identical materials with the axisb on both sides alongy as
before, but thea,c axes are rotated aroundb through differ-
ent angles on two junction sides. We again look for vor
solutions uniform along the vortex directionz. The mass ten-
sors on two sides are given by Eq.~1!, however, the angles
u1Þu2. Equation~6! still holds, but in Eqs.~8! and ~9! the
components ofmik cannot be taken out of the square brac
ets denoting the differences between quantities enclose
the two sides:

@mxi j i #52
cf0

8p2l2

dw

d x
, ~30!

@mzij i #50; ~31!

note that the summation indexi 5x,y,z can be replaced with
the two-dimensional~2D! a5x,z becausemay50 on both
sides. We now see that Eq.~11! holds, too.

The field distribution in the banky.0 is obtained replac-
ing uyu andu in Eqs. ~14!, ~15! with y andu2, whereas for
y,0, uyu→2y and u→u1. Then, one obtains for the cur
rents at the junction sidey510:

4pl j x
15c~Hxmxz

1 2Hzmxx
1 !, ~32!

4pl j z
15c~Hxmzz

12Hzmxz
1 !. ~33!

These relations can be written in a compact form with
help of the two-dimensional unit antisymmetric tensoreab :
ed

e

x

-
on

e

4pl j a
1/c52mab

1 ebgHg . ~34!

For the other side of the junction aty520 we have

4pl j a
2/c5mab

2 ebgHg . ~35!

To proceed, we rewrite the system~30!, ~31! as

@mab j b#52
cf0

8p2l2w 8~x!dxa , ~36!

substitute here Eqs.~34!, ~35!, and obtain

pabHb5
f0

2pl
w 8~x!dxa . ~37!

Here

pab5$magmgd%edb ~38!

and $•••% denotes the sum of a quantity enclosed taken
two junction sides.

The system of two equations~37! can be solved forHx,z :

Hz52
f0

2pl

pzx

det~pab!
w 8~x!. ~39!

This coincides with Eq.~21! in which

l̃52l
det~pab!

2pzx
. ~40!

To have the following equations in a more symmetric for
we introduce a tensor

qmn52emapan52ema$mabmbg%egn , ~41!

instead of the pseudotensorp̂; a compelling reason for this is
given below. Then

l̃5l
det~qab!

2qxx
~42!

and proceeding as above we obtain the sine-Gordon equa
for the phase:

Lxx
2 d2w

dx2
5sinw, Lxx

2 5lJ
2 2qxx

det~qab!
. ~43!

For aligned banks (u15u2) this coincides with Eq.~22!.
To see this, note that in this casem̂ and m̂ are the same on
both sides and $mabmbg%52mabmbg . Then, pzx
522mzgmgz522(mama sin2 u1mcmccos2u) and det(pab)
54mamamcmc ~choose the principal axes to calculate th
invariant!.

C. General equation for the phase

We derive now an equation for the phase differen
w(x,z) which holds at the junction planexz with no refer-
ence to a particular vortex solution. Since we no longer h
uniformity in thez direction, Eq.~6! takes the form

FL5
l2

2cE dx dz~Hx @mzkj k#2Hz @mxkj k# !. ~44!
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Using the London relations~7! we obtain instead of Eq.~36!:

@mab j b#52
cf0

8p2l2

]w

]xa
. ~45!

The current distributions are still given by Eqs.~34!, ~35!;
the system~37! now reads

pxxHx1pxzHz5
f0

2pl

]w

]x
, ~46!

pzxHx1pzzHz5
f0

2pl

]w

]z
~47!

with the tensorpab defined in Eq.~38!. Solve this forHx,z
and substitute the energy~44!:

FL52
f0

2

32p3l det~pab!
E dx dz

3F ~pzz2pxx!
]w

]x

]w

]z
1pzxS ]w

]x D 2

2pxzS ]w

]z D 2G .
~48!

Since the scalar of energy cannot depend on the choic
coordinates, the coefficients by the derivatives ofw must
form a tensor. This is the tensorqab introduced above in Eq
~41!: pxx5qzx , pxz5qzz, pzx52qxx , and pzz52qxz .
We then have

FL5
f0

2

32p3l det~qab!
E dx dz qab

]w

]xa

]w

]xb
. ~49!

Minimizing with respect tow the sum of this energy with

FJ5
f0 j c

2pcE dx dz~12cosw!, ~50!

one obtains

Lab
2 ]2w

]xa]xb
5sinw, Lab

2 5lJ
2 2qab

det~qab!
. ~51!

III. JOSEPHSON VORTICES IN FLAT SAMPLES

A. Infinite slab

Consider an infinite thick slab with thez axis perpendicu-
lar to the slab surface and with a set of parallel Joseph
contacts at planesy50,6d,62d, . . . . Clearly, the system
for which this model is relevant is a platelet of Y-Ba-Cu-
with a set of parallel twins. Let the magnetic fieldHW be
applied in the planexz of the junctions at an anglea to the
z axis. The fields of our interest are small enough so that o
Josephson vortices are nucleated at the junctions while A
kosov vortices are absent. For a general tilta of the applied
field, the vortices are tilted as well at an angleb still to be
determined. We denote asN the line density of Josephso
vortices at each junction so that the average magnetic in
tion is
of

n

ly
ri-

c-

B5
N

d
f0 . ~52!

The macroscopic boundary conditions for the slab geo
etry are

Bz5Hz , Hx5Hx . ~53!

We utilize the first of these to obtain

Hz5B cosb5
N

d
f0 cosb, ~54!

whereas

Bx5B sinb5Hz tanb. ~55!

Since we are interested in the limit of vanishing densityN
of vortices, we can disregard their interaction and write
Helmholtz free energy as

F5
N

d
e~b!, ~56!

where the line energye of a Josephson vortex is given in Eq
~29!. With the help of Eq.~54! we write

F5
1

4p
HzH0Ak1tan2b, ~57!

where

H05
4

p2k1/3

f0

llJ
. ~58!

We now turn to the thermodynamic potential which
minimum in equilibrium at a givenHW . Given the boundary
conditions~53!, this potential is

G5F2
1

4p
BxHx . ~59!

SincedF5HW •dBW /4p, we have

dG5
1

4p
~HzdBz2BxdHx!, ~60!

i.e., the potentialG is minimum indeed at fixedBz ,Hx or
Hz ,Hx . It is worth noting that in factG is the Gibbs energy
with a subtracted termBzHz/4p5H z

2/4p which is constant
for the slab geometry.

Using Eqs.~59!, ~57!, and~53! we obtain

G~HW ,b!5
Hz

4p
~H0Ak1tan2 b2Hx tanb!. ~61!

Minimization with respect to tanb yields the direction of
vortices:

tan2 b5
kH x

2

H0
22H x

2 . ~62!
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We observe that when the direction of the applied fi
changes froma50 to a5p/2, the vortices (BW ) rotate from
b50 to bmax such that

tan2 bmax5
kH x

2

H0
22H 2 . ~63!

It is of interest to see how the equilibrium vortex dens
changes during rotation of the constant in value external fi
HW :

B25H z
2 tan2a1H z

25H z
2

H0
21H x

2~k21!

H0
22H z

2
. ~64!

We see that whena increases,B increases, goes over a max
mum, and tends to zero fora→p/2 (b reachesbmax).

The Gibbs potentialG(Hx ,Hz) is now readily found:

G5A k

4p
HzAH0

22H z
25A k

4p
H cosa AH0

22H 2 sin2a.

~65!

In particular, the torquety52dG/da reads

ty5A k

4p
H sina

H0
21H 2 cos2a

AH0
22H 2 sin2a

. ~66!

Note an unusual feature: whena→p/2, the torque goes to a
constant value:

t~p/2!5
HAk

4p
AH0

22H 2. ~67!

For a.p/2 ~or Hz,0), one has to change sign in E
~57! or to replaceHz with uHzu. One can follow the same
derivation to see thatuHzu appears in Eq.~65! for the Gibbs
potential. In other words, the potentialG(a)}up/22au in
the small vicinity of a5p/2. A similar situation has been
discussed in Ref. 5.

The nonanalyticity ofG andt at a5p/2 is an artifact of
the infinite slab geometry. To treat better the vicinity ofa
5p/2 we turn to a more realistic sample shape.

B. Oblate ellipsoid

The thermodynamic potential which is minimum in equ
librium for this case is given in Ref. 6:

F̃5F2
HW •BW

4p
2

1

2
MW •HW . ~68!

All macroscopic fields inside the ellipsoid are unifor
and related to the applied field by

Hi1nik~Bk2Hk!5Hi , ~69!

wherenik is the demagnetization tensor. Let us consider
sample as an oblate ellipsoid withz5c as the axis of rota-
tion. Thennz5122nx and

~12n!Hx1nBx5Hx , ~70!
ld

e

2nHz1~122n!Bz5Hz , ~71!

where the subscriptx at nx is omitted for brevity. The free
energy in this case reads

F5
B

f0
e~b!5

BH0

4p
Asin2 b1k cos2 b5

H0

4p
ABx

21kBz
2.

~72!

The fieldHi54p ]F/]Bi is now readily found

Hx5H0

Bx

ABx
21kBz

2
, ~73!

Hz5H0

kBz

ABx
21kBz

2
. ~74!

In principle, Eqs.~70!, ~71!, ~73!, ~74! determine bothHW and
BW in terms of the applied field. This determination, howev
is cumbersome in the general case.

To establish at what fieldH for a given orientationa, the
vortices start to penetrate the ellipsoid, we first excludeBi
from the system~73!, ~74!:

Hx
21Hz

2/k5H0
2 . ~75!

At the Meissner boundary, Eqs.~70! and ~71! yield

~12n!Hx5Hx , 2nHz5Hz . ~76!

Therefore,

H x
2

~12n!2 1
H z

2

4n2k
5H0

2 , ~77!

or

H 2F sin2 a

~12n!2 1
cos2 a

4n2k G5H0
2 . ~78!

In the following we restrict ourselves to the case of a fl
sample, n!1, and to a narrow angular domain neara
5p/2. It is in this domain, the torque evaluated for an in
nite slab (nx50) has a discontinuous jump. The simplific
tion here comes about becauseHz!Hx along with Bz!Bx
andHz!Hx . Using this and utilizing the smallness ofn, we
obtain from Eqs.~70!, ~71!, ~73!, ~74!:

Bx'
Hx2H0~12n!

n
, Bz'

Hz

122n
, ~79!

Hx'H0 , Hz'Hzn
H0k

Hx2H0
. ~80!

Note that according to Eq.~78!, for a close top/2, the field
of first penetration isH0(12n) and, therefore,Bx given
above is positive.

It is now a matter of a simple algebra to express the
tential F̃ of Eq. ~68! in terms of the applied field:

F̃'
Hx~H02Hx!

8pn
. ~81!
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In terms of the angleg5a2p/2 between the applied field
and theab plane, we have

F̃5
H cosg~H02H cosg!

8pn
. ~82!

This yields the torque forg!1:

t52
dF̃

dg
52

H
8pn

~2H2H0! g. ~83!

Thus, as expected, the torque is continuous atg50 (a
5p/2) where the sample is in the stable equilibrium. T
torque is fast increasing in magnitude whenugu increases.

The crossover between the regime described by Eqs.~66!
and ~67! takes place aroundgm which can be roughly esti
mated by equating the torque given in Eq.~67! and that of
Eq. ~83!:

gm;2nAk. ~84!

The maximum torque then is
in

nd
tm;
H0H
4p

Ak5
f0k1/6

4p3llJ

H. ~85!

For l;1025 cm and lJ;1024 cm, tm;102 erg/cm3 in
fields on the order 100 G. Even for a tiny crystal with dime
sions (0.130.130.01) mm351027 cm3, we estimatetm as
1025 erg. The sensitivity of piezoresistive torque magne
meters is in the range of 1027 erg,3 so that the torque we
have calculated here can, in principle, be measured.
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