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Josephson junction between anisotropic superconductors
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Sin-Gordon equation for Josephson junctions with arbitrary misaligned anisotropic banks is derived. As an
application, the problem of Josephson vortices at twin planes of a Y-Ba-Cu-O-like material is considered. It is
shown that for an arbitrary orientation of these vortices relative to the crystal axes of the banks, the junctions
should experience a mechanical torque which is evaluated. This torque and its angular dependence may, in
principle, be measured in small fields, since the flux penetration into twinned crystals begins with nucleation of
Josephson vortices at twin plangS0163-182609)08925-(

I. INTRODUCTION II. MAIN EQUATIONS
A. Aligned banks

The highT, superconductors are often used as polycrys- ) ) 9 ] _ o
tals made of anisotropic grains touching each other with vari- L€t us first consider the simplest possible situation: a Jo-
ous degrees of crystallographic misalignment. As a rule, thé©ePhson junction with superconducting banks made of the
contacts have Josephson properties. Hence, physical charé@?eﬁnﬁmfp'c matefrlalrlnik Iare t(;]e same on IbOtT\ sides
teristics of Josephson junctions with misaligned anisotropi@" the banks are perfectly aligned. Moreov_er,_ et the yxis
banks are of considerable interest. To our knowledge, th erpendicular to the junction plane be the principal direc- .
only publications on this subject were by one of us and wer lon, sayb. Let us assume f!”ther that a Josephs_on vortexis

. . ) 7 . . __directed at an angle® relative to the crystal axi€. We
concerned with a relatively simple situation of a junction .
X . : choose the axis along the vortex.

between perfectly aligned anisotropic superconductrs. The coordinatesx z are related toa.c: x=acosf

In th'sf paper We_conS|dt_ar two misaligned grains of the+csin0andz= —asin#+ccosfh. Then the nonzero compo-
same uniaxial material forming a Josephson contact. The m

Hents of the mass tensor in the frapogz are
terial is characterized by the dimensionless “mass tensor”

with eigenvaluesn,=m,<m, which are normalized so that M= M. cOZ O+ m.. Sir? 6
m2m.= 1. The mass ratios are definedmgm,=\?/\2, so o ¢ ’
that the actual penetration depths can be written\as m,,= m, sir? 6+m, co< 6, (1)
=\Jm; wherex=(A2x.)*"3,
The paper is organized as follows. We first consider My, = (M—m,)cosdsing, my,=m,.

aligned banks not only to establish notation and to demon-

strate the approach; we have in mind a material of the Y-BaNote a useful property

Cu-O family which usually contains sets of nearly parallel

twinning planes having Josephson properties. We show that MM, ,— MZ,=mam, 2
the gauge-invariant phase difference still satisfies the sine- 2

Gordon equation, however, the squared Josephson length akhich follows from det(m;) =mam, . _
quires tensor properties which are discussed in detail. Next, Y€ proceed by calculating the London enefgyassoci-
the case of a general misalignment is treated and the tens8fed With a Josephson vortex alongn terms of the gauge-
for the squared Josephson length is expressed in terms Bivariant phasep. We then minimize the total enerdy,

mass tensors of the banks and their misalignment. +F; where

In twinned materials of the Y-Ba-Cu-O kind, in increas- )
ing from zero magnetic field, the first vortices entering ma- bl [

. . . 3= dx(1—cosep), 3
terial are usually situated on the twin planes and have Jo- 27C )

sephson properties. We consider the problem of a Josephson

vortex between anisotropic grains and evaluate the torqueith respect top to obtain the tunneling curreny, in terms
which should act on the system of such vortices and via themf ¢ along with the equation governing the phase; hgges
on the sample. Although this torque is small, given recenthe flux quantum and. is the Josephson critical current
developments in improving sensitivity of the torque density.

magnetometry,it is a measurable quantity, from which the ~ For a straight vortex along, all gauge-invariant quanti-
Josephson characteristics of grain boundaries can, in pririies arez independent: the field componertig, are func-
ciple, be extracted. tions ofx andy, hy=0, while ¢ depends only ox.
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We begin with the general expression for the London hX=Hae“V|“ccosa+ Hce“VV*asin 9,
energy
1 Am\2 h,= —H e M*csing+H e Y™acose, (13)
7T -
FL=g, (h2+ c mikJiCU”kh)dV, (4 wherex, ;=\ym,. In terms ofH, , we have
and integrate the kinetic part by parts to obtain hy=Hy(e e cog o+ e Vasir? )+ H (e~ MM
\2 —e M¢)sing cose, (14)
FL=z—me 3§ jihmdS, 5
L 2c ik=klm gsll mdS ( ) hZ=Hx(e_lyll)‘a—e_‘yln‘C)sin00036
\_/I_vrk:_ere_d8= +dxy is an area element on two junction sides. +H, (e Mesirg g+e Macog 6). (15)
is gives

The field is continuous at the junction plage=0 whereas

M ; . the tangential currentf, , are not. One finds
FL:EJ, dx{H, M, ]J—H,[myiwl} (6)

Ay =H L L 20— 2H ! 'n20+1 g0
per unit length in thez direction. HereafterH, ,(x) are the c 1= Hx Ne Aa sin z )\CSI )\aco '
field components at the junction plage=0; y is directed (16)

from the side 1 to the side 2 of the junction. The symbol

e i i i 4 1 1 . 1 1) .
[---] iien%e_s ttlg difference of a quantity on two sides, e.g.; [j,]=2H, —co2 6+ —sir2 6| +H,| — — —|sin 26.
[Myy] =My —myy/ . o N Na Ne Aa

We now utilize the London equations 17

2 Note that the coefficients df, , in these expressions do not
¢g Ix 47\ . . .

o == — —— My, 7) reduce to componentsy, of Eq. (1) because they contain

2 09X ¢ 1/yJm, . instead ofm, .. It is convenient to introduce an-
wherey is the phase of the order parameter. Also, we use thether tensoiu,z («,8=x,2) with eigenvalues 3ym, ; [to
gaugeA,=0 and the continuity of the tangential componentobtainu,z replacem, ¢ in Eq. (1) with 1/\ym, ¢]. Then, Egs.

of the vector potential to obtain (16), (17) take a compact form:
. . C¢o dQD 2 .
mxx[Jx]"'mxz[Jz]:_maa (8) T[JX])\:HXIU’XZ_HZIU’XX! (18
My jx]+m.4j.]=0; ) 2m
oe e ?[Jz])\: Hywz,—Hopiys (19

here we introduced the phase differerce|[ x], utilized the
alignment, and the conditiofi,]=0. Note that for the uni- Since the rati¢j,]/[j,] is fixed by Eq.(9), we obtain a fixed
form alongz solutions, the discontinuities of the tangential ratio H, /H,:

currentsj, and j, at the junction are proportional to each

other. Solving the systert8), (9) we obtain H(pxdMyzt 122N = Ho( oMyt pyiMz7). (20)

m Cbom Clearly, the transverse field, vanishes if the vortex axis

[id=— —[j,]=— #go "(X), (100  coincides with eithea or c.

My, 872\ 2m,m, We now go back to Eq(10) and obtain using Eqg18)

where the property2) has been used. and(20)
With the help of Egs(8) and(9) the London energy takes &
the form 0 L (x)=H (21
am ¢ (x) z
¢O * ’ h
F.= dx H(x) ¢ (X). (11  wnere
1672 ) =
To make further progress one has to turn to the field and = A = L (22)
current distributions in the banks. Assume that e SIMP O+ 11, COS 0 Mxx
AN<<A;, (12 Thus, the London energy

where the length ; is the characteristic distance at whieh b5 (= ,
changes in the junction plane. In this case one can consider F = 3~f dx (¢ )2 (23
the field penetration into the banks as the standard Meissner 64T N =

problem of a uniform “applied” field:|={Ha,Hc} penetrat- We complement this with the Josephson ene(gy and
ing in two half-spacesy>0 and y<0. Since h,  minimize the sum with respect to the phase to obtain the
=H_exp(-|yl/\o) andh.=H_exp(-|y|/\y), we obtain result of Ref. 1:
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Ntxe '=sine, (24) AT\ le=—pagepH,. (34)
where the length\ ; is defined as For the other side of the junction gi=—0 we have

[ ¢ 4a\j lc=u, ze5,H,. (35
)\J: # (25) BBy 1y
167°Nj .

To proceed, we rewrite the systei30), (31) as
It follows from Eq. (24) that the Josephson length is

. _ C(ZSO ’
Ax(8) =X\ ), (26) [Magip]= = gz 20 (), (36
where substitute here Eq$34), (35), and obtain
=k 2Rsir? 9+ kY3 cod 6, (27) do
" PapH =5 ¢ () 8 (37

andk=M\./\, is the anisotropy parameter. Note thathas
now the meaning of aaverageJosephson length. We see, pHere
therefore, that even in the case of aligned banks considered

here, the Josephson length(#) depends on the orientation Pap=1Mayit st €58 (38
of the Josephson vortex within the junction plaae. In

particular, we have and{- - -} denotes the sum of a quantity enclosed taken on

two junction sides.

A;(0) The system of two equatior{87) can be solved foH, ,:
= k. 28)
A;(712)
_ ¢0 Pzx ’
i i : Hy=— 5~ ¢ (X. (39)
Using Egs.(3) and (23) and the classical vortex solution 2\ de(p,p)

of Eq (24), (P(X):4 tanﬁl[expé(//\\])], we calculate the line This coincides with Eq(21) in which
energy of the Josephson vortex as

~ de(p,
1 4 - M 2('0 -
i T AT KGoF 6 (29 Pex

To have the following equations in a more symmetric form,
we introduce a tensor

(40)

B. Misaligned banks
Consider now a simple misalignment: the banks are made Guv= " CuaPar= " €ual Maph gy} €y (42)
of identical materials with the axison both sides alon_g a5 instead of the pseudotensera compelling reason for this is
before, but thea,c axes are rotated arourdthrough differ- ;

; . . . given below. Then

ent angles on two junction sides. We again look for vortex
solutions uniform along the vortex directianThe mass ten- ~ _ detq.p)
sors on two sides are given by Ed), however, the angles A=\ 200 (42)
6,# 6,. Equation(6) still holds, but in Eqs(8) and (9) the XX
components ofn;,, cannot be taken out of the square brack-and proceeding as above we obtain the sine-Gordon equation
ets denoting the differences between quantities enclosed dar the phase:
the two sides:

d?e 2q

2 . 2 2 XX

_ Copy do Ay——==sing, A=\ —. (43
[Myjil=— 32 dx’ (30) dx? detq,p)

For aligned banks{,;= 6,) this coincides with Eq(22).

[mziji]=0; 3D 10 see this, note that in this caseand ;u are the same on
note that the summation indéx x,y,z can be replaced with both sides and {maﬁ,{tﬁy}=2mag,u57- Then, pyy
the two-dimensional2D) a=x,z becausen,,=0 on both = —=2M,yu,,= —2(Myu, Sin? 6+meucos'd) and detp,,)
sides. We now see that E(L1) holds, too. =4m,yuM.u. (choose the principal axes to calculate this

The field distribution in the bani>0 is obtained replac- invariany.
ing |y| and @ in Egs.(14), (15) with y and 6,, whereas for
y<0, |y|——y and #— 6#,. Then, one obtains for the cur- C. General equation for the phase

rents at the junction sidg=+0: We derive now an equation for the phase difference

(32 ¢(x,2) which holds at the junction plarez with no refer-
ence to a particular vortex solution. Since we no longer have
uniformity in the z direction, Eq.(6) takes the form

4| ;r =c( Hx:U“x+z_ HZM;x)v

AmNjf =c(Hyps—Hopm). (33

2
These relations can be written in a compact form with the :’\_f . ;
help of the two-dimensional unit antisymmetric tensqp: FL=7¢ ) dxdz(Huimadi =HzImadiD). (44



PRB 60

Using the London relation&) we obtain instead of Eq36):

N
[Mypjgl=— 8ONE ox. (45
The current distributions are still given by Eq84), (35);
the system(37) now reads

bo do

PyxHx+ pszz:m 51 (46)
o Je¢

PoxHx+ pzsz:m E (47)

with the tensom,; defined in Eq.(38). Solve this forH, ,
and substitute the enerdy4):

2
FL=—LJ dx dz
327\ det(p,p)
de de dp\? dp\?
X (pzz_ pxx)&%"'pzx 5 ~ Pxz E .

(48)

Since the scalar of energy cannot depend on the choice cg

coordinates, the coefficients by the derivatives¢ofmust
form a tensor. This is the tensqy,; introduced above in Eq.

(41): Pxx=0zxs Pxz=Uzz: Pzx=—0Oxx,» and p,,= —0y;.
We then have
b5 f dp d¢
Fl=———] dxdz — . 49
" 3273 detq,y) W, g

Minimizing with respect tap the sum of this energy with

_ ¢ojcf
FJ—ZWc dx dz(1—cose), (50
one obtains
e 2q
2 — i 2 _\2 ap
“Baxaaxﬂ_sm(p' Nap=h3 de(dup) =y

I1l. JOSEPHSON VORTICES IN FLAT SAMPLES
A. Infinite slab

Consider an infinite thick slab with theaxis perpendicu-
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N
B= 5 %o- (52

The macroscopic boundary conditions for the slab geom-
etry are

B,=H,, Hy=H,. (53)
We utilize the first of these to obtain
'H,=B cosB= g ¢ COSp, (59
whereas
B,=Bsing="H,tang. (55

Since we are interested in the limit of vanishing denbity
of vortices, we can disregard their interaction and write the
Helmholtz free energy as

N
F=g¢B), (56)

where the line energy of a Josephson vortex is given in Eq.
?9). With the help of Eq(54) we write

1
F=—"H,HoVk+tarfs,

4 (57)

where

4 o

Ho= 2K AN,

(58)
We now turn to the thermodynamic potential which is

minimum in equilibrium at a giveﬂ?. Given the boundary
conditions(53), this potential is

1
G=F-1—B,H,. (59
Since SF=H - 6B/4m, we have
1
OG= E(HZb‘BZ— B,oH,), (60)

i.e., the potentialG is minimum indeed at fixed,,H, or
‘H,,H,. Itis worth noting that in facG is the Gibbs energy

lar to the slab surface and with a set of parallel Josephsowith a subtracted terr®,H /4= 2/4= which is constant

contacts at planeg=0,=d,*2d, . ... Clearly, the system

for which this model is relevant is a platelet of Y-Ba-Cu-O

with a set of parallel twins. Let the magnetic field be
applied in the planez of the junctions at an angle to the

zaxis. The fields of our interest are small enough so that only
Josephson vortices are nucleated at the junctions while Abr

kosov vortices are absent. For a generaldilof the applied
field, the vortices are tilted as well at an anglestill to be

determined. We denote &¢ the line density of Josephson
vortices at each junction so that the average magnetic induc-

tion is

for the slab geometry.
Using Egs.(59), (57), and(53) we obtain

G(H,B8)= %(HO\/kthanz B—H,tanB).  (61)

Minimization with respect to tgh yields the direction of
vortices:

kM2

tar? B= m . (62)
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We observe that when the direction of the applied field

changes fronw=0 to a= 7/2, the vortices E) rotate from
B=0 to Bmax Such that

kM2

e Bra= 77,2 (63)
0

It is of interest to see how the equilibrium vortex density

ROMAN G. MINTS AND VLADIMIR G. KOGAN

PRB 60

2nH,+(1-2n)B,=H,, (72)

where the subscript at n, is omitted for brevity. The free

energy in this case reads

changes during rotation of the constant in value external field he fieldH;=4= JF/JB; is now readily found

H:

H3+H2(k—1)
BZ=H§tarFa+H§=H§°2—XZ (64)
HO_HZ
We see that when increasesB increases, goes over a maxi-
mum, and tends to zero fer— 7/2 (B reacheBay -
The Gibbs potentiaG(H,,H,) is now readily found:

[ k [k
= EHZ\/WSW% EHCOS&\/m.

(65)
In particular, the torque,=—dG/da reads
/ H 0+H COS2x 66
Sing ——————
VH2—HZsirta’

Note an unusual feature: when— 7/2, the torque goes to a
constant value:

4 0

For a>/2 (or H,<0), one has to change sign in Eq.
(57) or to replaceH, with |#,|. One can follow the same
derivation to see thd#{,| appears in Eq(65) for the Gibbs
potential. In other words, the potenti@(a)x|w/2—a| in
the small vicinity of a=#/2. A similar situation has been
discussed in Ref. 5.

The nonanalyticity ofc and r at = /2 is an artifact of
the infinite slab geometry. To treat better the vicinity eof
= /2 we turn to a more realistic sample shape.

7(wl2)= (67)

B. Oblate ellipsoid

The thermodynamic potential which is minimum in equi-
librium for this case is given in Ref. 6:

(os )

H.
iy

- v}

N -

F=F- (68)

All macroscopic fields inside the ellipsoid are uniform
and related to the applied field by
H;i+ni(Bc—H

W=Hi, (69

wheren;, is the demagnetization tensor. Let us consider the

sample as an oblate ellipsoid wiit+c as the axis of rota-
tion. Thenn,=1-2n, and

(1—n)H,+nB,=H,, (70

=¢—e(,8)— \/S|n2,8+kc0§ = \/BZ+kB2
(72
Hy=Ho et (73)
VB2+kB?
kB,
H,=H (74)

o /BZ+kBZ’

In principle, Eqs(70), (71), (73), (74) determine botiH and
B in terms of the applied field. This determination, however,
is cumbersome in the general case.

To establish at what fiel@{ for a given orientationy, the
vortices start to penetrate the ellipsoid, we first exclige
from the system(73), (74):

H2+H2/k=H3. (75
At the Meissner boundary, Eq&/0) and(71) yield
(1—-n)H,=H,, 2nH,=™H,. (76)
Therefore,
2 2
(17_1—;)2 - % =HZ, (77)
or

In the following we restrict ourselves to the case of a flat
sample,n<1, and to a narrow angular domain near
= /2. It is in this domain, the torque evaluated for an infi-
nite slab 6,=0) has a discontinuous jump. The simplifica-
tion here comes about becaukg<H, along with B,<B,
andH,<H,. Using this and utilizing the smallness mfwe
obtain from Eqs(70), (71, (73), (74):

Hy—Ho(1—n)

x> y B~

n

H,
1-2n’

(79

Hok
Hx_HO.

meHo, sz'Hzn (80)
Note that according to Eq78), for « close tow/2, the field

of first penetration isHy(1—n) and, thereforeB, given
above is positive.

It is now a matter of a simple algebra to express the po-

tential F of Eq. (68) in terms of the applied field:

Hx( HO_ Hx)

8mn

(81)
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In terms of the angley= a— 7/2 between the applied field H.H Bk
and theab plane, we have Tm™ d Vk= O H. (85
Am 473NN\,
~ Hcosy(Hqg—Hcos
= y(Ho 7)_ 82 y , |
8mn For A~10%5cm and A;~10 %cm, 7,~1Cerg/cn? in
This yields the torque foy<1: fi_elds on the order 100 G. Even7f70r atiny cryst.al with dimen-
sions (0.1X0.1X0.01) mn¥=10 ’cn?, we estimater,, as
dE H 10 °erg. The sensitivity of piezoresistive torque magneto-
T=— a= — ﬁ(ZH—HO) V. (83 meters is in the range of I0erg? so that the torque we

have calculated here can, in principle, be measured.
Thus, as expected, the torque is continuousyatO («
= 7/2) where the sample is in the stable equilibrium. The
torque is fast increasing in magnitude whet increases. ACKNOWLEDGMENTS
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