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Rectangular normal domains in current-carrying superconductors
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We find a type of normal domain in composite superconductors—a traveling rectangular domain.
Using the effective circuit model we study in detail the dynamics of this domain. We derive an
analytical solution for the propagation velocity and the length of a traveling rectangular domain.
Current—voltage characteristics are calculated for a superconductor with a rectangular domain.
© 1998 American Institute of Physid$$0021-897@8)03811-0

I. INTRODUCTION smoothly from zero. Lately, Kupfermaat al. have found
S . .that the temperature profile in this traveling normal domain
The origination and propagation of a normal zone in. T - . :
. . ; . is spikelike:” The explicit equations for the propagation ve-
current-carrying superconducting wires has been continu:_ . ; . .
) . . . . locity of these traveling spike domains and for the threshold
ously a subject of interest in the field of applied supercon- X
Y currentl 4 have been obtained.
ductivity (see, for example, Ref. 1, and references therdin

a normal seed nucleates in a current-carrying homogeneo In this paper we study the dynamics of a normal zone in
O . ying 9 e composite superconductors characterized by a very long
superconductor it will either shrink when the current is les

. o . Sduration of the current redistribution process into the stabi-
than a certain valué, (minimum propagation curreptor

expand when the current is higher than Modern commer- lizer (this is typical, in particular, for Rutherford-type super-

: . ; . - gonducting cables:!? or for composite superconductors
cial superconducting wires consist of many fine filaments o

. . \1vhere a large amount of normal metal stabilizer and the su-
a superconductor embedded in a matrix of a normal meta

(stabilizey. If a normal seed nucleates in this composite Su_perconductor itself are spatially segregé}ed)ur numerical

perconductor the current in the vicinity of this normal seedsmula’uons show that in this case a type of normal domain

o . - . -exists in a composite, namely, a traveling rectangular normal
redistributes into the normal metal stabilizer. This process is . . .
domain. The temperature profile of a rectangular domain is

followed by a significant decrease of the Joule power and b¥1ualitatively different from the temperature profile of a spike

the subsequent recovery of superconductivity. : . o
Composite superconductors with a large amount of norgomam. In particular, thg length of a rectangular domain is
abouttwo ordersof magnitude larger than the length of the

mal metal stabilizer have been tested for use in supercon- . . : C
. : . spike domain. Modeling the process of current redistribution
ducting magnetic energy storage systems. Despite the above- . . ; X .

. o . ) ih the composite by an effective circdftwe derive explicit
described stabilizing ~mechanism, it was found

experimentally that a normal zone of finite si@rmal do- expressions for the propagation velocity and length of the

. . traveling rectangular domaimy characteristics of the com-
main) can propagate along a composite superconductor for

transport currents larger than a certain threshold vaju2 posite in the presence of a rectangular domain are calculated.

The formation of these traveling normal domains was shoerve discuss the physical mechanism of normal domains

to be a result of a finite duration of the current redistributionprOpagatlon In composite superconductors. Finally, we use

process into the large stabiliz&¥. The Joule power gener- the effective circuit model to analyze the experimental data

2
ated in the superconducting filaments during this process isr,eported by Pfotenhauet al:

consequently, high. This heat release results in a “hot” re-
gion at the front of the normal zone, and causes the expar%l-' MAIN EQUATIONS
sion of the normal domain. After the current is expelled into In this paper we consider a rectangular conductor con-
the stabilizer, the superconductor cools down towards thsisting of a plane layer of a superconducting material, re-
stable state and superconductivity recovers. ferred to asS, electrically and thermally bonded to a stabi-
The dynamics of a traveling normal domain was inves-lizer, referred to adl. The thicknesses of the superconductor
tigated both numerically and analytically in a number of the-and the stabilizer are denoted by and d,,, respectively.
oretical studies. Dresner formulated a simplified modelThe conductor carries a transport currérand is kept in a
which could be treated analyticaffy’. He performed explicit thermal contact with a heat reservoir of temperafligd see
calculations of the propagation velocity approximating theFig. 1(a)].
decay of the Joule power during the process of current redis- The process of current redistribution in the conductor is
tribution by an exponential term. His model predicts a cur-modeled by the effective electrical circuit sketched in Fig.
rent thresholdl 4, for currents belowly the composite is 1(b). Each component of the conductor is described by a
cryostable and for currents abolg a traveling normal do- discrete chain of resistors. The lower chain represents the
main exists. At this thresholld;, the propagation velocity of stabilizer, each resistor being attributed a resistaRge
a normal domain jumps to a finite value rather than rising=p,Ax/d,, whereAx is an arbitrary discretization length
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TO and is a function only of the coordinate along the conductor
and time'® In this case, the temperatuféx,t) satisfies the
L. S d one-dimensional heat equation
s C&T— il W(T)+Q(T,j 2
T K 2 W +Q(T o), 2
1. N d, whereC and « are the heat capacity and the heat conductiv-
ity of the conductor, respectively, both averaged values,

taken here as constants. The te¥i(T) is the rate of heat
transfer to the coolant per unit volume, which we write as
W(T)=h(T—T,p)/d, whereh is the heat-transfer coefficient
(we consider for simplicity the case whedrds constantand
d=d;+d, . The functionQ(T,js) is the rate of Joule heating
per unit vqume,Q(T,js)=dspS(T,js)j§/d. We neglect the
contributions to the functio®(T,js) from the current in the
stabilizer and from the perpendicular current. This simplifi-
cation reduces the complexity of the resulting equations
while preserving the main physical features of the model.

We define the following dimensionless variabl@sthe
temperature of the conductor; ang the current density in
the superconductor,

_T-To s

= ’ 1=+ ’ (3)
(b) Tc—To S e
where T, is the critical temperature of the superconductor
FIG. 1. (a) rectangular conductor modeb) effective electrical circuit de- andj is the critical current density at the temperatilie
scribing the current distribution in the conductor. ¢ . .
We definely,, the characteristic thermal relaxation length,
and 7y, the characteristic thermal relaxation time,

(x is the axis along the conducjoiThe upper chain of resis-

tors represents the superconductor, wity=pAx/d;, |t2hE m = w (4
where ps=p(T,j) is the resistivity of the superconductor

depending on both the local temperature and current densityie characteristic length of the current redistributign and
in the superconductor. It vanishes in the superconductinghe corresponding relaxation time, ,

state, and it is finite above the normal transition. The two )

chains are linked through a third kind of resistd®, A —— YLModn )
= yrpndn/AX, representing a resistance to the perpendicular ™ ‘R ™ pn

current. Here,yg is a numerical factor of the order of 1, We assume here the “step model” for the resistivity of
which depends on the geometry of the conductor. The inclu;

the superconductdrp(T,js) =psH[js—jc(T)], whereH is

sion of a characteristic time scale in the electric current dlf—,[he Heaviside step functioiH(x) =0 if x<0 andH(x)=1

fusion process is accgmplished by taking into accou_nt th?f x>0], andj.(T) is the critical current density in the su-
inductance of the stabilizet,= y, uod,Ax, wherey, ~1 is perconductor given By

another numerical factor. L¢t be the current density in the
superconductor anp=1/dg be the current density in the su- ) . To\ .

perconductor if all the current flows through it. Then, the Jc(T):JC(l_ Tc_TO> =lc(1-0). ©®
current density in the stabilizefj, is given by j,
=(j—jgds/d,, and the current density in the perpendicular

Then, we define two dimensionless parameters

direction j, is given by j, = —dsdjs/dx. Applying now ped, dgpnjﬁ
Kirchhoff's laws on this circuit we obtain the following &= . a= m (7)
equation for the current density in the superconductor: Pnlls miie 0
Ji 22 d where¢ is the ratio of the resistances of the superconductor
Y odnds s = yrpndnds _st +pn =S (=i in the normal state and the stabilizer, ané the ratio of the
at X dy characteristic rates of Joule power and heat flux to the cool-
—po(This)is. (1) ant (Stekly parameter Finally, we use dimensionless scales

for time and length, and express time in units gf and

Next, we consider the temperature distribution in thejength in units ofly,. As a result, Eqs(1) and (2) take the
conductor. We assume that the thermal relaxation time ovegym
the cross section is much shorter than the thermal relaxation 5
time between the conductor and the coolant. In this case, the 90 J°6

e —=——0+ igt+6—17i2
temperature distribution over the cross section is uniform gt  9x° 6+ agHlis+6-1]is, ®
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2 ] . T . the symmetry of the temperature distribution we show only

the right-hand side of the sampl&Ve observe that the initial

normal seed starts to expand and change its stEge2(a)].

L (@) (b) (c) (d) g The temperature field at the boundary of the expanding nor-

mal zone reaches a steady shape after a short time interval of

the order of thermal relaxation time, (one in dimensionless

i units). During this time interval the current inside the normal

zone remains constant. After the normal zone reaches a cer-

tain length the current starts to diffuse into the stabilizer with

characteristic time/(£+1)>1 (in dimensionless unijsAs

a result, the center of a normal zone cools ddWwig. 2(b)].

The expansion of the normal zone accompanied by slow dif-

, fusion of the current into the stabilizer continues until the
30 50 current at the center of a normal zone reaches a certain value.

X At this point, the temperature at the center drops down below

FIG. 2. The temperature distribution in the composite superconductor durltS Critical value, over a short time interval of the order of

ing the formation of a traveling rectangular normal domain. The parametersy,, and superconductivity recovefBig. 2(c)]. As a result,

are 7=1000, £=5, a=2, A=0.1, andi=0.4, and(a) t=10, (b) t=60,  we find two separated normal domains with a nearly rectan-

(c) t=83, and(d) t=190. gular shape of the temperature profile traveling away in the

opposite directions. The system tends to a steady state with

two rectangular normal domains propagating along the con-

D1

0 !
10

dig &g

=N —5— (14 EH[ig+ 60— 1])ig+i, (99  ductor with a constant velocity, while superconductivity re-
ot Ix* ° ° covers behindFig. 2(d)].
where the dimensionless parameters, and\ are
i=jljc, m=1nlmh, A=lplly. (10

) ) _ B. Analytical solution of the steady state
To complete the presentation of the model, we identify

the characteristic time and length scales of the resulting L€t us consider now the propagation of a rectangular
equations. Equatiof8) has one set of characteristic scales,normal domain analytically. For>iy the temperature and
namely, the thermal relaxation time and the correspondin%‘e current density distributions of the steady state are given
relaxation length, both defined here to be equal to unityPy the stationary solutions of Eqe3) and(9), with 6= 6(x
Equation(9) has two sets of characteristic scales, dependin?_ vt) andis=ig(x—vt), which correspond to a reference
whether the system is in its superconducting state-Q) or ame moving along the conductor with velocity

in its normal statei=1). In the superconducting state the d2e

current diffuses from the stabilizer to the superconductor ——+v ——60+aéH[O+i,— 1]i§=0, 11
) > . dzZ ~ dz

with the relaxation timer and the characteristic lengi In

the normal state the current redistributes from the supercon- d2i dig . o

ductor to the stabilizer with the relaxation timeé(¢+ 1), N a2 v g, (AréHlo+is—1]is+i=0,  (12)

and the characteristic lenghY &+ 1.
wherev still has to be determined. We defigeex—vt=0

Il RESULTS to be the point where the normal transition occurs and
’ _ . . =—D to be the point where superconductivity recovers be-
A. Numerical simulations hind the normal domaifisee Fig. 3.

In order to study the propagation of normal domains in __ 10 Simplify calculations, we consider in this paper a
the limit of a very long process of current redistribution in diffusionless limit for the current density distribution. We
the composite superconductor we perform numerical simulaSUPPOSe that the eIe(;trlc current d|ffu$|on into the stab|I|z_er
tions of model Egs(8) and (9) considering the values of the N front of a propagating normal domain does not affect sig-
dimensionless parameterandé in the rangers &. The rest nificantly the propagation velocity and the domaln’.s shape.
of the dimensionless parameters are evaluated using expeﬁ)-_ur num'erlcal simulations show that this assumption holds
mental datd® which gives @~1—-10, \~0.1-1. We ob- with a high degree of accuracy for the.rele'vant range of
serve how the temperature and the current density distribLP?ramEtersv)}2<vT- In the first approximation, we set
tions evolve in time, when the conductor is initially in the A~ =0, dropping the diffusion term in E¢12). The resulting
superconducting rest staté=0, i;=i), except for a normal €duation
seed of length By, in which the temperature is raised above i
the critical valued=1. UTE_(].'F EH[O+is—1])ig+i=0, (13

For a given set of the dimensionless parameters there is
a threshold currenty, above which traveling normal do- is of first order and nonlinear. It can be solved, however, in
mains are formed. A sequence of temperature distributions ithe three regiong>0 (H=0), —D=<z=<0 (H=1), andz
the conductor is shown in Fig. 2 for-ig4 (note that due to <—D (H=0). In each of these regions E{.3) is a linear
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we obtainl;>1,. This means that the current varies only
le slightly in the boundary layers, and in the first approximation

N it can be set constant and equal to its values at the transition

' points. In this approximation the propagation of the front and

: the back boundary layers can be treated independently and

| described by Eq(11) with a constanti;=i for the front

[ boundary, ands=i, for the back boundary. As a result, the

: temperature distribution at the front boundary is a solution of

: the equation

: d?e

t

do H i—1]i%=0 16
F—FU 5_04‘&5 [0+|_ ]l =V, ( )

b with the boundary conditions,
z=0 6(=)=0, 0(—=)=ati?, (17)

FIG. 3. The temperature and the current density distributions in a travelinth”e the temperature distribution at the back boundary is a
rectangular normal domain. . .
solution of the equation,

d’0  de
— - P T2
equation with constant coefficients. The solution of Ep) dz° o dz O+ afHL6+1-1]i5=0, (18
) " e S
with boundary conditions at infinitys( =) =i is given by with the boundary conditions,
i, z>0, _ a2 o) —
£ f(=)=atii, 6(—»)=0. (19
i (x)={ é+1 1+¢ exp( o Z) ,  —Db=z=0, Equation(16) with the boundary conditionl7) is an
s +D eigenvalue problem for the propagation velocityparam-
—[i—i] ex;{z ) 7<-D, etrized by th_e current. It represents propagation of the
vt (14 superconducting-to-normal switching wave in a homoge-

neous superconductor with a constant current equial ihe
where we definé, =i (—D), the value of the current den- solution of this problem is well known, and the propagation
sity at the transition point=—D. We use this solution to Vvelocity v(i) as a function of total current is given by
calculate the length of a traveling rectangular normal do-

. 2 .
main. Matching conditions at the transition poist —D an (i)= agi®+2i-2 (20)
explicit equation for the rectangular normal domain length is JaA-i)(aéi?+i-1)
obtained,
The propagation of a normal domain corresponds to the posi-
D(i)= T & (15 tive velocity v(i). For the negative values of velocity the

+1 In +1)i,—i’ initial normal seed shrinks and disappears. Thus, equating
b pp q
propagation velocity (i) to zero we calculate the value of

where the velocity, and the current, have to be deter- the threshold currernity. Particularly simple expressions for
mined by considering the temperature distribution in the do- - y P b

main. For this purpose, the explicit expressionsiffr) can v(i) .am:.ld ar\t/a_ot;tzilned dlf Wg;inS'dh?rhthﬁ ;‘g||]E>WIng atp-
be substituted into Eq(ll), yielding linear equations for proximations, yag>1, and a¢i » Which hold Tor mos

6(z) in each one of three regions. The boundary and match°35€S of practical interest. Then, we obtain

ing conditions form a closed set of equations for the integra- af 2
v (I )~I E' id~ a_§

tion constants andi,. These implicit equations, however,
are very cumbersome and can be only solved numerically.

To obtain simple explicit expressions for the propagation  Figure 4 shows the comparison between the propagation
velocity v and the current,, we use the results of our nu- velocity of a rectangular normal domain obtained by the nu-
merical simulations. These simulations show that a fast temmerical simulations, and calculated by means of formulas
perature relaxation process results in formation of two(20) and(21). As it is seen from Fig. 4, the velocity is a
boundary layers in the vicinity of transition poirkss0 and  monotonically increasing function of the current rising
z=—D, where the temperature distribution has large gradismoothly from zero at the threshold rather than starting from
ents(see Fig. 3 The characteristic length of these boundarya finite value as it happens for the traveling spike
layersl , is approximately equal to the product of the propa-domains’'° Comparing the numerical results with the results
gation velocity and the characteristic time of the temperaturef Eq. (20), we find a high degree of accuracy in the entire
relaxation,| ,~v 7y, (v in dimensionless unitsOn the other range of currents>iy, with the maximum deviation less
hand, as it follows from Eq.14), the electric current diffuses than 3%. The velocity calculated by E®1) is very close to
into the stabilizer with the characteristic length~v /(¢  the numerical values for larger currents fitting the condition
+1). In the limit 7> &> 1, which is considered in this paper, a&i?>1.

(21)



6176 J. Appl. Phys., Vol. 83, No. 11, 1 June 1998 V. S. Kovner and R. G. Mints

30 400
I (b) 1
300 - 1
20
~ o
= r ~— 200 L 4
> O
10 |
100 -
0 0 i ]

0.6 0.8

FIG. 4. Velocity of a rectangular normal domain vs current. The dots rep-FIG. 5. The length of a traveling rectangular normal domain vs current. The
resent the results obtained in the numerical simulations, the solid lines reots represent the results obtained in the numerical simulations, the solid
resent formula20), and the dashed lines represent form(#4). The pa- lines represent formuld23). The parameters are=2, A=0.1, (&) 7
rameters aree=2, A =0.1, (a) 7=300, £=10, and(b) 7=3000, £=100. =200, £€=20, (b) 7=400, £= 20, and(c) 7=400, £=50.

Using the solution for the current density, EG4), we ob-
To calculate the characteristic curreigt, we use Eq. tain the dependence of the voltage on the propagation
(18) with boundary condition$19). It corresponds to propa- velocity and the length of a traveling rectangular domain,
gation of the normal-to-superconducting switching wave in a ¢
D+w(1—ex;{—ED)H. (25

homogeneous superconductor with a constant current equal Y= !
toiy,. In this case, the propagation velocitys parametrized €

by the currenty,, v=uv(ip), and is negativéthe supercon- The voltageU(i) as a function of the total current is calcu-
ducting phase expels the normal phaSéhe propagation of |ated by means of Eqg15), (20), and (25); the result of

a normal domain with steady shape requires that the fronhese calculations is shown in Fig. 6. The curlks) start at
and the back boundaries of the domain propagate with the=i, with a zero voltage and are strongly nonlinear for the
same velocity, namely, entire range of currentig<i<1.

v(ip)=—v(i). (22

Substituting expression®0) for v(i) andv(i,), and using
the above-considered approximationgé>1 and ati mains formation and propagation in composite supercon-

>1, we fi_nd for the currenty, i,~1/Vag. ) ductors. Our numerical simulations show that for the same
_Knowing the depindzpce Of,th(la velocity and the Ch(;iricfype of composite superconductor different values of the pa-
teristic currentl, on the dimensionless parameters and thg,materg characterizing the composite and cooling conditions

total current, we calculate the length of a traveling reCtangL,"result in formation of either spike or rectangular normal do-

Iar.normal domaiq as a function of'the total current. Substi~ in< Assume an initial normal seed originates in some part
tuting the expressions for the velocity, E§1), and the cur-

rent,i,~1/\J/aé, into Eqg.(15) we obtain for the length of a
rectangular domain,

. .|« &
D(i)=~ri 11 In \/E . (23 o)
——i

-~ 100
N

Figure 5 shows the dependen@¥i) calculated by D
means of Eq(23) and by numerical simulations. We find
that the analytical result is in good agreement with the nu- 50 8
merical results for the entire range of currens<i<1. It
becomes extremely accurate for larger currents and for the
values of the dimensionless parametarand &, fitting the 0 , ,
conditionsaé>1, anda&i’s1. 0.1 0.3 0.5 . 0.7 0.9
The presence of a traveling normal domain results in a l
potential dropU given by

C. Discussion and conclusions

We discuss now the physical mechanism of normal do-

150 |- ) |

FIG. 6. Current—voltage characteristics of a composite superconductor in
the presence of a traveling rectangular normal dong¥inis in units of

i ; psiclin)- The parameters ave=0.1,(a) a=2, £&=20, 7=200, (b) a=4, £&=20,
U=icpdlin f dzig(2). (4 72500, and© a=2, ¢=20, 400,
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of the superconductor. The current in this region starts tdrom i to i,. The propagation of two switching waves
redistribute between the superconductor and the stabilizer byoupled by the current is the origin of the traveling rectan-
diffusion, a process which has a characteristic duratiorgular normal domain formation.
tm/(é+1). It was shown that in the case when the charac- Traveling normal domains in composite superconductors
teristic time of the current redistribution process is of thewith a large stabilizer were studied experimentally by Pfo-
order of the thermal relaxation time,,/(¢+1)~ 7y, the  tenhaueet al? They found that the propagation velocity of a
initial normal seed results in the formation of traveling spikenormal domain jumps at a threshold current from zero to a
normal domaing® In this paper we have shown that in the finite value. As we have shown, this behavior at a threshold
case of a very long current redistribution process withis typical for traveling spike normal domains. Using the ex-
™/ (£+1)> 1y, a different type of traveling normal domain perimental data of Ref. 2 we estimate the dimensionless pa-
is formed, namely, a traveling rectangular normal domainrametersr and¢ of the effective circuit model as~ 100 and
These two types of traveling normal domains are characteré~100. Numerical simulations of the model equations for
ized by different propagation mechanisms, which we conthese values of the parameters show the formation of travel-
sider here. ing spike normal domains in agreement with the experimen-
In the regime of the spike domains, the relatively shorttal result.
process of current redistribution results in the formation of a  In conclusion, we have shown the existence of a type of
thin region at the front of a normal zone where the currentraveling normal domain in composite superconductors,
diffuses into the stabilizer. The Joule power generated in thisamely, rectangular normal domains. An effective circuit
thin region is, consequently, high. As a result, the region oimodel is used to study the formation and propagation of
high temperaturd*hot spot”) is formed at the front of a these domains. An analytical solution is found for the propa-
normal zone. The length of this “hot spot” is determined by gation velocity and length of the rectangular normal domains
the product of the propagation velocity and the characteristiin the case of the steady-state propagation. We discussed the
time of the current redistribution process and is equal tghysical mechanism of normal domain formation and propa-
vt/ €. Behind this “hot spot” there exists the region of gation in composite superconductors.
lengthv 7y, where the current flows through the stabilizer and
the temperature is decreasing toward the transition point. Thg ~xNOWLEDGMENT
fast expansion of a “hot spot” along the superconductor,

accompanied with the local recovery of superconductivity ~ The authors acknowledge the support of the German—
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