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Rectangular normal domains in current-carrying superconductors
V. S. Kovner and R. G. Mints
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel-Aviv University, 69978 Ramat-Aviv, Israel

~Received 26 November 1997; accepted for publication 27 February 1998!

We find a type of normal domain in composite superconductors—a traveling rectangular domain.
Using the effective circuit model we study in detail the dynamics of this domain. We derive an
analytical solution for the propagation velocity and the length of a traveling rectangular domain.
Current–voltage characteristics are calculated for a superconductor with a rectangular domain.
© 1998 American Institute of Physics.@S0021-8979~98!03811-0#
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I. INTRODUCTION

The origination and propagation of a normal zone
current-carrying superconducting wires has been cont
ously a subject of interest in the field of applied superc
ductivity ~see, for example, Ref. 1, and references therein!. If
a normal seed nucleates in a current-carrying homogen
superconductor it will either shrink when the current is le
than a certain valueI p ~minimum propagation current!, or
expand when the current is higher thanI p . Modern commer-
cial superconducting wires consist of many fine filaments
a superconductor embedded in a matrix of a normal m
~stabilizer!. If a normal seed nucleates in this composite
perconductor the current in the vicinity of this normal se
redistributes into the normal metal stabilizer. This proces
followed by a significant decrease of the Joule power and
the subsequent recovery of superconductivity.

Composite superconductors with a large amount of n
mal metal stabilizer have been tested for use in superc
ducting magnetic energy storage systems. Despite the ab
described stabilizing mechanism, it was fou
experimentally that a normal zone of finite size~normal do-
main! can propagate along a composite superconductor
transport currents larger than a certain threshold valueI d .2

The formation of these traveling normal domains was sho
to be a result of a finite duration of the current redistributi
process into the large stabilizer.3–7 The Joule power gener
ated in the superconducting filaments during this proces
consequently, high. This heat release results in a ‘‘hot’’
gion at the front of the normal zone, and causes the exp
sion of the normal domain. After the current is expelled in
the stabilizer, the superconductor cools down towards
stable state and superconductivity recovers.

The dynamics of a traveling normal domain was inve
tigated both numerically and analytically in a number of th
oretical studies. Dresner formulated a simplified mo
which could be treated analytically.8,9 He performed explicit
calculations of the propagation velocity approximating t
decay of the Joule power during the process of current re
tribution by an exponential term. His model predicts a c
rent thresholdI d , for currents belowI d the composite is
cryostable and for currents aboveI d a traveling normal do-
main exists. At this thresholdI d , the propagation velocity o
a normal domain jumps to a finite value rather than ris
6170021-8979/98/83(11)/6172/6/$15.00
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smoothly from zero. Lately, Kupfermanet al. have found
that the temperature profile in this traveling normal dom
is spikelike.10 The explicit equations for the propagation v
locity of these traveling spike domains and for the thresh
currentI d have been obtained.

In this paper we study the dynamics of a normal zone
the composite superconductors characterized by a very
duration of the current redistribution process into the sta
lizer ~this is typical, in particular, for Rutherford-type supe
conducting cables,11,12 or for composite superconductor
where a large amount of normal metal stabilizer and the
perconductor itself are spatially segregated7!. Our numerical
simulations show that in this case a type of normal dom
exists in a composite, namely, a traveling rectangular nor
domain. The temperature profile of a rectangular domain
qualitatively different from the temperature profile of a spi
domain. In particular, the length of a rectangular domain
abouttwo ordersof magnitude larger than the length of th
spike domain. Modeling the process of current redistribut
in the composite by an effective circuit,10 we derive explicit
expressions for the propagation velocity and length of
traveling rectangular domain.IV characteristics of the com
posite in the presence of a rectangular domain are calcula
We discuss the physical mechanism of normal doma
propagation in composite superconductors. Finally, we
the effective circuit model to analyze the experimental d
reported by Pfotenhaueret al.2

II. MAIN EQUATIONS

In this paper we consider a rectangular conductor c
sisting of a plane layer of a superconducting material,
ferred to asS, electrically and thermally bonded to a stab
lizer, referred to asN. The thicknesses of the superconduc
and the stabilizer are denoted byds and dn , respectively.
The conductor carries a transport currentI and is kept in a
thermal contact with a heat reservoir of temperatureT0 @see
Fig. 1~a!#.

The process of current redistribution in the conductor
modeled by the effective electrical circuit sketched in F
1~b!. Each component of the conductor is described b
discrete chain of resistors. The lower chain represents
stabilizer, each resistor being attributed a resistanceRn

5rnDx/dn , whereDx is an arbitrary discretization lengt
2 © 1998 American Institute of Physics
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~x is the axis along the conductor!. The upper chain of resis
tors represents the superconductor, withRs5rsDx/ds ,
wherers5rs(T, j s) is the resistivity of the superconducto
depending on both the local temperature and current den
in the superconductor. It vanishes in the superconduc
state, and it is finite above the normal transition. The t
chains are linked through a third kind of resistor,R'

5gRrndn /Dx, representing a resistance to the perpendicu
current. Here,gR is a numerical factor of the order of 1
which depends on the geometry of the conductor. The in
sion of a characteristic time scale in the electric current
fusion process is accomplished by taking into account
inductance of the stabilizer,L5gLm0dnDx, wheregL;1 is
another numerical factor. Letj s be the current density in th
superconductor andj 5I /ds be the current density in the su
perconductor if all the current flows through it. Then, t
current density in the stabilizerj n is given by j n

5( j 2 j s)ds /dn , and the current density in the perpendicu
direction j' is given by j'52ds] j s /]x. Applying now
Kirchhoff’s laws on this circuit we obtain the following
equation for the current density in the superconductor:

gLm0dnds

] j s

]t
5gRrndnds

]2 j s

]x2 1rn

ds

dn
~ j 2 j s!

2rs~T, j s! j s . ~1!

Next, we consider the temperature distribution in t
conductor. We assume that the thermal relaxation time o
the cross section is much shorter than the thermal relaxa
time between the conductor and the coolant. In this case
temperature distribution over the cross section is unifo

FIG. 1. ~a! rectangular conductor model;~b! effective electrical circuit de-
scribing the current distribution in the conductor.
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and is a function only of the coordinate along the conduc
and time.10 In this case, the temperatureT(x,t) satisfies the
one-dimensional heat equation

C
]T

]t
5k

]2T

]x22W~T!1Q~T, j s!, ~2!

whereC andk are the heat capacity and the heat conduc
ity of the conductor, respectively, both averaged valu
taken here as constants. The termW(T) is the rate of heat
transfer to the coolant per unit volume, which we write
W(T)5h(T2T0)/d, whereh is the heat-transfer coefficien
~we consider for simplicity the case whereh is constant! and
d[ds1dn . The functionQ(T, j s) is the rate of Joule heating
per unit volume,Q(T, j s)5dsrs(T, j s) j s

2/d. We neglect the
contributions to the functionQ(T, j s) from the current in the
stabilizer and from the perpendicular current. This simpl
cation reduces the complexity of the resulting equatio
while preserving the main physical features of the model

We define the following dimensionless variables:u, the
temperature of the conductor; andi s , the current density in
the superconductor,

u[
T2T0

Tc2T0
, i s[

j s

j c
, ~3!

where Tc is the critical temperature of the superconduc
and j c is the critical current density at the temperatureT0 .
We definel th , the characteristic thermal relaxation lengt
andt th , the characteristic thermal relaxation time,

l th
2 [

~ds1dn!k

h
, t th[

~ds1dn!C

h
, ~4!

the characteristic length of the current redistributionl m , and
the corresponding relaxation timetm ,

l m
2 [gRdn

2, tm[
gLm0dn

2

rn
. ~5!

We assume here the ‘‘step model’’ for the resistivity
the superconductor,1 rs(T, j s)5rsH@ j s2 j c(T)#, whereH is
the Heaviside step function@H(x)50 if x,0 andH(x)51
if x.0#, and j c(T) is the critical current density in the su
perconductor given by9

j c~T!5 j cS 12
T2T0

Tc2T0
D5 j c~12u!. ~6!

Then, we define two dimensionless parameters

j[
rsdn

rnds
, a[

ds
2rnj c

2

dnh~Tc2T0!
, ~7!

wherej is the ratio of the resistances of the superconduc
in the normal state and the stabilizer, anda is the ratio of the
characteristic rates of Joule power and heat flux to the c
ant ~Stekly parameter!. Finally, we use dimensionless scal
for time and length, and express time in units oft th and
length in units ofl th . As a result, Eqs.~1! and ~2! take the
form

]u

]t
5

]2u

]x22u1ajH@ i s1u21# i s
2, ~8!
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t
] i s

]t
5l2

]2i s

]x22~11jH@ i s1u21# !i s1 i , ~9!

where the dimensionless parametersi , t, andl are

i[ j / j c , t[tm /t th , l[ l m / l th . ~10!

To complete the presentation of the model, we iden
the characteristic time and length scales of the resul
equations. Equation~8! has one set of characteristic scale
namely, the thermal relaxation time and the correspond
relaxation length, both defined here to be equal to un
Equation~9! has two sets of characteristic scales, depend
whether the system is in its superconducting state (H50) or
in its normal state (H51). In the superconducting state th
current diffuses from the stabilizer to the superconduc
with the relaxation timet and the characteristic lengthl. In
the normal state the current redistributes from the superc
ductor to the stabilizer with the relaxation timet/(j11),
and the characteristic lengthl/Aj11.

III. RESULTS

A. Numerical simulations

In order to study the propagation of normal domains
the limit of a very long process of current redistribution
the composite superconductor we perform numerical sim
tions of model Eqs.~8! and~9! considering the values of th
dimensionless parameterst andj in the ranget@j. The rest
of the dimensionless parameters are evaluated using ex
mental data,1,9 which gives a;1 – 10, l;0.1– 1. We ob-
serve how the temperature and the current density distr
tions evolve in time, when the conductor is initially in th
superconducting rest state~u50, i s5 i !, except for a normal
seed of length 2l th in which the temperature is raised abo
the critical valueu51.

For a given set of the dimensionless parameters the
a threshold currenti d , above which traveling normal do
mains are formed. A sequence of temperature distribution
the conductor is shown in Fig. 2 fori . i d ~note that due to

FIG. 2. The temperature distribution in the composite superconductor
ing the formation of a traveling rectangular normal domain. The parame
are t51000, j55, a52, l50.1, and i 50.4, and~a! t510, ~b! t560,
~c! t583, and~d! t590.
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the symmetry of the temperature distribution we show o
the right-hand side of the sample!. We observe that the initia
normal seed starts to expand and change its shape@Fig. 2~a!#.
The temperature field at the boundary of the expanding n
mal zone reaches a steady shape after a short time interv
the order of thermal relaxation timet th ~one in dimensionless
units!. During this time interval the current inside the norm
zone remains constant. After the normal zone reaches a
tain length the current starts to diffuse into the stabilizer w
characteristic timet/(j11)@1 ~in dimensionless units!. As
a result, the center of a normal zone cools down@Fig. 2~b!#.
The expansion of the normal zone accompanied by slow
fusion of the current into the stabilizer continues until t
current at the center of a normal zone reaches a certain va
At this point, the temperature at the center drops down be
its critical value, over a short time interval of the order
t th , and superconductivity recovers@Fig. 2~c!#. As a result,
we find two separated normal domains with a nearly rect
gular shape of the temperature profile traveling away in
opposite directions. The system tends to a steady state
two rectangular normal domains propagating along the c
ductor with a constant velocity, while superconductivity r
covers behind@Fig. 2~d!#.

B. Analytical solution of the steady state

Let us consider now the propagation of a rectangu
normal domain analytically. Fori . i d the temperature and
the current density distributions of the steady state are gi
by the stationary solutions of Eqs.~8! and ~9!, with u5u(x
2vt) and i s5 i s(x2vt), which correspond to a referenc
frame moving along the conductor with velocityv,

d2u

dz2 1v
du

dz
2u1ajH@u1 i s21# i s

250, ~11!

l2
d2i s

dz2 1vt
dis
dz

2~11jH@u1 i s21# !i s1 i 50, ~12!

wherev still has to be determined. We definez5x2vt50
to be the point where the normal transition occurs andz
52D to be the point where superconductivity recovers b
hind the normal domain~see Fig. 3!.

To simplify calculations, we consider in this paper
diffusionless limit for the current density distribution. W
suppose that the electric current diffusion into the stabili
in front of a propagating normal domain does not affect s
nificantly the propagation velocity and the domain’s sha
Our numerical simulations show that this assumption ho
with a high degree of accuracy for the relevant range
parameters,l2!vt. In the first approximation, we se
l250, dropping the diffusion term in Eq.~12!. The resulting
equation

vt
dis
dz

2~11jH@u1 i s21# !i s1 i 50, ~13!

is of first order and nonlinear. It can be solved, however,
the three regions,z.0 (H50), 2D<z<0 (H51), andz
,2D (H50). In each of these regions Eq.~13! is a linear

r-
rs
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equation with constant coefficients. The solution of Eq.~13!
with boundary conditions at infinityi s(6`)5 i is given by

i s~x!55
i , z.0,

i

j11 F11j expS j11

vt
zD G , 2D<z<0,

i 2@ i 2 i b# expS z1D

vt D , z,2D,

~14!

where we definei b[ i s(2D), the value of the current den
sity at the transition pointz52D. We use this solution to
calculate the length of a traveling rectangular normal
main. Matching conditions at the transition pointz52D an
explicit equation for the rectangular normal domain length
obtained,

D~ i !5
vt

j11
ln

j i

~j11!i b2 i
, ~15!

where the velocityv, and the currenti b have to be deter-
mined by considering the temperature distribution in the
main. For this purpose, the explicit expressions fori s(z) can
be substituted into Eq.~11!, yielding linear equations for
u(z) in each one of three regions. The boundary and ma
ing conditions form a closed set of equations for the integ
tion constantsv and i b . These implicit equations, howeve
are very cumbersome and can be only solved numerical

To obtain simple explicit expressions for the propagat
velocity v and the currenti b , we use the results of our nu
merical simulations. These simulations show that a fast t
perature relaxation process results in formation of t
boundary layers in the vicinity of transition pointsz50 and
z52D, where the temperature distribution has large gra
ents~see Fig. 3!. The characteristic length of these bounda
layersl u is approximately equal to the product of the prop
gation velocity and the characteristic time of the temperat
relaxation,l u'vt th ~v in dimensionless units!. On the other
hand, as it follows from Eq.~14!, the electric current diffuses
into the stabilizer with the characteristic lengthl i'vt/(j
11). In the limitt@j.1, which is considered in this pape

FIG. 3. The temperature and the current density distributions in a trave
rectangular normal domain.
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we obtain l i@ l u . This means that the current varies on
slightly in the boundary layers, and in the first approximati
it can be set constant and equal to its values at the trans
points. In this approximation the propagation of the front a
the back boundary layers can be treated independently
described by Eq.~11! with a constanti s5 i for the front
boundary, andi s5 i b for the back boundary. As a result, th
temperature distribution at the front boundary is a solution
the equation

d2u

dz2 1v
du

dz
2u1ajH@u1 i 21# i 250, ~16!

with the boundary conditions,

u~`!50, u~2`!5aj i 2, ~17!

while the temperature distribution at the back boundary i
solution of the equation,

d2u

dz2 1v
du

dz
2u1ajH@u1 i 21# i b

250, ~18!

with the boundary conditions,

u~`!5aj i b
2, u~2`!50. ~19!

Equation~16! with the boundary conditions~17! is an
eigenvalue problem for the propagation velocityv param-
etrized by the currenti . It represents propagation of th
superconducting-to-normal switching wave in a homog
neous superconductor with a constant current equal toi . The
solution of this problem is well known, and the propagati
velocity v( i ) as a function of total current is given by1

v~ i !5
aj i 212i 22

A~12 i !~aj i 21 i 21!
. ~20!

The propagation of a normal domain corresponds to the p
tive velocity v( i ). For the negative values of velocity th
initial normal seed shrinks and disappears. Thus, equa
propagation velocityv( i ) to zero we calculate the value o
the threshold currenti d . Particularly simple expressions fo
v( i ) and i d are obtained if we consider the following ap
proximations,Aaj@1, andaj i 2@1, which hold for most
cases of practical interest. Then, we obtain

v~ i !' iA aj

12 i
, i d'A 2

aj
. ~21!

Figure 4 shows the comparison between the propaga
velocity of a rectangular normal domain obtained by the n
merical simulations, and calculated by means of formu
~20! and ~21!. As it is seen from Fig. 4, the velocityv is a
monotonically increasing function of the currenti , rising
smoothly from zero at the threshold rather than starting fr
a finite value as it happens for the traveling spi
domains.7,10 Comparing the numerical results with the resu
of Eq. ~20!, we find a high degree of accuracy in the ent
range of currentsi . i d , with the maximum deviation less
than 3%. The velocity calculated by Eq.~21! is very close to
the numerical values for larger currents fitting the conditi
aj i 2@1.

g
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To calculate the characteristic currenti b , we use Eq.
~18! with boundary conditions~19!. It corresponds to propa
gation of the normal-to-superconducting switching wave i
homogeneous superconductor with a constant current e
to i b . In this case, the propagation velocityv is parametrized
by the currenti b , v5v( i b), and is negative~the supercon-
ducting phase expels the normal phase!. The propagation of
a normal domain with steady shape requires that the f
and the back boundaries of the domain propagate with
same velocity, namely,

v~ i b!52v~ i !. ~22!

Substituting expressions~20! for v( i ) and v( i b), and using
the above-considered approximations,Aaj@1 and aj i 2

@1, we find for the currenti b , i b'1/Aaj.
Knowing the dependence of the velocity and the char

teristic currenti b on the dimensionless parameters and
total current, we calculate the length of a traveling rectan
lar normal domain as a function of the total current. Sub
tuting the expressions for the velocity, Eq.~21!, and the cur-
rent, i b'1/Aaj, into Eq. ~15! we obtain for the length of a
rectangular domain,

D~ i !'t i A a

j~12 i !
ln

j i

Aj

a
2 i

. ~23!

Figure 5 shows the dependenceD( i ) calculated by
means of Eq.~23! and by numerical simulations. We fin
that the analytical result is in good agreement with the
merical results for the entire range of currentsi d, i ,1. It
becomes extremely accurate for larger currents and for
values of the dimensionless parametersa and j, fitting the
conditionsAaj@1, andaj i 2@1.

The presence of a traveling normal domain results i
potential dropU given by

U5 j crsl thE dzis~z!. ~24!

FIG. 4. Velocity of a rectangular normal domain vs current. The dots r
resent the results obtained in the numerical simulations, the solid lines
resent formula~20!, and the dashed lines represent formula~21!. The pa-
rameters area52, l50.1, ~a! t5300, j510, and~b! t53000,j5100.
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Using the solution for the current density, Eq.~14!, we ob-
tain the dependence of the voltageU on the propagation
velocity and the length of a traveling rectangular domain

U5
i

j FD1tv S 12expS 2
j

tv
D D D G . ~25!

The voltageU( i ) as a function of the total current is calcu
lated by means of Eqs.~15!, ~20!, and ~25!; the result of
these calculations is shown in Fig. 6. The curvesU( i ) start at
i 5 i d with a zero voltage and are strongly nonlinear for t
entire range of currentsi d, i ,1.

C. Discussion and conclusions

We discuss now the physical mechanism of normal
mains formation and propagation in composite superc
ductors. Our numerical simulations show that for the sa
type of composite superconductor different values of the
rameters characterizing the composite and cooling condit
result in formation of either spike or rectangular normal d
mains. Assume an initial normal seed originates in some

-
p-
FIG. 5. The length of a traveling rectangular normal domain vs current.
dots represent the results obtained in the numerical simulations, the
lines represent formula~23!. The parameters area52, l50.1, ~a! t
5200, j520, ~b! t5400, j520, and~c! t5400, j550.

FIG. 6. Current–voltage characteristics of a composite superconducto
the presence of a traveling rectangular normal domain~V is in units of
rsj cl th!. The parameters arel50.1,~a! a52, j520,t5200,~b! a54, j520,
t5200, and~c! a52, j520, t5400.
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of the superconductor. The current in this region starts
redistribute between the superconductor and the stabilize
diffusion, a process which has a characteristic durat
tm /(j11). It was shown that in the case when the char
teristic time of the current redistribution process is of t
order of the thermal relaxation time,tm /(j11);t th , the
initial normal seed results in the formation of traveling spi
normal domains.10 In this paper we have shown that in th
case of a very long current redistribution process w
tm /(j11)@t th , a different type of traveling normal domai
is formed, namely, a traveling rectangular normal doma
These two types of traveling normal domains are charac
ized by different propagation mechanisms, which we c
sider here.

In the regime of the spike domains, the relatively sh
process of current redistribution results in the formation o
thin region at the front of a normal zone where the curr
diffuses into the stabilizer. The Joule power generated in
thin region is, consequently, high. As a result, the region
high temperature~‘‘hot spot’’ ! is formed at the front of a
normal zone. The length of this ‘‘hot spot’’ is determined b
the product of the propagation velocity and the characteri
time of the current redistribution process and is equal
vtm /j. Behind this ‘‘hot spot’’ there exists the region o
lengthvt th where the current flows through the stabilizer a
the temperature is decreasing toward the transition point.
fast expansion of a ‘‘hot spot’’ along the superconduct
accompanied with the local recovery of superconductiv
behind it, is the origin of the spike normal domain propag
tion.

In the regime of the rectangular normal domain, t
characteristic time of the current redistribution process
much larger than the thermal relaxation timetm /(j11)
@t th . We have shown that this long current redistributi
process results in the formation of two regions at the nor
zone boundaries, where the current remains confined in
superconductor while the temperature changes on the c
acteristic scale of the order ofvt th ~see Fig. 3!. In this case
the propagation of the normal zone boundaries can be tre
as the propagation of two superconducting-to-normal swit
ing waves in a superconductor with a constant current.
value of the current on the front switching wave is equal
the total currenti . The value of the current on the bac
switching wave is determined by means of condition~22!,
which requires propagation of two switching waves with t
same velocity. Between two switching waves there is a lo
region with a characteristic length of the order ofvtm /(j
11) where the current diffuses into the stabilizer chang
o
by
n
-
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from i to i b . The propagation of two switching wave
coupled by the current is the origin of the traveling recta
gular normal domain formation.

Traveling normal domains in composite superconduct
with a large stabilizer were studied experimentally by P
tenhaueret al.2 They found that the propagation velocity of
normal domain jumps at a threshold current from zero t
finite value. As we have shown, this behavior at a thresh
is typical for traveling spike normal domains. Using the e
perimental data of Ref. 2 we estimate the dimensionless
rameterst andj of the effective circuit model ast;100 and
j;100. Numerical simulations of the model equations
these values of the parameters show the formation of tra
ing spike normal domains in agreement with the experim
tal result.

In conclusion, we have shown the existence of a type
traveling normal domain in composite superconducto
namely, rectangular normal domains. An effective circ
model is used to study the formation and propagation
these domains. An analytical solution is found for the prop
gation velocity and length of the rectangular normal doma
in the case of the steady-state propagation. We discusse
physical mechanism of normal domain formation and pro
gation in composite superconductors.
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