
8, Israel

PHYSICAL REVIEW B 1 JULY 1997-IVOLUME 56, NUMBER 1
Defect pair in the elastic lattice of pancake vortices
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An additional pancake-antipancake vortex pair is considered in the vortex lattice of layered superconductors.
Within linear elastic continuum theory, the relaxation of the background lattice screens the long-range loga-
rithmic interaction of the defect pair, reducing the factor ln(r0 /j) to ln(a/j) wherer 0 is the pair spacing,j the
in-plane coherence length, anda the vortex spacing. The finite tilt modulus does not destroy this ideal
two-dimensional screening, yielding a small correction;(a2/8pl2)ln(r0 /a), which in principle is of long
range, but has a very small prefactor when the vortex spacinga is smaller than the in-plane penetration depth
l. @S0163-1829~97!02825-7#
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I. INTRODUCTION

The thermodynamic and electrodynamic properties
type-II superconductors in a magnetic field are determi
by the behavior of the lattice of Abrikosov vortex lines or t
three-dimensional lattice of ‘‘pancake vortices’’ in high-Tc
superconductors with layered structure.1–3 Features which
are widely discussed in this context are4,5 the pinning of
vortices by material inhomogeneities, thermally activated
pinning, collective creep, glassy behavior, and as an intrin
property, even in the absence of pinning, the melting of
vortex lattice. All these effects depend on the elastic a
plastic behavior of the vortex lattice and on the properties
its structural defects like vacancies, interstitials, dislocatio
dislocation pairs and loops, stacking faults, etc. In particu
melting of a lattice formally may be described by the spo
taneous generation and proliferation of such defects.

The crucial property of structural defects in a point latti
or line lattice is their free energy, composed of the se
energy of each defect and the interaction energy betw
defect pairs. The self-energy and interaction energy th
selves consist of two terms, namely, the energy of the de
in the ideal~undeformed! host lattice and the elastic energ
of the host lattice when this is allowed to relax around
defect. This lattice relaxation reduces the defect energy,
in some cases the two terms nearly compensate each o
The reduction is particular large in lattices with long-ran
interaction, e.g., in vortex lattices. For example, the vor
lines in superconductors interact over a distancel, the mag-
netic penetration depth, which is typically much larger th
the vortex spacinga'(F0 /B)

1/2 (F0 is the flux quantum
andB the average magnetic induction!. It was shown in Ref.
6 that the elastic relaxation of the vortex lattice drastica
reduces the self-energy of a vacancy~defect line!: The dis-
placements of the vortices change the local inductionB(r )
by an amountdB(r ) which looks similar to the induction
Bv(r ) of the removed vortex line. Thus, the local depress
of B(r ) caused by removing a vortex line is largely ‘‘re
paired’’ by the relaxation of the surrounding vortex latti
such thatB(r )'B remains almost constant. Note that t
560163-1829/97/56~1!/453~5!/$10.00
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individual vortex fields strongly overlap, yielding an almo
constantB(r ) when the vortex lattice is unperturbed and h
not too large spacinga&pl, corresponding toB*Bc1 /lnk
where Bc1 is the lower critical field andk5l/j the
Ginzburg-Landau parameter.

The reduction of the magnetic field variance and of t
energy of a defect line by the lattice relaxation is the larg
the more vortices are within the range of the interaction
tential. Since the effective interaction range between the v
ticesl85l/(12B/Bc2)

1/2 diverges asB approaches the up
per critical fieldBc2, the compensation of the energy ter
becomes almost complete at large inductions. Namely, w
the energy of a vacancywithout lattice relaxation formally
diverges forB→Bc2, the energy of the vacancywith relax-
ation decreases as (Bc22B)2, as does also the shear modul
c66 of the vortex lattice and the energies of all structu
defects.6

A similar strong reduction of defect energies by the rela
ation of the surrounding lattice is expected for the tw
dimensional~2D! lattice of point vortices in layered high
Tc superconductors. In the limit of strong anisotropy, i.e.,
the absence of Josephson coupling between the supe
ducting CuO layers, the interaction between two panc
vortices in the same layer is logarithmic and thus of ve
long range. The interaction of pancakes positioned in diff
ent layers is smaller by a factor ofs/l!1, wheres is the
layer spacing andl the penetration depth of the supercurre
flowing in the layers.

In the present paper, as one such example, we cons
the energy of a defect pair consisting of a pancake vortex
an antipancake vortex residing in the same plane. Since
are interested here in an approximate continuum-theore
treatment, we disregard energy terms which depend on
position of the pancake and antipancake within the latt
cell. This is allowed when these two positions are equivale
since then these terms cancel. In the general case
position-dependent energy terms have to be calculated
merically.

The main finding of our paper is that within continuu
theory the linear elastic relaxation of the surrounding latt
453 © 1997 The American Physical Society
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~mainly of the pancakes in the same layer! strongly reduces
the energy of this defect pair, resulting in a short-range
teraction, whereas the unscreened interaction before re
ation was logarithmic and thus of long range. A further
duction is expected, like in the case of vortex lines,6 when
the discreteness of the pancake lattice and the full nonlin
elastic response are accounted for. Such discrete-lattice c
putations are under way.

II. ENERGY OF A PANCAKE-ANTIPANCAKE PAIR

We consider a pancake-antipancake vortex pair added
vortex lattice in an extremely anisotropic layered superc
ductor. As usual the superconductor is modeled by an infi
stack of superconducting layers of zero thickness paralle
thexy plane and located atzm56ms, wherem is an integer
ands is the interlayer distance. We disregard the Joseph
coupling between the superconducting layers, treating
vortex lattice as a set of electromagnetically coupled sta
of pancakes. The additional pancake-antipancake vortex
resides in the layerm50. The pancake is located atr50 and
the antipancake atr5r05(x0 ,y0,0) with ur0u@a.

An additional pancake-antipancake pair generates a su
current j (r ) which exerts forcesfn on the pancakes of th
vortex lattice located at the pointsr n5(xn ,yn ,zn). This
force causes vortex displacementsun5(unx ,uny,0), which
are determined by the elastic equilibrium.

Our aim is to calculate the energy of the additional vor
pair in an elastic vortex lattice assuming that the displa
ments are small,uunu!a. The energy of the additional vorte
pair in a vortex lattice then consists of three parts: the s
energy of the pair, i.e., its energy in the absence of the vo
lattice; the interaction energy between the vortex pair and
undeformed vortex lattice; and the energy of the elastic
formation. We focus our attention on the first and th
terms. If the additional pancake and antipancake are loc
in equivalent points of the vortex lattice, the second con
bution to the pair energy is zero, since in the absence
Josephson coupling the energy of the pancake arrangeme
the linear superposition of all pairwise magnetic interactio
In the general case, however, the position-dependent inte
tion with the undeformed lattice~mainly with the neares
neighbors! has to be computed separately.

First, we calculate the displacementsun using the equa-
tion of elastic equilibrium. The force per unit volume exert
by the additional vortex pair on the other pancakes is

f5nfn5
snF0

c
j3 ẑ, ~1!

j52
c

4p
¹2Apair, ~2!

wheren5B/(F0s) is the pancake density,ẑ is the unit vec-
tor along thez axis, andApair(r ) is the vector potential of the
magnetic field generated by the vortex pair. Using the F
rier transform

A~r !5E d3p

8p3Ape
ip–r, Ap5E d3rA ~r !e2 ip•r, ~3!

with p5(px ,py ,pz), we obtain
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Ap
pair5Ap

0@12exp~2 iq–r0!#. ~4!

Hereq5(px ,py ,0) ~sincer0 is in the planez50) andAp
0 is

the Fourier transform of the vector potential of a sing
pancake7 ~the solution of the London equation with a sing
larity at r50),

Ap
05

iF0s

q2~11l2 p̃2!

p̃2

p2
q3 ẑ, ~5!

p̃25q21
2@12cos~ks!#

s2
5q21 k̃2, k5pz . ~6!

The equation of the elastic equilibrium reads

nfp2Fp•up50, ~7!

whereFp is the dynamic matrix of the vortex lattice; se
Appendix A. The Fourier transform of the discrete functio
un and fn is defined as

un5E
BZ

d3p

8p3upe
ip•Rn, up5

1

n(n
une

2 ip•Rn, ~8!

and thep integration is over the Brillouin zone of the 3D
pancake lattice.

From Eqs.~1! to ~5! we obtain

fp52
F0

2s2

4p

iq

q2
p̃2

11l2 p̃2
@12exp~2 iq•r0!#. ~9!

Inverting the elastic matrix in Eq.~7! ~see Appendix A! we
find the displacements

up5up
0@12exp~2 iq•r0!#,

up
052

iq

q2n

l2 p̃2

l2 p̃21g~ k̃ !~11l2 p̃2!
. ~10!

Here the dimensionless function

g~ k̃ !5
4pl2c44~ k̃ ! k̃2

B2 5
a2

8pl2 lnS 11
k̃2

kBZ
2 D !1 ~11!

originates from the tilt modulusc44 of the vortex lattice.
Using the Fourier transform~8! and formula~10! for the
displacementsup we estimateuunu;a2/r n and therefore
uunu!a at large distances,r n@a.

Knowing the displacements we can evaluate the reduc
of the spatial variation of the magnetic field around a def
pair, i.e., the screening of this pair by the elastic vortex l
tice. This effect is analogous to the screening of an ex
charge in an ionic crystal. The total vector potential crea
by the additional pair and by the pancakes of the vor
lattice is

Atot~r !5Apair~r !1(
n

A0~r2r n!, ~12!

whereA0(r ) is the vector potential of a single pancake. Wr
ing r n5Rn1un , whereRn are the unperturbed positions o
the lattice pancakes, we obtain the Fourier transform of
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56 455DEFECT PAIR IN THE ELASTIC LATTICE OF . . .
vector potentialAp induced by the pancake-antipancake d
fect pair in an elastic vortex lattice up to the first order in t
displacements,

Ap5Ap
pair2 iq–upnAp

0 . ~13!

Combining Eqs.~10! and ~13! we find

Ap5Ap
pair g~ k̃ !~11l2 p̃2!

l2 p̃21g~ k̃ !~11l2 p̃2!
; ~14!

i.e., the value ofAp is proportional to the dimensionles
function g( k̃ )!1 originating from the tilt modulusc44 of
the vortex lattice. With the accuracy ofg( k̃ )!1 one can
neglect the tilt modulus. In this approximation one h
Ap50, which means that the displaced pancakes of the
tice entirely screen out the defect pair at distancesRn@a.
But accounting forc44 leads to a power law decay of th
un and ofA(r ) at r n→` and to the dependence of the ener
of the defect pair on its sizer 0. Note thatc4450 corresponds
to a liquid of pancake vortices or to completely decoup
2D lattices of pancake vortices. The energy of a pancake
pancake liquid is considered in Appendix B following th
lines of the Debye-Hu¨ckel theory of strong electrolytes.

We now calculate the energy of the added panca
antipancake pair,Fpair5Fpair

0 1Wrel , consisting of two parts:
the self-energy of the pair in the absence of the vortex latt

Fpair
0 5

F0
2s2

4p E d3p

~2p!3
p̃2

q2~11l2 p̃2!
@12cos~q•r0!#

5
F0

2s

8p2l2 lnS r 0j D , ~15!

and the elastic relaxation energy

Wrel52
1

2EBZ
d3p

~2p!3
fp•u2p , ~16!

which is the work of the force fieldf(Rn) towards the elastic
equilibrium. The integration in Eq.~15! is over the intervals
q,p/j, uku,p/s, whereas in Eq.~16! it is over the first 3D
Brillouin zone, i.e., q,kBZ , uku,p/s, and kBZ5(4pB/
F0)

1/2. Using Eqs.~9! and ~10!, we find

Fpair5
F0

2s2

4p E d3p

~2p!3
p̃2@12cos~q•r0!#

q2~11l2 p̃2!

2
F0

2s2

4p E
BZ

d3p

~2p!3
g~ k̃ !@12cos~q•r0!#

q2l2 . ~17!

In the first integral, the integration is over the interv
kBZ,q,p/j; we also neglected a small term proportional
g( k̃ ) in the denominator of the second integrand. The fi
integral in Eq.~17! is

F1'
F0

2s

8p2l2 ln
a

j
. ~18!
-

s
t-

d
a

e-

e,

l

t

This main term may be interpreted as the energy of a p
cake pair at the short distancea, the lattice spacing. It is thus
of the same order as the position-dependent interaction o
additional pancake and antipancake with the pancake la
in the same plane. This term is, however, much smaller t
the unscreened energy of the pair,Fpair

0 } ln(r0 /j), Eq. ~15!.
The second integral in Eq.~17! is

F2'
F0

2sa2

64p3l4 lnS r 0a D lnS a2

2ps2D . ~19!

If a2!4pl2, one hasF1@F2, so that the main contribution
to the energy comes fromF1, i.e., from the unscreened pan
cake and antipancake currents in the planez50. In the gen-
eral case we keep both terms and write

Fpair'
F0

2s

8p2l2F lnaj 2
a2

8pl2 lnS r 0a D lnS a2

2ps2D G . ~20!

III. CONCLUSION

We have shown that in the presence of an additio
pancake-antipancake vortex pair in the same layer, the re
ation of the surrounding pancake lattice reduces the loga
mic factor ln(r0 /j) in the energy of the defect pair, Eq.~15!,
to the smaller factor ln(a/j), Eq.~18!, wherer 0@a is the pair
extension anda the equilibrium spacing of the vortex lattice
The energy of the pair plus the relaxation energy of the ba
ground lattice becomes thus independent of the pair spa
r 0. The sum~18! of these two energy terms is comparable
the third energy term, namely, the strongly positio
dependent interaction of the pancake and of the antipanc
with their nearest neighbors, which contains also factors
order ln(a/jab). This remaining energy term has to be calc
lated numerically, even as the corrections due to the discr
ness of the lattice and to the full nonlinear elastic relaxati
Such more detailed calculations will not alter our result
screened interaction of the two defects qualitatively. The
fore, for r 0@a it will be sufficient to compute the energy o
each defect separately and then calculate their much sm
interaction energy as a perturbation.

These results were obtained in the limit of high anisotro
G@1 corresponding to vanishing Josephson coupling. T
are, however, more general, applying to any tw
dimensional~2D! lattice with long-range interaction. In th
above problem the in-plane interaction of the pancakes is
far dominating, rendering the problem almost 2D. The sm
correction due to the finite tilt modulusc44 of the vortex
lattice, the second term in Eq.~20!, in principle is of long
range, but has a very small prefactor ifa!l.
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APPENDIX A: ELASTIC MODULI
OF A VORTEX LATTICE

Within continuum theory the dynamic matrixFp of the
vortex lattice with uniaxial symmetry is given by8,9
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Fp
xx5c11qx

21c66qy
21c44k̃

2,

Fp
yy5c66qx

21c11qy
21c44k̃

2, ~A1!

Fp
xy5Fp

yx5~c112c66!qxqy .

The elastic moduli derived from the anisotropic Lond
theory forB@F0 /(4pl2) are10,11

c115
B2@11lc

2 p̃2#

4p@11lab
2 p̃2#~11lc

2q21lab
2 k̃2!

, ~A2!

c665
BF0

~8plab!
2 , ~A3!

c445
B2

4p~11lc
2q21lab

2 k̃2!
1

BF0

32p2lc
2 lnS j22

kBZ
2 1G22s22D

1
BF0

32p2lab
4 k̃2

lnS 11
k̃2

kBZ
2 D , ~A4!

where lab and lc are the penetration depths for curren
flowing in the crystallineab plane and along thec axis,
respectively,G5lc /lab , jab is the in-plane coherenc
length, andkBZ

2 54pB/F0. In the limit of purely electromag-
netic coupling between the superconducting layers (G→`)
we have, denotinglab by l,

c115
B2 p̃2

4pq2@11l2 p̃2#
, ~A5!

c665
BF0

~8pl!2
, ~A6!

c445
BF0

32p2l4 k̃2
lnS 11

k̃2

kBZ
2 D . ~A7!

The inverse of the dynamical matrix~A1! is

Fp
215

1

det@Fp#
FFp

yy 2Fp
yx

2Fp
xy Fp

xx G , ~A8!

with det@Fp#5(c11q
21c44k̃

2)(c66q
21c44k̃

2).

APPENDIX B: A PANCAKE VORTEX
IN A VORTEX LIQUID

In this appendix we calculate the energy of a pancake
liquid of pancakes and the screening length for the panca
magnetic field and interaction with other pancakes. We
low the ideas of the Debye-Hu¨ckel theory of strong electro
lytes.

Consider a probing pancake vortex added to the p
r50 in a liquid of pancakes with average dens
n5B/F0s. As a result the energy of a pancake located
arbitrary positionr5R will change by
a
’s
l-

t

t

DE~R!5E d3r
A~r !• j0~r1R!

c
5E d3p

~2p!3
Ap• j2p

0

c
eip•R,

~B1!

whereA(r ) is the total vector potential,j0(r ) is the current
induced by the pancake located atr50, and the Fourier
transformj2p

0 is

j2p
0 5

c

4p
p2Ap

0 , ~B2!

with the vector potentialAp
0 taken in the limitks!1 @see Eq.

~5!#,

Ap
05 i

F0s

~11l2p2!

q3 ẑ

q2
. ~B3!

The interaction between the inserted pancake and the v
ces of the liquid affects the local density of the panca
vorticesn(R),

n~R!5nexpF2
DE~R!

kBT
G . ~B4!

Assuming thatDE(R)!kBT we find

dn~R!5n~R!2n52n
DE~R!

kBT
. ~B5!

Combining Eqs.~B1!–~B5! we obtain for the Fourier trans
form of dn(R)

dnp52
np2

4pkBT
Ap•Ap

0 . ~B6!

The total vector potentialAp up to the first order in
dn(R) @compare with Eq.~13!# is

Ap2Ap
05dnpAp

0 . ~B7!

Using Eqs.~B6! and ~B7! we obtain forAp the equation

Ap5
Ap
0

m liq~p!
, ~B8!

where

m liq~p!511
a2p2

q2~11l2p2!2
~B9!

is an effective permeability and we have introduced the
mensionless parameter

a25
BF0s

4pkBT
!1. ~B10!

In real space Eqs.~B8! and ~B9! for r@l/a yield

Aw~r,z!.
F0d

2p

r

~a2r21z2!3/2
. ~B11!

Note that the vector potential for a pancake in a liquid
pancakes decays along thez axis as a power law~for
z@ra), whereas the vector potential for a single panca
decays exponentiallyA0(r )}exp(2z/l).
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We calculate now the energy of a pancake in a vor
liquid. In the London approximation the free energy is

F5
1

2cE d3r SA• j14pl2

c
j2D , ~B12!

j52
c

4p
¹2A. ~B13!

Equation~B12! can be rewritten as

F5
1

2c~2p!3
E d3pSAp• j2p1

4pl2

c
u j pu2D ,

5
1

2c~2p!3
E d3pAp• j2p~11l2p2!. ~B14!

UsingAp from Eq. ~B8! and j p from Eq. ~B13! we obtain

F5
F0

2d2

8p E d3p

~2p!3
p2q2~11l2p2!3

@q2~11l2p2!21a2p2#2
. ~B15!

The integration here is over the region
n,
x 0<q<1/j, 2p/s<k<p/s. ~B16!

For smalla, the main contribution to the integral~B15!
comes fromq!j21 and from largek'p/s. We can there-
fore approximate it by integrating over the spherep<p/s.
As our final result we obtain the energy of a pancake in
liquid of pancakes in the form

F'
F0

2s

~4pl!2
lnF 2aS pl

s D 2G . ~B17!

Comparing this energy with the self-energy of a single p
cake,Fs'(F0

2s/8p2l2)ln(L/j) ~whereL is the size of the
sample!, we see that the screening lengthr scr for a pancake
in a liquid of pancakes is

r scr
2 5

2p2l2j2

as2
5p

kBT

~F0
2s/8p2l2!

j2

s2
a2@a2. ~B18!

This screening lengthr scr
2 }T is analogous to the Debye

Hückel screening length in strong electrolytes.
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