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Defect pair in the elastic lattice of pancake vortices
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An additional pancake-antipancake vortex pair is considered in the vortex lattice of layered superconductors.
Within linear elastic continuum theory, the relaxation of the background lattice screens the long-range loga-
rithmic interaction of the defect pair, reducing the factorrf) to In(a/é) wherer is the pair spacingé the
in-plane coherence length, arad the vortex spacing. The finite tilt modulus does not destroy this ideal
two-dimensional screening, yielding a small correctiefa?/8mw\2)In(ry/a), which in principle is of long
range, but has a very small prefactor when the vortex spacisgsmaller than the in-plane penetration depth
\. [S0163-182807)02825-1

I. INTRODUCTION individual vortex fields strongly overlap, yielding an almost
constanB(r) when the vortex lattice is unperturbed and has
The thermodynamic and electrodynamic properties ohot too large spacing=< w\, corresponding t@=B, /Ink
type-Il superconductors in a magnetic field are determinedvhere B.; is the lower critical field andk=\/¢ the
by the behavior of the lattice of Abrikosov vortex lines or the Ginzburg-Landau parameter.
three-dimensional lattice of “pancake vortices” in high- The reduction of the magnetic field variance and of the
superconductors with layered structdré.Features which energy of a defect line by the lattice relaxation is the larger
are widely discussed in this context 4rethe pinning of the more vortices are within the range of the interaction po-
vortices by material inhomogeneities, thermally activated detential. Since the effective interaction range between the vor-
pinning, collective creep, glassy behavior, and as an intrinsitices\’ = \/(1—B/B.,)*? diverges a$3 approaches the up-
property, even in the absence of pinning, the melting of theper critical fieldB,,, the compensation of the energy term
vortex lattice. All these effects depend on the elastic andecomes almost complete at large inductions. Namely, while
plastic behavior of the vortex lattice and on the properties othe energy of a vacancwithout lattice relaxation formally
its structural defects like vacancies, interstitials, dislocationsdiverges forB— B, the energy of the vacanayith relax-
dislocation pairs and loops, stacking faults, etc. In particularation decreases aB{,— B)?, as does also the shear modulus
melting of a lattice formally may be described by the spon-cg44 of the vortex lattice and the energies of all structural
taneous generation and proliferation of such defects. defects
The crucial property of structural defects in a point lattice A similar strong reduction of defect energies by the relax-
or line lattice is their free energy, composed of the self-ation of the surrounding lattice is expected for the two-
energy of each defect and the interaction energy betweedimensional(2D) lattice of point vortices in layered high-
defect pairs. The self-energy and interaction energy them¥, superconductors. In the limit of strong anisotropy, i.e., in
selves consist of two terms, namely, the energy of the defeghe absence of Josephson coupling between the supercon-
in the ideal(undeformedl host lattice and the elastic energy ducting CuO layers, the interaction between two pancake
of the host lattice when this is allowed to relax around thevortices in the same layer is logarithmic and thus of very
defect. This lattice relaxation reduces the defect energy, anldng range. The interaction of pancakes positioned in differ-
in some cases the two terms nearly compensate each otheht layers is smaller by a factor sfA<1, wheres is the
The reduction is particular large in lattices with long-rangelayer spacing andl the penetration depth of the supercurrent
interaction, e.g., in vortex lattices. For example, the vortexflowing in the layers.
lines in superconductors interact over a distancéhe mag- In the present paper, as one such example, we consider
netic penetration depth, which is typically much larger thanthe energy of a defect pair consisting of a pancake vortex and
the vortex spacinga~(®,/B)Y? (®, is the flux quantum an antipancake vortex residing in the same plane. Since we
andB the average magnetic inductjorit was shown in Ref.  are interested here in an approximate continuum-theoretical
6 that the elastic relaxation of the vortex lattice drasticallytreatment, we disregard energy terms which depend on the
reduces the self-energy of a vacar(dgfect ling: The dis-  position of the pancake and antipancake within the lattice
placements of the vortices change the local inducign) cell. This is allowed when these two positions are equivalent,
by an amountsB(r) which looks similar to the induction since then these terms cancel. In the general case the
B,(r) of the removed vortex line. Thus, the local depressionposition-dependent energy terms have to be calculated nu-
of B(r) caused by removing a vortex line is largely “re- merically.
paired” by the relaxation of the surrounding vortex lattice  The main finding of our paper is that within continuum
such thatB(r)=~B remains almost constant. Note that thetheory the linear elastic relaxation of the surrounding lattice
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(mainly of the pancakes in the same lgystrongly reduces Agaif: Ag[l—exp(—iq-ro)]. (4
the energy of this defect pair, resulting in a short-range in-
teraction, whereas the unscreened interaction before relaxiereq=(py.py,0) (sincery is in the planez=0) andA is
ation was logarithmic and thus of long range. A further re-the Fourier transform of the vector potential of a single
duction is expected, like in the case of vortex lifleshen  pancaké (the solution of the London equation with a singu-
the discreteness of the pancake lattice and the full nonlinedarity atr=0),
elastic response are accounted for. Such discrete-lattice com- _ ~,
putations are under way. Ag= : I®OS;~2 Equi 5
g°(1+\“p9) P
Il. ENERGY OF A PANCAKE-ANTIPANCAKE PAIR
We consider a pancake-antipancake vortex pair added to a p2=q2+ w —q2+ k2, k=p,. (6
vortex lattice in an extremely anisotropic layered supercon- S
ductor. As usual the su_perconductor is modeled by an infinitgq equation of the elastic equilibrium reads
stack of superconducting layers of zero thickness parallel to
thexy plane and located at,= =ms, wherem is an integer nfp—®,-u,=0, (7
ands is the interlayer distance. We disregard the Josephson
coupling between the superconducting layers, treating th . . ) ;
vortgx I?:\ttice as a set of glectromagnegtlical)lly coupled s?ack ppend|x.A. The Fourier transform of the discrete functions
of pancakes. The additional pancake-antipancake vortex paﬂv andt, is defined as
resides in the layem=0. The pancake is locatedrat 0 and &ep 1 _
the antipancake at=r,=(Xq,Y0,0) With |ro|>a. UV:f —aueP Ry, UpZ—E ue PR, (8)
An additional pancake-antipancake pair generates a super- Bz87 n=

currentj(r) which exerts forces, on the pancakes of the 4nq thep integration is over the Brillouin zone of the 3D
vortex lattice located at the points,=(x,,Y,,z,). This pancake lattice.

here @, is the dynamic matrix of the vortex lattice; see

force causes vortex displacements=(u,,u,,,0), which From Egs.(1) to (5) we obtain
are determined by the elastic equilibrium.
Our aim is to calculate the energy of the additional vortex d)%sz iq Ez
pair in an elastic vortex lattice assuming that the displace- fo=— ~2[1—exp(—iq~ro)]. 9

ments are smal|u,|<a. The energy of the additional vortex 4m 9 14 A2p
pair in a vortex lattice then consists of three parts: the Selfinverting the elastic matrix in Eq7) (see Appendix Awe
energy of the pair, i.e., its energy in the absence of the vorte%<Ind the displacements ’

lattice; the interaction energy between the vortex pair and the

undeformed vortex lattice; and the energy of the elastic de-
formation. We focus our attention on the first and third
terms. If the additional pancake and antipancake are located

Up=US[1—exp(—i-o)],

in equivalent points of the vortex lattice, the second contri- 0_ _ 4 _ )‘jpz __ (10)
bution to the pair energy is zero, since in the absence of_ P a°N N2p2+ 4 (k)(1+N2p?)

Josephson coupling the energy of the pancake arrangement is ] . ]

the linear superposition of all pairwise magnetic interactionsHere the dimensionless function

In the general case, however, the position-dependent interac- — —

tion with the undeformed latticémainly with the nearest ~  Am\cu(k)k?  a? 2
neighbor$ has to be computed separately. y(k)= B2 =gmzn 1+ K2, <1 (19

First, we calculate the displacements using the equa- o ] .
tion of elastic equilibrium. The force per unit volume exertedoriginates from the filt modulug,, of the vortex lattice.

by the additional vortex pair on the other pancakes is Using the Fourier transforng8) and formula(10) for the
displacementsu, we estimate|u,|~a?/r, and therefore
snd, . |u,|<a at large distances,,>a.
f=nf,=——ixz, (1) Knowing the displacements we can evaluate the reduction

of the spatial variation of the magnetic field around a defect
. C _ pair, i.e., the screening of this pair by the elastic vortex lat-
j=— EVZA"&", (2)  tice. This effect is analogous to the screening of an extra
charge in an ionic crystal. The total vector potential created
wheren=B/(d,s) is the pancake densitg,is the unit vec- by the additional pair and by the pancakes of the vortex
tor along thez axis, andAP3(r) is the vector potential of the lattice is
magnetic field generated by the vortex pair. Using the Fou-

rier transform APy =APA(r)+ > A%(r—r,), (12)

d’p A
A(r):J'WApelp.ra Ap:J d*A(r)e P’ (3)  whereA(r) is the vector potential of a single pancake. Writ-
ing r,=R,+u,, whereR, are the unperturbed positions of
with p=(py.,py.p,), We obtain the lattice pancakes, we obtain the Fourier transform of the
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vector potentialA, induced by the pancake-antipancake de-This main term may be interpreted as the energy of a pan-
fect pair in an elastic vortex lattice up to the first order in thecake pair at the short distanagthe lattice spacing. It is thus

displacements, of the same order as the position-dependent interaction of the
_ additional pancake and antipancake with the pancake lattice
A,=AR"—ig-u nA%. (13)  in the same plane. This term is, however, much smaller than
P P p
o i the unscreened energy of the péﬂga"ocln(ro/g), Eq. (15).
Combining Egs(10) and(13) we find The second integral in Eq17) is
. K)(1+22p2 d3sa? o a?
Ap= AR A )(,_ P ; (14) Fo~eaaman 7Nl 522 (19
N?p?+y(k)(1+\%p?)

. . . . If a?<4m\?, one has,;>F,, so that the main contribution
e. the va}lue OfAp is proportional to the dimensionless to the energy comes fromfd,, i.e., from the unscreened pan-

function y(k)<1 originating from the filt modulus, of  cake and antipancake currents in the plared. In the gen-

the vortex lattice. With the accuracy of(k)<1 one can eral case we keep both terms and write

neglect the tilt modulus. In this approximation one has

A,=0, which means that the displaced pancakes of the lat- o~ (I’SS [I a a’ inl 2lin a? 20)
tice entirely screen out the defect pair at distanRes-a. par - 84 [ & 8m\? 27s?) |

But accounting forc,, leads to a power law decay of the

u, and ofA(r) atr ,— and to the dependence of the energy IIl. CONCLUSION

of the defect pair on its sizg,. Note thatc,,=0 corresponds

to a liquid of pancake vortices or to completely decoupled We have shown that in the presence of an additional

2D lattices of pancake vortices. The energy of a pancake in pancake-antipancake vortex pair in the same layer, the relax-
pancake liquid is considered in Appendix B following the ation of the surrounding pancake lattice reduces the logarith-
lines of the Debye-Hekel theory of strong electrolytes. mic factor In¢y/¢) in the energy of the defect pair, E(L5),

We now calculate the energy of the added pancaketo the smaller factor Irg{¢), Eq.(18), wherer>a is the pair
antipancake paif ;= Fpa|r+ W,, consisting of two parts: extension ané the equilibrium spacing of the vortex lattice.
the self-energy of the pair in the absence of the vortex lattice] he energy of the pair plus the relaxation energy of the back-

ground lattice becomes thus independent of the pair spacing

. q)gsz d%p “p‘z ro- The_ sum(18) of these two energy terms is comparaplg to
F pair= 3 ——[1—cogq-ry)] the third energy term, namely, the strongly position-
(2m) 9*(1+\?p?) dependent interaction of the pancake and of the antipancake
with their nearest neighbors, which contains also factors of
<I>Ss ro order In@/&,p). This remaining energy term has to be calcu-
T8N n E) ' (15 lated numerically, even as the corrections due to the discrete-
ness of the lattice and to the full nonlinear elastic relaxation.
and the elastic relaxation energy Such more detailed calculations will not alter our result of
screened interaction of the two defects qualitatively. There-
1 d®p fore, forry>a it will be sufficient to compute the energy of
Wiei= JBZW](D' U-p, (16) each defect separately and then calculate their much smaller

interaction energy as a perturbation.
which is the work of the force fielf{ R,) towards the elastic ~ These results were obtained in the limit of high anisotropy
equilibrium. The integration in Eq15) is over the intervals ['>1 corresponding to vanishing Josephson coupling. They
q<l&, |k|<ls, whereas in Eq(16) it is over the first 3D are, however, more general, applying to any two-
Brillouin zone, i.e.,q<kgz, |k|<w/s, and kgy=(4mB/ dimensional(2D) lattice with long-range interaction. In the

®,)Y2 Using Egs.(9) and(10), we find above problem the in-plane interaction of the pancakes is by
far dominating, rendering the problem almost 2D. The small
®2g2 3. T2rq_ ) correction due to the finite tilt modulus,, of the vortex
pair= os" [ _d p3 P11 cos(ciro)] lattice, the second term in EqR0), in principle is of long
(2m)°  g2(1+2\2p?) range, but has a very small prefactomi&\ .
_q)gszf d*p y(k)[1-cogq-ro)] 17) ACKNOWLEDGMENT
4w Jgz(2m)® q°\? '
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y(k) in the denominator of the second integrand. The first
integral in Eq.(17) is APPENDIX A: ELASTIC MODULI

OF A VORTEX LATTICE
®3s  a

| 18 Within continuum theory the dynamic matri, of the
8 2)\2 ng ( )

F1~ vortex lattice with uniaxial symmetry is given ?)?/
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= [0 3 0
D X*=C14q5 + Coelly + Cagk?, AE(R)ZJ d3rA(r)-J (r+R) [ d p3 AP‘J—peip.R'
c (27) c
Y= Coell; + C1105+ Caak?, (A1) (B1)
whereA(r) is the total vector potential’(r) is the current
O =D )*=(Cq1— Cee)UxTly - induced by the pancake located =t 0, and the Fourier

transformj | is
The elastic moduli derived from the anisotropic London

theory forB>®,/(4m\?) are®!! _ c
0 J(lp:EpzAg, (B2
2 252
Cyy= B~[1+ AP’ — (A2)  with the vector potentiaAS taken in the limitks<1 [see Eq.
4a[1+ N2, p2l(1+N292+ 02 k) o)1,
B(I)O 0 - q)OS qXE

C66~ Bany)?’ (A3) A= Tn2pd (B3)

The interaction between the inserted pancake and the vorti-

B2 Bd, | &2 ) ces of the liquid affects the local density of the pancake
Cas= —+ n —5— ;
44 4w(1+)\§q2+>\§bk2) 32772)\§ kéZJrF 252 vorticesn(R),
~, AE(R)
Bd, k n(R)=nexp — . (B4)
+—————In| 1+ >, (A4) kgT
3272\ 3 k2 Ksz . ,
a Assuming thatAE(R) <kgT we find
where \,, and \. are the penetration depths for currents
- . : AE(R)
flowing in the crystallineab plane and along the axis, Sn(R)=n(R)—n=—n (B5)
respectively, '=A./\,,, &ap IS the in-plane coherence kgT

length, andkg, = 4mB/®,. In the limit of purely electromag-  Combining Eqs(B1)—(B5) we obtain for the Fourier trans-
netic coupling between the superconducting layédts-°) form of sn(R)

we have, denoting ,, by \, )

- on __ A, A9 (B6)
Bp? PT T AmkgT PP
Cu= o (A5)
4mq1+A"p7] The total vector potentiaA, up to the first order in
B on(R) [compare with Eq(13)] is
0
Ces= (gan)2” (AB) Ap—Ad= 8n AL, (B7)
- Using Eqgs.(B6) and(B7) we obtain forA, the equation
Bd, k
Cps=———=3In| 1+ . (A7) AP
3202\ %K2 K2, Ap=—>r, (B8)
_ _ _ Miig(P)
The inverse of the dynamical matriAl) is
where
1 |[®YY —pYX 2.2
(I)f;lzde((l)] ’szy (I)XXp ! (AS) Mii (p):1+ 2 ‘ p? 2\2 (Bg)
Pl ™ %p p a q°(1+A"p°)
with def ®.1= (C.1a2+ c. K2 (Cara+ 1 K2). is an effective permeability and we have introduced the di-
tPp]=(Cc10 44K") (Coed 4ak’) mensionless parameter
APPENDIX B: A PANCAKE VORTEX 5 Bd,s
IN A VORTEX LIQUID a :47TkBT <l1. (B10)
In this appendix we calculate the energy of a pancake in &, real space Eq<B8) and (B9) for o> )/« vield
liquid of pancakes and the screening length for the pancake’s P asB8) (B9) P @y
magnetic field and interaction with other pancakes. We fol- ®,d p
low the ideas of the Debye-ldkel theory of strong electro- Aglp,2)= (B1))

2 2 2+22 32+
lytes. ™ (a%p )

Consider a probing pancake vortex added to the poinNote that the vector potential for a pancake in a liquid of
r=0 in a liquid of pancakes with average density pancakes decays along tle axis as a power law(for
n=B/®,s. As a result the energy of a pancake located az>pa), whereas the vector potential for a single pancake
arbitrary positionr =R will change by decays exponentiallA°(r) <exp(—z/\).



56 DEFECT PAIR IN THE ELASTIC LATTICE OF ... 457

We calculate now the energy of a pancake in a vortex 0=q<1l/¢, —mls<k=mls. (B16)
liquid. In the London approximation the free energy is
1 AN For small«, the main contribution to the integréB15)
F= _j d3r| A-j+ m jz), (B12)  comes fromgq< g*% and from largek~ m/s. We can there-
2c c fore approximate it by integrating over the sphere =/s.
As our final result we obtain the energy of a pancake in a
C . . .
j=— EVZA' (B13) liquid of pancakes in the form
. . d2s 2/ m\\2
Equation(B12) can be rewritten as ~ 0 Z _)
F (477)\)2In o . (B17)
1 5 _ 4mr?
F= mf d°p| Ap-j-pt C |lp| ' Comparing this energy with the self-energy of a single pan-

cake, Fs~(®2s/8m2\2)In(L/¢) (wherelL is the size of the

1 . sample, we see that the screening lengtly, for a pancake
— 3 212 r
= 2c(27r)3f d°pAp-jp(1+Ap9). (B14)  in a liquid of pancakes is
Using A, from Eq. (B8) andj, from Eq.(B13) we obtain 272\2¢2 KeT &
2 T a2 > a%a% (B19
(I)Cz)dZJ dSp p2q2(1+)\2p2)3 scr asS (@03/8772)\2) S
= 372 77 2272 (B1Y
87 J (2m)” [q°(1+A"p%) "+ ap7] This screening lengthi2, =T is analogous to the Debye-
The integration here is over the region Huckel screening length in strong electrolytes.
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