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Nonlocal Josephson Electrodynamics 
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We present a review of the main results of the recently developed nonlo- 
cal Josephson electrodynamics. A nonlinear integrv-differential equation for' 
the phase difference is derived and its applicability to different problem.s is 
discussed. Fluxons and electromagnetic waves propagating along a tunnel 
junction are examined in detail. Features specific for the limiting case of a 
Josephson junction in a very thin fihn are considered. 
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1. I N T R O D U C T I O N  

The electromagnetic properties of Josephson tunnel junctions are a sub- 
ject of intensive studies over the past three decades. 1'2 In particular, sub- 
stantial attention is attracted to the SIS-type Josephson contacts. In this 
cane the electromagnetic properties are described by the sine-Gordon equa- 
tion for the space and time dependent phase difference ~(x , t )  across the 
junction 

c2~ ~ - c ~  + 71~. + sin qD = / 3 ,  (1)  

where the subscripts r and ~ denote the derivatives over the dimensionless 
time r = ta)j and coordinate ( = x/)~j, 

~J = , / 2 e j c  (2) 
V h c  

is the Josephson plasma frequency, C is the specific capacitance of the junc- 
tion, jc is the critical current density across the Josephson junction, 

i c~0 
Aj = 167r2Ajc (3) 
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is the Josephson penetration length, (P0 is the flux quantum, A is the London 
penetration depth, 

1 
r l -  w jRC (4) 

is the damping constant, R is the specific resistance of the junction, and 
/3 = j / j c  is the dimensionless density of the bias current across the junction. 

When applied to the electrodynamics of a Josephson tunnel contact the 
sine-Gordon equation (1) has its origin in a local relation between the phase 
difference ~(x, t) and the magnetic field inside the junction H(x, t), namely, 

~o O~ 
H(x, t ) -  47rA Ox" (5) 

This local relation is valid if ~(x, t) varies slowly over the lengths typical 
for spatial variations of H(x, t). The characteristic space scale for the field 
H(x, t) is determined by the London penetration depth A for a tunnel contact 
with the thickness d >> )~ and by the Pearl length 3 

~2 
= y >> (6) 

for a thin fihn (d <(A). Introducing the characteristic space scale I for the 
spatial variations of the phase difference ~2(x, t) we can, therefore, sumnlarize 
that the sine-Gordon equation (1) describes the electromagnetic properties 
of ~ long Josephson junction if l >:> A (for d >> A) and l >> Acf~ (for d << A). 

To illustrate the application of these relations let us consider the fol- 
lowing two phenomena, namely, the Josephson fluxons and electromagnetic 
waves propagating along a Josephson tunnel contact with d >> ,k. We esti- 
mate l ~ Aj in the first case and l ,-- k -1, where k is the wave number, in 
the second case. Thus, the sine-Gordon (1) is applicable to treat a phase 
kink if )~j >> )~ and an electromagnetic wave if kA << 1. 

Usually the Josephson penetration depth )~j is assumed to be much 
larger than the London penetration depth A because of the small value 
of the critical current density across the tunnel junction. However, the 
copper-oxide high-temperature superconductors contain coherent planar de- 
fects such as twins, stacking faults, low-angle grain boundaries, etc. 4 These 
structural defects do not cause strong crystalline lattice distortions and can 
be treated as intrinsic Josephson junctions with high values of jr and there- 
fore with small values of the Josephson penetration depth Aj. The extremely 
anisotropic Bi and Tl based copper oxide compounds consist of a periodic 
stack of weakly coupled two-dimensional CuO layers were the superconduc- 
tivity resides. A variety of linear structural defects result from the crossing 
of the superconducting layers with planar structural defects. These linear 
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defects can be treated ms intrinsic Josephson junctions with d <<: A and high 
values of the critical current density Jc, i.e., as Josephson junctions with 
small values of the Josephson penetration depth )~g and large values of the 
effective penetration depth. 

The intrinsic tunnel contacts specific for the high-temperatui'e supercon- 
ductors initiated a considerable interest to investigate the electromagnetic 
properties of the SIS-type Josephson junctions where the space scale of vari- 
ations of the phase difference is less than the space scale of variations of the 
magnetic field. 5-26 In this case the relation between H(x, t) and ~?(x, t) is an 
integral relation, i.e., it is nonlocal. As a result the phase difference ~(x, t) 
is described by an integro-differential equation, 6,7,1s which is the basis for 
the nonlocal Josephson electrodynamics. 

In particular, when applied to Josephson fluxons in a long tunnel con- 
tact with d >> )~ this nonlocality means that  ~g < )~. In terms of the critical 
current density across the junction it takes the form jd/~ < jc < jd, where 
jd = eC/'0/12X/~Tr2A2( is the depairing current density and n = A/~ is the 
Ginzburg-Landau parameter.  6,12 Note that  for the extreme type-II super- 
conductors with n >> 1 the relation Aj < )~ holds in a wide region of jr 

In this paper we review the nonlocal Josephson electrodynamics of a 
one-dimensional SIS-type tunnel junction. We derive the integro-differential 
equation describing the phase difference for the cases d >> A and d << A. We 
apply this equation to treat two phenomena, namely, the Josephson fluxons 
and the electromagnetic waves propagating along a tunnel contact. 1 It is 
shown that  nonlocatity significantly changes the spatial distributions of the 
magnetic field and current for a Josephson vortex as well as the dispersion 
relations for an electromagnetic wave. 

The paper is organized in the following way. In Sec. 2, we consider the 
nonlocal Josephson electrodynamics of a one-dimensional SIS-type tunnel 
junction. The integro-differential equation describing the phase difference 
~(x, t) is derived for the two limiting cases d >> )~ and d << A. In Sec. 3, we 
apply this equation to consider Josephson fluxons. In Sec. 4, the dispersion 
relation is derived for an electromagnetic wave propagating along a tunnel 
contact. In Sec. 5, we summarize the overall conclusions. 

2. M A I N  E Q U A T I O N S  

Let us treat  a planar SIS-type Josephson junction parallel to the xz- 
plane and assume that  ,~ >> ~. In this case the magnetic field Bz(x ,y , t )  
and current density j(x,  y) inside the superconductor are described by the 

IThe nonlocality effect on pinning of Abrikosov and Josephson vortices by a high-jc planar 
defect and a network of such defects is discussed in detail in Refs. 6' x2,17, z6 
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London equations taking the form 

A2AB - B = 0, (7) 
C 

J- 4;; (A- *~ 27r 

where A is the vector potential and 0 is the phase of the order parameter .  
The magnetic field H(x,  t) inside the Josephson junction is determined by 
the boundary conditions Bz(x,+O,t)  = H(x , t )  and the phase difference 
~(x,  t) is defined as So(x, t) = 0(x, +0, t) - 0 ( x , - 0 ,  t). 

Let us first derive the equation for ~(x, t) in the case of a thick tunnel 
contact, i.e., for d >> A. We begin this derivation with the relations 

coo 8~2 
j~(x,+O) - j~:(x,-O) -- 87r2A2 8 z '  (9) 

jx(x,  +O) - j~(x , -O)  = 4---~ y=+o Oy y=-o ' 

which follow from Eq. (8) and tile Maxwell equation rotB = (4rr/c)j.  Taking 
into account that  B(x ,y )  = B ( x , - y )  and combining Eqs. (9) and (10) we 
find the boundary conditions for the magnetic tield B(x, y) in the form 

OB OB r O~ ( i t )  
8--'y- y=+0 -- Oy y=-o -- 47rA 2 Ox 

The solution of Eq. (7) matching the equations ( l l )  results in the fol- 
lowing expressions for the magnetic field H(x,  t) and current density across 
the Josephson junction jy(x, t) = ju(x, +0, t) 

H(x , t )  
47r'ZA 2 ~_oo l t ~  J ~'u du, (12) 

167r3A 2 Ko ~ du, (13) 
O<3 

where K0(x) is the zero order modified Bessel function. At the same time 
the current jy(x,  t) is a sum of the tunnel current j~sin ~, the displacement 
current hC~/2e  = j ~ , . , ,  and the resistive current h~/2eR = j ~ . ,  i.e., 

jy(x, t) = j~ sin ~ + Jc~,,  + J~fl~. (14) 

We equate now the two expressions (13) and (14) for the current density 
Ju (x, t). This results in the equation 6' 7 

~-c~- + 7 1 ~ -  = - -  K o  d u  - sin 7r oo ~ c2+fl,  (15) 
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where/J accounts for the bia~s current j = jeff and 

l a -  A3 c~o 
A 16rr2k:jc" (16) 

The integro-differential equation (15) determines the nonlocal Joseph- 
soil electrodynamics of a tunnel contact with the thickness d >> A. It is valid 
for any relation between l and A. Note that  if the phase difference 90(x, t) 
varies slowly on the length scale of the order of A, i.e., if I >7> A, then the 
function Ko(x) can be replaced by rrS(x), As a result the integro-differential 
equation (15) transforms to the sine-Gordon equation (1) and the integral 
relation (12) transforms to the local relation (5). 

Let us now consider the equation for 90(x,t) for a tunnel contact in a 
thin fihn with d << A. In tills case the stray field outside the superconductor 
is important  and significantly affects the current density across the junction 
j.v(x,t). As a result the space scale for the field H(x, t )  is determined by 
the Pearl length Aeer and the equation determining the nonlocal Josephson 
electrodynamics for a thin fihn takes the form is 

0 S_OO (i.-<] 90-- + '190. ---- -~- Q 0 \  2A.. ) ~ u  2 d u - s i n 9 0 + j '  (17) 

where 

L 
oo a 0 ( ~ )  

Qo(x) = v T x  dr, (18) 

and Jo(x) is the zero-order Bessel flinction. 
In the limiting case when tile characteristic space scale of tile pha~e 

difference ~(x, t) variation is extremely smMl, i.e., for l ( (  A (d ~) A) and 
l << A~ff (d<< A), the kernels of Eqs. (15) and (17) can be replaced by their 
expansions at small argument, 

Ko(x) ~ Qo(x) ~ ln(2/x) - C, (19) 

where C ~ 0.577 is the Euler constant. As a result both equations (15) and 
(17) take the same form s,ls 

OO 

l j  --I 090 du sin 90+fl. (20) 90rr q- ~190r re ~ OU U-- X 
--(3<) 

To complete we present here the expression for the energy g of an ideal 
tunnel contact ( r /=  0) per unit area 

F 8 - -  hjr [902r+2(1 -cos90)+7-  ~ K((-( ' )90(90r  d(', (21) 
4e co oo 

where the subscript ~ denotes the derivative over the coordinate ( = x/Ad, 
K(() = Ko(AJI(I/A ) for d >> A, and K(( )  = Qo(A.sI(I/2A~.) for d << A. 
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3. J O S E P H S O N  V O R T I C E S  

Let us first assume tha t  there is no bias current  (fl = 0) and consider  a 
s t a t ionary  Josephson fluxon, i.e., a phase kink described by a phase differ- 
ence distr ibution cy(x) matching  the boundary  conditions c2(-ec  ) = 0 and 
~(oc)  = 2rr. Explicit solutions describing a single s ta t ionary  Josephson vor- 
tex are known in two limiting cases, namely, in the local (l >> A) and  the 
nonlocal (l << A for d >2> A and l << Aeff for d << A) limits. 

In the local case the s ta t ionary  dependence ~(x)  for a phase kink is 
given by the well-known solution of the s ine-Gordon equation 1 

~(x)  = 4 arc tan exp . (22) 

Note tha t  the asympto t ic  dependence of the phase difference (22) on x at  
Ixl ~ + ~ is exponential  and therefore the current  density and magnet ic  
field in the region x > /~j also decay exponent ia l ly)  

In the nonlocal case the s ta t ionary  dependence ~(x)  for a phase kink is 
given by a s ta t ionary  solution of Eq. (20), which has the form 6's 

c2(x) = 2 arc tan ( ~ j )  + 7r. (23) 

Note tha t  cont ra ry  to the local case the dependence (23) decays as a power 
law (~ 1/Ixl) at  Ixl-+ + ~ .  Using Eq. (23) we find the following explicit  
expressions for jz(x,- t-0),  ju(x) ,  and H(x)  at x << l 

2t3 c(P0 Ij (24) 
j~(x, +0) = + j c  z~ + t-----~j - • 8~a----a x~ + t3' 

2xl d c4~o x 
jy(x)  = J c x 2 + l }  = 8rrA 2 x 2 + 1 ~ '  (25) 

H ( z )  _ qs~ [in 4A~ ] 
47rA 2 x 2 + l~ 2C , (26) 

where C ~ 0.577 is the Euler constant .  It follows from Eqs. (24) - (26) tha t  
in the nonlocal case the current  density and magnetic field of a Josephson  
vortex decay as power laws in the region l j  << x << l. Note tha t  the same  
asympto t i c  dependencies are characterizing Abrikosov vortices 2v with the 
only difference tha t  l j  -+ ~ and l -+ A, where ~ is the coherence length.  

In the presence of a bias current  (/3 5s 0) a Josephson vor tex is moving  
along the tunnel contact .  This  motion results in an electric field E c< c2~ 
localized inside the Josephson junction and therefore in an increase of  the 
energy described by the first te rm in Eq. (21). Let us consider a tunnel  
contac t  with a high specific resistance R resulting in a low damping  (r] << 1). 
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In this case for small velocities v o f a  Josephson fluxon (v << Ijwj) the phase 
difference distribution is given by Eq. (23) with the sflbstitution x --+ x - yr. 

The  energy of the electric field inside the Josephson junction is then 

F f 
hj~ ~o 2 d x -  v2Ch2 oo , 0 ~ \ 2  rcCh2v 2 

g~l = -@e ~ Se - - T  oo [ - ~ z )  dx - 4e 2 l ~ ,  
(27) 

i .e.,  s  ~x v 2 and in the nonlocal case as well as in the local case a Josephson 
vor tex is characterized by the mass per unit length m, where 

rrh2C 
m -  2e2l J . (28) 

Let us now find the mobili ty per unit length # of a Josephson fluxon. 
To do it we calculate the total  dissipation rate Q 

1 ( h w j ) :  f o o  ~ 2 d x =  v 2 ( h ) 2 f ~ 1 7 6  (_~_x~)2dx - 4p~v 2 (29) 
(~ = - R  ~ J _ ~  -R 2e J_r 2~rc21yR 

and equate  it to v 2 / # .  As a result we obtain the following expression for # 

27rc21yR R C  
- -  - - -  ( 3 0 )  

# -- ~ m 

In the local case the expressions for m and # have the same  form as the 
expressions given by Eqs. (28) and (30) with I j  replaced by 4Aj /~r  ,,, A j .  l 

Thus  in the nonlocal case a Josephson vortex has a bigger ma.ss and a lower 
mobili ty as compared  to the local case. 

We consider now a tunnel contact  in the overdamped regime (r/>2> 1). 
In this case the first te rm in the left par t  of Eq. (20) can be neglected. The  
reduced integro-differential equation 

l ! f du O~ 
q~r  = rr u ~- x Ou du - sin ~v + ft. 

- - 0 0  

(31) 

has an exact  solution for a phase kink matching  the boundary  conditions 
~ v ( - ~ ,  t) = arcsin ~ and ~(cr  t) = arcsin t3 + 27r. This solution describes a 
moving (13 # 0) Josephson vortex and has the form 12 

where 

/ x  - v t \  
~(x,  t) = arcsin 13 + 7r + 2 arc tan  ~ - - - ~ ) ,  (32) 

lj 
L -  ~ ,  (33) 

VI-P" 
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0vo (a4) 

and v0 = lawa/Tl = Rc2/8rr~ 2. The length scale L and the velocity v increase 
with ,/3 and diverge when j --+ jc (~ --+ 1). Therefore for the nonlocal case 
and ,! >> 1 the Josephson vortex expands with the increase of v cont ra ry  to 
its contract ion for the local case and */ << 1. Note tha t  at ~ --+ 1, i.e., at 
j --+ j~ the solution (32) should be modified as it is valid only for L <,< l.t2 

It is interesting to note tha t  Eq. (20) with r / =  0 has a solution qo(x-v t )  
describing a 47r-phase-kink (r - ~o(-oo) = 4rr) moving with a cons tant  
velocity v = wala and carrying two flux quanta,  m This solution has the forin 

IX  - -  l~ t \  
~ ( x - v t )  = 4 a r c t a n { - - ~ j  ) .  (35) 

In the static case Eq. (20) describing the nonlocM Josephson electro- 
dynamics  is similar to the equation describing dislocations in the Peierls 
potential.  Using the results of the dislocation theory 2s one can obtain  new 
classes of l)eriodic solutions for vortex s t ruc tu res )  5 

4. E L E C T R O M A G N E T I C  W A V E S  

Let us now conskler an electromagnetic wave propagat ing along a 
Josephson junction.  To do it we treat  the phase distribution in the form of 
a plain wave with a small amplitude, namely, 9~(x, t) = 9~ e x p ( - i w t  + ikx) 
with [p~[ << 1. In the local case the dispersion relation w(k) is determined 
by the sine-Gordon equation (1) and has the form 

where k is the wave number. 
wave 29 corresponds to the limit 
persion relation ua ~ waAak and 

cod~/1 + k2A3, (36) 

The well-known Swihart e lectromagnetic  
k k j  >> I of Eq. (36). It has a linear dis- 
propagates  with the velocity cs = caaAa = 

c / ~ ,  which is independent on the critical current density jc. 
In the framework of the nonlocal Josephson electrodynamics one has 

Eqs. (15) and (17) to determine the dispersion relation for an electromagnetic  
wave. In the case of a tunnel contact  with d >> ~ and zero dissipation we 
have r, is 

k a3 (at) 
w = w a  1 +  x / l + k 2 A  2" 

If kA >> 1, then the dispersion relation (37) takes the form co ~ cojv/1 + k l j  
and in the region kla >> 1 we have w ~ c s v / ~ ,  i.e., in the nonlocM limit 
the phase velocity of an electromagnetic wave propagating along a tunnel 
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contact Vph = ~ / k  ~ cs/v/-~ tends to zero proportionally to k -1/2. In 
particular, this decrease of Vph with the increase of k results in Josephson 
vortex Cherenkov radiation. 2~ 

In the case of a thin film with d << A the dispersion relation co(k) follows 
from Eq. (17) and is given by is 

co = coj ~/1 + 2k2 Aeffl jQ(2k),~e~), (38) 

where 
oo 

/ Qo(u) exp(ixu) du. (39) Q(x) 
- o o  

The function Q(x) has the following explicit form 

J 1 1 + v/1 - x 2 
Q(x) = ~rv/1 - x2 In 1 - lx/]--Z-~- x 2' if x < 1; (40) 

1 - -  arctan , i f x  > 1. 
7r 

Using Eqs. (38) and (40) we find, in particular, the dispersion relation 
co(k) in the limiting cases k)~eff << 1 and k)~ff >> 1 

{ a J j i l  4]r ln(kAo.ff), if k'Aeor << 1; 
co = ~r (41) 

cojx/1 + kid, if kAeff >> 1. 

[t follows from Eq. (41) that  in the case of a thin film with d << )~ the phase 
velocity of an electromagnetic wave propagating along a Josephson junction 
tends to zero proportionally to k -1/~ in the region klj )> 1. 

5. SUMMARY 

To summarize we present the integro-differential equations (15) and 
(17) determining the electromagnetic properties of an SIS-type tunnel con- 
tact with the thickness d >> A and d << )~. An arbitrary relation between 
the typical scales of spatial variations of the magnetic field and the phase 
difference is allowed for. We treat in detail the extremely nonlocal Josephson 
electrodynamics described by Eq. (20) and focus on the Josephson fluxons 
and the electromagnetic waves propagating along a tunnel contact. The 
known exact solutions for single static (23) and moving (32) Josephson vor- 
tices are presented. The mass and mobility per unit length are calculated 
for these phase kinks. An exact solution (35) describing a traveling 4zr- 
kink is presented. We derive dispersion relations for electromagnetic waves 
propagating along a Josephson junction. 
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