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The flux jump instability of Bean’s critical state in the flux-creep regime of type-II superconductors is
considered. We find the flux-jump fieldBj which determines stability criterion of the superconducting state.
The dependence ofBj on the external magnetic-field ramp rateḂe is calculated. We demonstrate that under the
conditions typical for most of the magnetization experiments the slope of the current-voltage curve in the
flux-creep regime determines the stability of the Bean’s critical state, i.e., the value ofBj . We show that a flux
jump can be preceded by magnetothermal oscillations and find the frequency of these oscillations as a function
of Ḃe .

I. INTRODUCTION

Bean’s critical state model1 successfully describes the ir-
reversible magnetization in type-II superconductors by intro-
ducing a critical current densityj c(T,B), whereT is the
temperature andB is the magnetic field. In the framework of
Bean’s model the value of the slope of the stationary
magnetic-field profile is less than or equal tom0 j c(T,B).
This nonuniform flux distribution does not correspond to an
equilibrium state and under certain conditions flux jumps
arise in the critical state. The flux-jumping process results in
a flux redistribution towards the equilibrium state and is ac-
companied by a strong heating of the superconductor.

Flux jumping has been frequently studied in conventional
and high-temperature superconductors~see the review
papers,2,3 references therein, and the recent experimental
studies4–7!. In the general case two types of flux jumps can
be considered, namely, global and local flux jumps. A global
flux jump involves vortices into motion in the entire volume
of the sample. A local flux jump occurs in a small fraction of
the sample volume. Depending on the initial perturbation and
the driving parameters there are two qualitatively different
types of global flux jumps, namely, complete and partial flux
jumps. The first turns the superconductor to the normal state.
The second self-terminates when the temperature is still less
than the critical temperature.

We illustrate a global flux-jump origination in a supercon-
ducting slab with the thickness 2d subjected to an external
magnetic fieldBe parallel to the sample surface (yz plane!.
In the framework of Bean’s critical state model the spatial
distribution of flux obeys the equation

dB

dx
56m0 j c , ~1!

where the6 stays forx.0 andx,0, respectively. We show
the dependenceB(x) in Fig. 1 for the case when the critical
current density depends only on the temperature, i.e.,
j c5 j c(T).
Let us now suppose that the temperature of the sample

T0 is increased by a small perturbationdT0 arising due to a
certain initial heat releasedQ0 . The critical current density
j c(T) is a decreasing function of temperature. Thus, the den-
sity of the superconducting current screening of the external

magnetic field atT5T01dT0 is less than atT5T0 . This
reduction of the screening current enhances the magnetic
flux inside the superconductor as shown in Fig. 1. The mo-
tion of the magnetic flux into the sample, which occurs as a
result of the temperature perturbationdT0 , induces an
electric-field perturbationdE0 . The arise ofdE0 is accom-
panied by an additional heat releasedQ1 , an additional tem-
perature risedT1 , and, therefore, an additional reduction of
the superconducting screening current densityj c . Under cer-
tain conditions this results in an avalanche-type increase of
the temperature and magnetic flux in the superconductor, i.e.,
in a global flux jump.

The relative effect of the flux and temperature redistribu-
tion dynamics on flux jumping depends on the ratiot of the
flux (tm) and thermal (tk) diffusion time constants,2

t5tm /tk . The value of the dimensionless parametert is
determined by the corresponding diffusion coefficients,

t5m0

ls

C
, ~2!

wherel is the heat conductivity,s is the conductivity, and
C is the heat capacity.

For t!1 (tm!tk), rapid propagation of flux is accompa-
nied by an adiabatic heating of the superconductor, i.e., there
is not enough time to redistribute and remove the heat re-

FIG. 1. Magnetic-fieldB(x) distribution at different tempera-
tures:T5T0 ~solid line!, T5T01dT ~dashed line!.
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leased due to the flux motion. Fort@1 (tk!tm), the spatial
distribution of flux remains fixed during the stage of rapid
heating. These adiabatic (t!1) and dynamic (t@1) ap-
proximations are the basis of the approach to the flux-
jumping problem,2 and the flux-jump scenario significantly
depends on the relation between the values of the heat con-
ductivity k, heat capacityC, and conductivitys that is de-
fined as the slope of thej -E curve.

Let us now estimate the electric-field value typical for the
magnetization experiments. In this case the external
magnetic-field ramp rateḂe is usually in the intervalḂe,1
T s21. The background electric field,Eb , induced by the
magnetic-field variation is of the order ofEb;Ḃe(d2 l ),
whered2 l is the width of the area occupied by the critical
state ~see, for example, Fig. 1!. We estimateEb as
Eb,1026 V cm21 using the valued2 l,1024 m which is
typical for the stability domain of Bean’s critical state. This
electric-field interval corresponds to the flux-creep regime.
Therefore, for the magnetization experiments the background
electric fieldEb is from the flux-creep regime, where the
relation between the current densityj and the electric field
E is strongly nonlinear. As a result, the value ofs, i.e., the
slope of thej -E curve, strongly depends on the electric field
and the flux jumping takes place on a background of a resis-
tive state with a conductivity that strongly depends on the
external magnetic-field ramp rateḂe .

In order to calculate the conductivity in the flux-creep
regime we use the dependence ofj on E in the form

j5 j c1 j 1lnS EE0
D , ~3!

whereE0 is the voltage criterion at which the critical current
densityj c is defined,j 1 determines the slope of thej -E curve
and j 1! j c . Note, that the actual choice ofE0 is critical.
Indeed, by taking for the voltage criterion a certain value

Ẽ0 instead ofE0 we change the critical current density from
j c to j̃ c5 j c2 j 1ln(Ẽ0 /E0). The difference betweenj̃ c and j c
is small as ln(Ẽ0 /E0);1 and j 1! j c . It is common to define
the critical current value as the current density atE051026

V cm21. Let us also note that a power law

j5 j cS EE0
D 1/n ~4!

with n@1 is often used to describe thej -E curve in the
flux-creep regime. Expanding the dependence given by Eq.
~4! in series in 1/n!1 and keeping the first two terms we
find that if we taken5 j c / j 1 , then Eqs.~3! and~4! coincide
with the accuracy of 1/n2!1.

The relation ~3! was derived in the framework of the
Anderson-Kim model8–10considering the thermally activated
uncorrelated hopping of bundles of vortices. The
vortex-glass11 and collective-creep12,13models result in more
sophisticated dependences ofj on E. However, thesej -E
curves coincide with the one given by Eq.~3! if j2 j c! j c .
The recently developed self-organized criticality approach to
the critical state14,15 also results in Eq.~3! if j2 j c! j c . The
logarithmic dependence of the current densityj on the elec-
tric field E in the interval j2 j c! j c is in good agreement

with numerous experimental data.16 In this paper we use the
j -E curve given by Eq.~3! to calculate the conductivitys
assuming thatj 1 / j c!1.

It follows from Eq. ~3! that for the flux-creep regime the
conductivitys is given by the formula

s5s~E!5
d j

dE
5
j 1
E
. ~5!

We estimate the value ofs ass.1010 V21 cm21 using the
typical dataj 1.103 A cm22 andE,1027 V cm21. It fol-
lows from this estimation that the conductivitys determin-
ing the flux-jump dynamics for the magnetization experi-
ments is very high. As a consequence the dimensionless ratio
t is also very high. Thus, the scenario of a flux jump for the
magnetization experiments corresponds to the limiting case
when t@1 and the rapid heating stage takes place on the
background of a ‘‘frozen-in’’ magnetic flux.

The nonlinear conductivitys(E) significantly affects the
flux-jumping process. In particular, it results in the depen-
dence of the flux-jump fieldBj on the ramp rateḂe . This
dependence is known from experiments2,3,5but to our knowl-
edge was not considered theoretically as originating from the
logarithmic j -E curve.

Under certain conditions a flux jump is preceded by a
series of magnetothermal oscillations.2 These oscillations
have been observed for both low-temperature17,18 and high-
temperature superconductors.5 Theoretically, such magneto-
thermal oscillations were considered for a flux jump devel-
oping in the flux-flow regime.19 In this case thej -E curve is
linear and the value of the conductivitys is electric-field
independent. The high and electric-field-dependent conduc-
tivity s(E) significantly affects the flux dynamics and there-
fore the magnetothermal oscillations. In particular, it results
in the dependence of the frequency of the magnetothermal
oscillations on the magnetic-field ramp rateḂe . To our
knowledge, this effect of the logarithmicj -E curve on the
magnetothermal oscillations was not treated theoretically.

In this paper we consider the flux-jump instability of
Bean’s critical state on the background of a nonuniform elec-
tric field determining the conductivity of the type-II super-
conductor in the flux-creep regime. We find the flux-jump
field Bj that limits the critical state stability and its depen-
dence on the external magnetic-field ramp rateḂe . We show
that a flux jump can be preceded by magnetothermal oscilla-
tions and find the frequency of these oscillations as a func-
tion of Ḃe .

The paper is organized in the following way. In Sec. II,
we consider the critical state stability qualitatively and obtain
the stability criterion. In Sec. III, we derive the equations
determining the development of the small temperature and
electric-field perturbations and calculate the frequency of the
magnetothermal oscillations. In Sec. IV, we summarize the
overall conclusions.

II. QUALITATIVE CONSIDERATION

In this section we consider the critical state stability quali-
tatively assuming that the thermomagnetic instability devel-
ops much faster than the magnetic-flux diffusion. In other
words, we treat the case when the heating accompanying the
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thermomagnetic instability takes place on the background of
a ‘‘frozen-in’’ magnetic flux. In Sec. III we derive the exact
criterion of applicability of the following qualitative reason-
ing.

Let us consider a superconducting slab with the thickness
2d subjected to a magnetic field parallel to the sample sur-
face ~see Fig. 1! and suppose that the temperature of the
sampleT0 is increased by a small perturbationdT. To keep
the critical state stable, i.e., to keep the screening current at
the same level, an electric-field perturbationdE arises. The
additional electric fielddE causes an additional heat release
dQ}dE, which is the ‘‘price’’ for keeping the total screen-
ing current density at the same level, i.e., the ‘‘price’’ for the
‘‘frozen-in’’ magnetic flux.

The critical state is stable if the additional heat release
dQ can be removed to the coolant by the additional heat flux
dW}dT resulting from the temperature perturbationdT.
Thus, the stability criterion for the critical state has the form

dW.dQ. ~6!

The additional heat release per unit length,dQ, is given
by the integral ofjdE over the width of the superconducting
slab

dQ5E
2d

d

jdEdx. ~7!

The additional heat fluxdW is determined by the tem-
perature perturbationdT at the sample surface, i.e.,

dW5hdTuP , ~8!

whereh is the heat transfer coefficient to the coolant with the
temperatureT0 andP stays for the sample surface.

Using Eqs.~6!, ~7!, and~8! we find the critical state sta-
bility criterion, namely, the inequality

E
2d

d

jdEdx,2hdTuP . ~9!

To derive the explicit form of this stability criterion we
have to find the relation betweendT anddE. To do it, we
calculate the decrease of the current densityd j2 resulting
from the temperature perturbationdT and the increase of the
current densityd j1 resulting from the electric-field pertur-
bationdE. If the critical state is stable then the total screen-
ing current density stays constant. As a result, the relation
betweendE anddT is given by the equation

d j5d j21d j150. ~10!

In the critical state,j' j c , thus, the decrease ofj due to
the temperature perturbationdT is equal to

d j252U ] j c
]T UdT ~11!

~note that] j c /]T,0).
The increase of the current density due to the electric-field

perturbationdE can be written as

d j15
d j

dE
dE5sdE. ~12!

Note that the conductivitys is the differential conductivity,
i.e., it is determined by the slope of thej -E curve.

Combining Eqs.~5! and~12!, we find the relation between
d j1 anddE in the form

d j15
j 1
Eb

dE5
j c
nEb

dE, ~13!

wheren5 j c / j 1@1.
It follows from Eqs.~10!, ~11!, and~13! that

dE5
1

s U ] j c
]T UdT5

nEb
j c

U ] j c
]T UdT. ~14!

Equations~5! and~14! allow us to understand the effect of
the background electric fieldEb on the critical state stability.
It follows from Eq. ~5! that a low electric fieldEb results in
a high differential conductivity (s}1/Eb). In its turn a high
conductivitys leads to a low electric-field perturbation@in-
deed, it follows from Eq.~14! that dE}1/s}Eb#. The
smaller thedE, the less ‘‘costly’’ it is to remove the addi-
tional heat release. As a result the lower the background
electric fieldEb , the more stable the superconducting state.

Substituting Eq.~14! into Eq.~9! we find the critical state
stability criterion in the form

E
2d

d

nEbU ] j c
]T UdTdx,2hdTuP . ~15!

We have to treat the temperature perturbationdT in more
detail to derive the final form of Eq.~15!. The variation of
the functiondT(x) on the interval2d<x<d depends on the
value of the Biot number

Bi5
dh

k
, ~16!

wherek is the heat conductivity of the superconductor. Let
us assume that the value of the heat transfer coefficienth is
relatively low. As a result,Bi!1 and the temperature per-
turbationdT(x) is almost uniform over the width of the su-
perconducting slab. It means thatdT cancels in both sides of
Eq. ~15! and the stability criterion takes the following final
form:

J5
n

2hE2d

d

EbU ] j c
]T Udx,1. ~17!

Let us note, that this criterion was first derived in order to
calculate the maximum value of a superconducting current
under conditions typical for the critical current measure-
ments, i.e., for a superconducting wire carrying a current that
is increased with a given ramp rate.20

In addition, we assume for simplicity that the value ofn is
temperature and magnetic-field independent ifT,Tc and
B,Bc2 , whereTc is the critical temperature andBc2 is the
upper critical field. This assumption is in a good agreement
with numerous experimental data16 as well as with the self-
organized criticality approach to Bean’s critical state.14,15
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Using Eq.~1! we can rewrite the criterion given by Eq.
~17! in the following form, which is convenient for the fur-
ther analysis:

J5
n

hE0
d

EbU ] j c
]T Udx5

n

m0h
E
B*

BeEb

j c
U ] j c

]T UdB,1. ~18!

HereB*5B(0) is the magnetic field in the middle plane of
the superconducting slab.

The background electric fieldEb is induced by the vary-
ing external magnetic fieldBe(t) and thus the spatial distri-
bution ofEb is given by the Maxwell equation

dEb
dx

5
dB

dt
. ~19!

Combining Eqs.~1! and ~19! and taking into account that
j' j c we find that

dEb
dB

56
Ḃ

m0 j c~B!
, ~20!

where the6 stands forx.0 andx,0 correspondingly. At
the same time Eq.~19! results in the relation

Ḃe

j c~Be!
5

Ḃ

j c~B!
. ~21!

It follows from Eqs.~20! and~21! that the dependence of
the background electric fieldEb,B is given by

Eb56
Ḃe~B2B* !

m0 j c~Be!
, ~22!

where the6 stays forx.0 andx,0 correspondingly.
Let us now apply the criterion~18! to calculate the flux-

jump field Bj assuming that initially there is no flux inside
the superconducting slab, i.e., we calculate now the magnetic
field of the first flux jump. Using Eqs.~18! and~22! we find
the stability criterion in the form

J5
nḂe

m0
2h jc~Be!

E
B*

BeB2B*

j c~B!
U ] j c

]T UdB,1. ~23!

The value of the magnetic fieldB* is given by the fol-
lowing system of equations:

B*50, if Be,Bp , ~24!

E
B*

Be dB

j c~B!
5m0d, if Be.Bp , ~25!

where the penetration field for the magnetic flux,Bp , is de-
termined by

E
0

Bp dB

j c~B!
5m0d. ~26!

It follows from Eqs.~23! and~25! thatJ is an increasing
function of the external magnetic fieldBe if Be,Bp andJ is
a decreasing function ofBe if Be.Bp . In other words, if for
a given value ofḂe the superconducting state is stable in the
region 0,Be,Bp then it is stable for any magnetic field.

Thus, if a flux jump occurs it occurs only ifBe,Bp . There-
fore, we consider now a superconducting slab that is wide
enough meaning thatBj,Bp .

We have the criterionJ (Bj )51 to find the flux-jump
field Bj in the case whenBe,Bp . Thus, it follows from Eq.
~23! that the dependenceBj (Ḃe) is given by the equation

J ~Bj !5
nḂe

m0
2h jc~Bj !

E
0

Bj B

j c~B!
U ] j c

]T UdB51. ~27!

Let us approximate the value ofu] j c /]Tu as

U ] j c
]T U' j c~B!

Tc~B!2T0
. ~28!

Using Eq.~28! we rewrite Eq.~27! in the following form:

nḂe
m0
2h jc~Bj !

E
0

Bj B

Tc~B!2T0
dB51. ~29!

We treat now the case whenT0!Tc(Bj ) or in other words
Bj!Bc2(T0). It means thatTc(B)'Tc , where Tc is the
critical temperature at zero magnetic field. It follows finally
from Eq. ~29! that the stability criterion determining the de-
pendenceBj (Ḃe) is given by

Bj
2

j c~Bj !
5
2m0

2h~Tc2T0!

nḂe
. ~30!

Let us now consider the particular case of Bean’s critical
state model, namely, let us assume that the critical current
density is magnetic-field independent, i.e.,

j c5 j c~T!. ~31!

Using Eq.~30! we find the following formula for the first
flux-jump fieldBj :

Bj5A2m0
2 j c~T0!h~Tc2T0!

nḂe
}

1

Ḃe
1/2
. ~32!

It follows from Eq. ~32! that the value ofBj is inversely
proportional to the square root of the magnetic-field ramp
rate Ḃe and is, therefore, decreasing with the increase of
Ḃe . The physics of this effect is related to the decrease of the
conductivitys(E) in the flux-creep regime with the increase
of the background electric fieldEb , i.e., with the increase of
Ḃe .

We derive the expression forBj assuming that the rapid
heating stage of a flux jump takes place on the background of
a ‘‘frozen-in’’ magnetic flux. This approach is valid if
t@1 which is the same as

Ḃe!
1

n

Bp

tk
, ~33!

where we introduce the typical thermal diffusion time con-
stanttk as

tk5
d2C

k
. ~34!
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Let us now compare the values ofBj andBa , whereBa
determines the flux-jump field for the adiabatic stability
criterion.21 This well-known criterion is based on the sugges-
tion that the heating accompanying a flux jump is an adia-
batic process, i.e., it is assumed that there is no heat redistri-
bution during a flux jump. Therefore, the adiabatic stability
criterion corresponds to the limiting case oft!1 that is not
the case typical for the magnetization experiments.

The value ofBa is given by the formula21,2

Ba5
p

2
Am0C~T0!~Tc2T0!. ~35!

It follows from the comparison of Eqs.~32! and ~35! that
Ba,Bj if

Ḃe,
8

p2

m0 j 1h

C
5

8

p2

Bi

n

Bp

tk
. ~36!

Note that the inequality given by Eq.~36! is stronger than the
one given by Eq.~33! as we assume thatBi!1.

The critical current density is decreasing with the increase
of the magnetic field. Let us now consider the effect of this
dependence on the critical state stability assuming that the
value of Bj is relatively high. To do it we use the Kim-
Anderson model10 to describe the functionj c(B). In the case
of a high magnetic field this model postulates the relation

j c5
a~T!

B
. ~37!

Using Eqs.~37! and ~30! we find for the flux-jump field
Bj the formula

Bj5S 2m0
2a~T0!h~Tc2T0!

nḂe
D 1/3} 1

Ḃe
1/3
. ~38!

The comparison of Eqs.~38! and ~32! shows that the
magnetic-field dependence of the critical current density
slows down the decrease ofBj with the increase ofḂe .

III. QUANTITATIVE CONSIDERATION

We treat now the critical state stability in more detail and,
in particular, we take into consideration the magnetothermal
oscillations. We consider a superconducting slab with thick-
ness 2d subjected to an external magnetic field parallel to the
z axis ~see Fig. 1!.

We use for calculation Bean’s critical state model assum-
ing that the critical current density is magnetic-field indepen-
dent, i.e., j c5 j c(T). We suppose also thatBe
<Bp5m0 j cd. The background electric fieldEb is then given
by the formulas

Eb~x!5H Ḃe~x2 l !, if l,x,d,
0, if 2 l,x, l ,

Ḃe~x1 l !, if 2d,x,2 l ,
~39!

where the magnetic-field penetration depthl is equal to

l5d2
Be

m0 j c
. ~40!

We consider now the stability of the stationary electric
field and temperature distributions corresponding to the
Bean’s critical state against small perturbations of electric
field and temperature. To do this we present the electric field
E(x,t) and the temperatureT(x,t) in the following forms:

E~x,t !5Eb~x!1dE~x!5Eb~x!1e~x!exp~gt !, ~41!

T~x,t !5T̃01dT~x!5T̃01u~x!exp~gt !, ~42!

where

T̃05T01
ḂeBe

2

2hm0
2 j c

, ~43!

e(x)!Eb(x), u(x)!T0 , (Reg)
21 is the characteristic time

of the increase of the magnetothermal instability, and Img is
the frequency of the magnetothermal oscillations. The sta-
tionary temperatureT̃0 is different fromT0 due to the Joule
heating powerj cEb produced by the background electric
fieldEb . Let us note that the difference betweenT̃0 andT0 is
small, i.e.,T̃02T0!Tc2T0 . Indeed, using Eq.~30! we es-
timate the value of T̃02T0 as T̃02T0'(Tc2T0)/n
!Tc2T0 .

The small perturbations dT(x)5u(x)exp(gt) and
dE5e(x)exp(gt) decay if Reg,0. Therefore, the stability
margin of Bean’s critical state is determined by the condition
Reg,0.

Substituting Eqs.~41! and ~42! into the heat diffusion
equation and the Maxwell equation

k
]2T

]x2
1 j cE5C

]T

]t
, ~44!

]2E

]x2
5m0

] j

]t
, ~45!

we find a system of equations describinge(x) andu(x),

u92
gC

k
u52

j c
k

e, ~46!

e92
m0g j c
nEb~x!

e52
m0g j c
Tc2T0

u. ~47!

The prime denotes the derivative with respect tox, and we
have used Eq.~39! and the relation

] j

]t
5

] j

]E

]E

]t
2U ] j c

]T U ]T

]t
5

g j c
nEb

e2
g j c

Tc2T0
u. ~48!

We assume that the superconducting slab is in thermal
contact with a coolant with temperatureT0 and that the ex-
ternal magnetic-field ramp rate is given, i.e.,E8(6d)5Ḃe .
In addition, the electric fieldE(x) is equal to zero in the
inner region of the superconducting slab (uxu< l ). As a re-
sult, the boundary conditions for Eqs.~46! and ~47! are
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u8~6d!57
h

k
u~6d!, ~49!

e~6 l !50, e8~6d!50. ~50!

Let us present the solution fore(x) in the form

e5
nu

Tc2T0
Eb~x!1e1~x!, ~51!

where the first term corresponds to the approximation of a
‘‘frozen-in’’ magnetic flux @see Eq.~14!# and the second
term describes the deviation from this approximation. It fol-
lows from Eqs.~47!, ~50!, and~51! that with the accuracy of
Bi!1 the equation fore1(x) takes the form

e192
m0g j c

nḂe~ uxu2 l !
e150 ~52!

with the boundary conditions

e1~6 l !50, e18~6d!52
nḂeu

Tc2T0
. ~53!

We consider here the case oft@1, i.e., the case when to
the first approximation int21!1 the magnetic flux is
frozen-in in the bulk of the superconducting slab. This means
that during the stage of the rapid heating the magnetic-flux
redistribution takes place only in a thin surface layer with the
thicknessds!d2 l . In other words, the functione1(x) de-
cays inside the superconducting slab and differs from zero
only if d2uxu is less or of the order of the skin depthds . In
the regiond2uxu!d2 l Eq. ~52! takes the form

e192
gBp

2

nḂeBed
2 e150. ~54!

The solution of Eq.~54! matching the boundary condi-
tions ~53! reads

e1~x!52
nḂedsu

Tc2T0
expS uxu2d

ds
D , ~55!

where we introduce the value of the skin depthds as

ds5dAnBeḂe

gBp
2 . ~56!

To find the values of Reg and Img we integrate Eq.~46!
overx from2d to d. Using Eqs.~49!, ~51!, and~55! we find
the equation determiningg in the form

h2
nḂeBe

2

2m0
2 j c~Tc2T0!

52gCd2
Ben

2Ḃe
2

gm0
2 j c~Tc2T0!

. ~57!

We show schematically the dependences of Reg and Img on
Be in Fig. 2, where the fieldBi is determined by the equation

Bi
2

Bj
2 215A8Cd

h

nḂeBi

Bj
2 . ~58!

The difference betweenBi andBj is small in the case when
the ramp rateḂe is low, i.e.,Bi2Bj!Bj if

Ḃe,
Bi

2p2/3n

Bp

tk
SBa

Bp
D 2/3. ~59!

It follows from Eq. ~57! that Reg50 if Be5Bj , i.e.,
Bean’s critical state is stable ifBe,Bj , where the flux-jump
field Bj is given by the Eq.~32!. We find also that at the
stability threshold~for Be5Bj ) the value ofg is imaginary,
i.e., g5 iv. Thus the magnetothermal instability is preceded
by magnetothermal oscillations with the frequencyv given
by the formula

v5S 2n3Ḃe
3h

m0
2 j cd

2C2~Tc2T0!
D 1/4}Ḃe

3/4. ~60!

The approximation of the frozen-in magnetic flux is valid
if the surface layer wheree1(x)Þ0 is thin, i.e., if
ds!d2 l . Using Eqs.~35!, ~40!, ~56!, and ~60! we find the
applicability criterion of the above approach in the form

Bj@BaS Bp

p2Ba
D 1/3

. ~61!

IV. SUMMARY

To summarize, the flux-jump instability of Bean’s critical
state in type-II superconductors is considered. We show that
under the conditions typical for most of the magnetization
experiments this instability arises in the flux-creep regime.
The flux-jump fieldBj that determines the critical state sta-
bility criterion is found. We show that Bean’s critical state
stability is determined by the slope of the current-voltage
curve. The dependence ofBj on the external magnetic-field
ramp rateḂe is calculated. We find the frequency of the
magnetothermal oscillations preceding a flux jump as a func-
tion on the external magnetic field ramp rateḂe .
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