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Flux creep and flux jumping
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The flux jump instability of Bean’s critical state in the flux-creep regime of type-Il superconductors is
considered. We find the flux-jump fieB; which determines stability criterion of the superconducting state.
The dependence &; on the external magnetic-field ramp r&gis calculated. We demonstrate that under the
conditions typical for most of the magnetization experiments the slope of the current-voltage curve in the
flux-creep regime determines the stability of the Bean’s critical state, i.e., the vaje ¥fe show that a flux
jump can be preceded by magnetothermal oscillations and find the frequency of these oscillations as a function
of Be.

[. INTRODUCTION magnetic field afT=Ty+ 6T, is less than alf=T,. This
reduction of the screening current enhances the magnetic
Bean’s critical state modebuccessfully describes the ir- flux inside the superconductor as shown in Fig. 1. The mo-
reversible magnetization in type-Il superconductors by introtion of the magnetic flux into the sample, which occurs as a
ducing a critical current density.(T,B), whereT is the result of the temperature perturbatiafily, induces an
temperature anB is the magnetic field. In the framework of electric-field perturbatiorSE,. The arise oféE, is accom-
Bean's model the value of the slope of the stationarypanied by an additional heat relea¥@,, an additional tem-
magnetic-field profile is less than or equal tgj.(T,B). perature rise5T,, and, therefore, an additional reduction of
This nonuniform flux distribution does not correspond to anthe superconducting screening current densityUnder cer-
equilibrium state and under certain conditions flux jumpstain conditions this results in an avalanche-type increase of
arise in the critical state. The flux-jumping process results irthe temperature and magnetic flux in the superconductor, i.e.,
a flux redistribution towards the equilibrium state and is ac4n a global flux jump.
companied by a strong heating of the superconductor. The relative effect of the flux and temperature redistribu-
Flux jumping has been frequently studied in conventionalion dynamics on flux jumping depends on the ratiof the
and high-temperature superconductofsee the review flux (t,) and thermal {,) diffusion time constant$,
papers” references therein, and the recent experimentat=t.,/t,. The value of the dimensionless parameteis
studie§™). In the general case two types of flux jumps candetermined by the corresponding diffusion coefficients,
be considered, namely, global and local flux jumps. A global
flux jump involves vortices into motion in the entire volume Ao
of the sample. A local flux jump occurs in a small fraction of TmHo e @
the sample volume. Depending on the initial perturbation and . S .
the driving parameters there are two qualitatively differentWh.ere)‘ is the heat ponduct|V|tyq is the conductivity, and
types of global flux jumps, hamely, complete and partial fluxC is the heat capacity. . . .
jumps. The first turns the superconductor to the normal state, ~°" 7<1 (tm<t,), rapid propagation of flux is accompa-

The second self-terminates when the temperature is still |e§ged by an adlapatlc heatmg O.f the superconductor, i.e., there
than the critical temperature. IS not enough time to redistribute and remove the heat re-

We illustrate a global flux-jump origination in a supercon-
ducting slab with the thicknessd2subjected to an external B
magnetic fieldB, parallel to the sample surfacg plane.

In the framework of Bean'’s critical state model the spatial
distribution of flux obeys the equation

dB ]
&:iﬂolm (1)

where thex stays forx>0 andx<0, respectively. We show
the dependencB(x) in Fig. 1 for the case when the critical
current density depends only on the temperature, i.e.,
Je=1c(T).

Let us now suppose that the temperature of the sample
Ty is increased by a small perturbatioi, arising due to a
certain initial heat releaséQq. The critical current density
i<(T) is a decreasing function of temperature. Thus, the den- FIG. 1. Magnetic-fieldB(x) distribution at different tempera-
sity of the superconducting current screening of the externalires:T=T, (solid line), T=Ty+ 6T (dashed ling
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leased due to the flux motion. Fer-1 (t.<t,,), the spatial  with numerous experimental datain this paper we use the
distribution of flux remains fixed during the stage of rapid j-E curve given by Eq(3) to calculate the conductivity
heating. These adiabaticr€1) and dynamic £>1) ap- assuming thaj,/j.<1.

proximations are the basis of the approach to the flux- It follows from Eq. (3) that for the flux-creep regime the
jumping problen? and the flux-jump scenario significantly conductivity o is given by the formula

depends on the relation between the values of the heat con-
ductivity «, heat capacityC, and conductivityo that is de-
fined as the slope of theE curve.

Let us now estimate the electric-field value typical for the
magnetization experiments. In this case the externayVe estimate the value of aso>10'Q " cm™* using the
magnetic-field ramp ratB, is usually in the intervaB,<1  typical dataj;>10> Acm~? andE<10 ' Vem™*. It fol-
Ts L. The background electric field,, induced by the !ows from th!s estlmatlon_that the conduchwt_ydgtermm— .
magnetic-field variation is of the order d&,~ Be(d—l), ing thg ﬂ“X'J“r,np dynamics for the magnetization experi-
whered—1 is the width of the area occupied by the critical MENtS iS very high. As a consequence the dimensionless ratio
state (see, for example, Fig.)l We estimateE, as 7 IS &ls0 very high. Thus, the scenario of a flux jump for the
E,<10°° V cm~* using the valual— <104 m which is magnetization experiments corresponds to the limiting case

typical for the stability domain of Bean's critical state. This When 7>1 and the rapid heating stage takes place on the

electric-field interval corresponds to the flux-creep regimePackground of a “frozen-in” magnetic flux.
The nonlinear conductivityr(E) significantly affects the

Therefore, for the magnetization experiments the backgroun _ X _ ) _

electric field E, is from the flux-creep regime, where the NUX-Jumping process. In particular, it results in the depen-
relation between the current densjtyand the electric field dence of the flux-jump field; on the ramp ratd.. This

E is strongly nonlinear. As a result, the value®f i.e., the ~dependence is known from exper_lmérﬁébut to our knowl-
slope of thej-E curve, strongly depends on the electric field edge_was_ n_ot considered theoretically as originating from the
and the flux jumping takes place on a background of a residogarithmicj-E curve.

tive state with a conductivity that strongly depends on the YUnder certain conditions a flux jump is preceded by a
external magnetic-field ramp raEe series of magnetothermal oscillatiohsThese oscillations

In order to calculate the conductivity in the flux-creep have been observed for both Iow-tempereﬁtﬁ’r%and high-
regime we use the dependencejain E in the form temperature superconductdr¥heoretically, such magneto-
thermal oscillations were considered for a flux jump devel-
E oping in the flux-flow regimé? In this case thg-E curve is
&)

dj s

0'=0'(E)=d—E—E. (5)

(3) linear and the value of the conductivity is electric-field
independent. The high and electric-field-dependent conduc-
tivity o(E) significantly affects the flux dynamics and there-
fore the magnetothermal oscillations. In particular, it results

j=Jctidn

whereE, is the voltage criterion at which the critical current
densityj . is definedj; determines the slope of theE curve
and j;<<j.. Note, that the actual choice &, is critical.
Indeed, by taking for the voltage criterion a certain value

1in

in the dependence of the frequency of the magnetothermal
Eo instead ofE, we change the critical current density from \,5gnetothermal oscillations was not treated theoretically.
the critical current value as the current densityfEgt=10"° tric field determining the conductivity of the type-Il super-
dence on the external magnetic-field ramp e We show
with n>1 is often used to describe thjeE curve in the tjon of B,.
find that if we taken=j./j,, then Eqs(3) and(4) coincide  the stability criterion. In Sec. lll, we derive the equations
Anderson-Kim modé'°considering the thermally activated magnetothermal oscillations. In Sec. IV, we summarize the
sophisticated dependences jobn E. However, thesg-E Il. QUALITATIVE CONSIDERATION
the critical stat&"'®also results in Eq(3) if j—j.<j.. The tatively assuming that the thermomagnetic instability devel-

oscillations on the magnetic-field ramp raB. To our
knowledge, this effect of the logarithmicE curve on the
Je 10 je=]c—[3In(Eo/Eq). The difference betweep. andj. In this paper we consider the flux-jump instability of
is small as InEy/Eg)~1 andj;,<j.. It is common to define Bean’s critical state on the background of a nonuniform elec-
Vcm™L Let us also note that a power law conductor in the flux-creep regime. We find the flux-jump
field B; that limits the critical state stability and its depen-
.. |E
J:JC(E_O ) that a flux jump can be preceded by magnetothermal oscilla-
tions and find the frequency of these oscillations as a func-
flux-creep regime. Expanding the dependence given by Eq. The paper is organized in the following way. In Sec. I,
(4) in series in <1 and keeping the first two terms we we consider the critical state stability qualitatively and obtain
with the accuracy of W< 1. . determining the development of the small temperature and
The relation(3) was derived in the framework of the electric-field perturbations and calculate the frequency of the
uncorrelated hopping of bundles of vortices. Theoverall conclusions.
vortex-glass! and collective-creég 3 models result in more
curves coincide with the one given by E®) if j—j.<]j..
The recently developed self-organized criticality approach to In this section we consider the critical state stability quali-
logarithmic dependence of the current dengiton the elec- ops much faster than the magnetic-flux diffusion. In other
tric field E in the intervalj—j.<j. is in good agreement words, we treat the case when the heating accompanying the
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thermomagnetic instability takes place on the background of _ dj

a “frozen-in” magnetic flux. In Sec. lll we derive the exact 8]+ =g SE= 0 dE. (12
criterion of applicability of the following qualitative reason-

ing. Note that the conductivityr is the differential conductivity,

Let us consider a superconducting slab with the thickneste., it is determined by the slope of theE curve.
2d subjected to a magnetic field parallel to the sample sur- Combining Eqgs(5) and(12), we find the relation between
face (see Fig. 1 and suppose that the temperature of thesj, and SE in the form
sampleT, is increased by a small perturbatioi. To keep ) .
the critical state stable, i.e., to keep the screening current at si =J—15E= Je SE (13
the same level, an electric-field perturbatiéB arises. The )+ '
additional electric fieldSE causes an additional heat release
8Qo SE, which is the “price” for keeping the total screen-
ing current density at the same level, i.e., the “price” for the

wheren=j./j;>1.
It follows from Egs.(10), (11), and(13) that

“frozen-in” magnetic flux. 14 nEy | 4]
The critical state is stable if the additional heat release SE= | 28| sT=——2| 2| 6T, (14)
6Q can be removed to the coolant by the additional heat flux o dT Je | T

SWoe 6T resulting from the temperature perturbatidf .

- oo i E i 14) all he eff f
Thus, the stability criterion for the critical state has the form quations(5) and(14) allow us to understand the effect o

the background electric fiely, on the critical state stability.
It follows from Eq. (5) that a low electric fieldE,, results in
a high differential conductivity ¢« 1/E;). In its turn a high
conductivity o leads to a low electric-field perturbati¢im-
deed, it follows from Eq.(14) that SEx1l/ocxE,]. The
smaller thesE, the less “costly” it is to remove the addi-

SW>8Q. (6)

The additional heat release per unit lengfQ, is given
by the integral off SE over the width of the superconducting

slab tional heat release. As a result the lower the background
d electric fieldE,, the more stable the superconducting state.
6Q= f j SEdxX. (7) Substituting Eq(14) into Eg.(9) we find the critical state
—d stability criterion in the form
The additional heat fluxdW is determined by the tem- d dje
perature perturbatiodT at the sample surface, i.e., f dnEb ﬁ‘ 6Tdx<2héT|p. (15

SW=haT]e, (8) We have to treat the temperature perturba#dnin more

whereh is the heat transfer coefficient to the coolant with thedetail to derive the final form of Eq(15). The variation of
temperaturel, and P stays for the sample surface. the funct|on5T_(x) on the interval- d=x=<d depends on the
Using Egs.(6), (7), and(8) we find the critical state sta- value of the Biot number
bility criterion, namely, the inequality dh
Bi=—, (16)
d K
f jOEAX<2h6T|p. 9)
-d wherek is the heat conductivity of the superconductor. Let
us assume that the value of the heat transfer coeffitiést
To derive the explicit form of this stability criterion we relatively low. As a resultBi<1 and the temperature per-
have to find the relation betweefl and 6E. To do it, we  turbation§T(x) is almost uniform over the width of the su-
calculate the decrease of the current density resulting  perconducting slab. It means thaif cancels in both sides of
from the temperature perturbati@f and the increase of the Eq. (15) and the stability criterion takes the following final
current densitydj . resulting from the electric-field pertur- form:
bation 6E. If the critical state is stable then the total screen-

ing current density stays constant. As a result, the relation . d dje
betweendE and 8T is given by the equation "~ %h 7dEb oT dx<1. (17
o0j=9dj_+6j,=0. (10 Let us note, that this criterion was first derived in order to

calculate the maximum value of a superconducting current

In the critical statej~j., thus, the decrease pfdue to  under conditions typical for the critical current measure-

the temperature perturbatiafl is equal to ments, i.e., for a superconducting wire carrying a current that
is increased with a given ramp rate.

i dje¢ In addition, we assume for simplicity that the valuends
o] =— 9T oT 1y temperature and magnetic-field independenfT # T, and
B<B.,, whereT. is the critical temperature ari8l, is the
(note thatgj./dT<0). upper critical field. This assumption is in a good agreement

The increase of the current density due to the electric-fieldvith numerous experimental datas well as with the self-
perturbationdE can be written as organized criticality approach to Bean’s critical stité>
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Using Eq.(1) we can rewrite the criterion given by Eq. Thus, if a flux jump occurs it occurs only B.<B,. There-
(17) in the following form, which is convenient for the fur- fore, we consider now a superconducting slab that is wide

ther analysis: enough meaning thd;<B,,.
We have the criterion7(B;)=1 to find the flux-jump

= ”deb djc n eEb ‘910 dB<1. (18 field B; in the case wheB. < Bp.. Thus, it follows from Eq.
7 h T |77 mohJer e (23) that the dependend®;(B,) is given by the equation
HereB* =B(0) is the magnetic field in the middle plane of nB B, Jj
the superconducting slab. Z(Bj)= ‘ ‘ldB=1. (27
The background electric fiel#,, is induced by the vary- hJc(B )Jo J(B)

ing external magnetic fiel8.(t) and thus the spatial distri-

bution of E, is given by the Maxwell equation Let us approximate the value pfj/dT| as

jo(B)
Te(B)=To

Using Eq.(28) we rewrite Eq.(27) in the following form:

e
at |

dE, dB

dx  dt’
Combining Eqgs.(1) and (19) and taking into account that
j=~jc we find that

(19) (28)

nBe Bj B
%:i -B - 20 ,U«ohJc(Bj) o Te(B)—To
#olc(B) We treat now the case wha<T((B;) or in other words
where thet_ stands forx>0 andx<0 cor_respondingly. At B;<By(Ty). It means thatT (B)~T., where T, is the
the same time Eq(19) results in the relation critical temperature at zero magnetic field. It follows finally
from Eq.(29) that the stability criterion determining the de-
(21) pendenceB;(B,) is given by

dB=1. (29)

Be B

Jc(Ba)  Jc(B)
B 2ugh(Tc—To)
It follows from Egs.(20) and(21) that the dependence of 1B s : (30
the background electric field,,B is given by ¢ €

: . Let us now consider the particular case of Bean’s critical
B.(B—B*)

Ep=t——, (22)  state model, namely, let us assume that the critical current
Hojc(Be) density is magnetic-field independent, i.e.,
+ > < ingly. P =i
where thex stays forx>0 andx<0 correspondingly ie=ic(T). (31)

Let us now apply the criteriofi18) to calculate the flux-
jump field B; assuming that initially there is no flux inside  ysing Eq.(30) we find the following formula for the first
the superconductlng slab, i.e., we calculate now the magnetigx-jump field B;:
field of the first flux jump. Using Eqg18) and(22) we find

the stability criterion in the form 5 \/z,ugj (ToN(Te=To) 1 32
pa nBe  (BeB—B* é’jc dB=1 23 J nBe B
7 ughic(Be) Je* jc(B)

It follows from Eqg. (32) that the value oB; is inversely

The value of the magnetic fielB* is given by the fol- proportional to the square root of the magnetic-field ramp

lowing system of equations: rate B and is, therefore, decreasing with the increase of
B.. The physics of this effect is related to the decrease of the
B*=0, if Be<Bp, (24)  conductivityo(E) in the flux-creep regime with the increase
of the background electric fieldy, i.e., with the increase of
Be dB . Be.
fB*jC(B) =#od, i Be>Bp, (25 We derive the expression fdd; assuming that the rapid

heating stage of a flux jump takes place on the background of

whefe the penetration field for the magnetic fl@,, is de- 5 «fgzen-in” magnetic flux. This approach is valid if
termined by 7>1 which is the same as
B, dB
— 1B
——=—=uod. 26 p
fo jo(B) *° 26 B<ﬁt_’ (33

K

It follows from Eqgs.(23) and(25) that 7 is an increasing where we introduce the typical thermal diffusion time con-
function of the external magnetic fieRl, if B.<B,and 7is  stantt, as
a decreasing function @&, if B¢>B,. In other words if for
a given value oB, the superconductmg state is stable in the d*C

region 0<B,<B, then it is stable for any magnetic field. b= (34
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Let us now compare the values Bf andB,, whereB, We consider now the stability of the stationary electric
determines the flux-jump field for the adiabatic stability field and temperature distributions corresponding to the
criterion?! This well-known criterion is based on the sugges-Bean’s critical state against small perturbations of electric
tion that the heating accompanying a flux jump is an adiafield and temperature. To do this we present the electric field
batic process, i.e., it is assumed that there is no heat redistifz(x,t) and the temperaturé(x,t) in the following forms:
bution during a flux jump. Therefore, the adiabatic stability
criterion corresponds to the limiting case €1 that is not E(X,t)=Ep(X) + SE(X) =E,(X) + e(X)exp yt), (41)
the case typical for the magnetization experiments.

The value ofB, is given by the formul&-?

T(X,1)=To+ ST(X)=To+ O(X)exp y1), (42
r
Ba=7V10C(To)(Te—To). (35)  where
It follows from the comparison of Eqg32) and (35) that - Besg
B.<B; if To=Tot 52— (43)
Mol

8 mojih 8 Bi By 1 o
Be<——==———. (36 e(X)<Ep(x), 8(x)<Ty, (Rey)™ * is the characteristic time
7 C o nt of the increase of the magnetothermal instability, ang s
Note that the inequality given by E(B6) is stronger than the the frequency of the magnetothermal oscillations. The sta-
one given by Eq(33) as we assume th&i<1. tionary temperaturd@ is different fromT, due to the Joule
The critical current density is decreasing with the increasdieating powerj:E, produced by the background electric
of the magnetic field. Let us now consider the effect of thisfield E,,. Let us note that the difference betweknandT is
dependence on the critical state stability assuming that thgmayl, i-e-:To_To<TC_T0- Indeed, using Eq(30) we es-
value of B; is relatively high. To do it we use the Kim- timate the value of To—T, as To— To~(T.—Tg)/n
Anderson modef to describe the functiof.(B). In the case <1 _—T,.
of a high magnetic field this model postulates the relation -|—Che small perturbations 5T(x) = 6(x)exp(t) and
a(T) SE=e(x)exp(yt) decay if Rey<<0. Therefore, the stability
fo=—s. (37)  margin of Bean’s critical state is determined by the condition
B Rey<0.
Substituting Eqs(41) and (42) into the heat diffusion

Using Egs.(37) and (30) we find for the flux-jump field equation and the Maxwell equation

B; the formula

2 _ 13 FT aT
- 2/-LOC¥(TO)h(Tc TO) oc_i‘ (38) KW—F]CE:CE’ (44)
nBe B3
The comparison of Eqs(38) and (32) shows that the aZE_ dj
magnetic-field dependence of the critical current density ox2  Hoge (45)

slows down the decrease Bf with the increase oB..
we find a system of equations describia) and 6(x),
IIl. QUANTITATIVE CONSIDERATION

We treat now the critical state stability in more detail and, g — E 9= — ]_CE, (46)
in particular, we take into consideration the magnetothermal K K
oscillations. We consider a superconducting slab with thick-
ness @ subjected to an external magnetic field parallel to the woYic HoYic
z axis (see Fig. L €'— e=———0. (47
NEp(X) Te—To

We use for calculation Bean'’s critical state model assum-

ing that the critical current density is magnetic-field indepen-tpe prime denotes the derivative with respeckfcand we

dent, ie., jc.=j(T). We suppose also thatBe phave used Eq39) and the relation
<B,=uojd. The background electric field, is then given

by the formulas

dj dj JE | T vic Yie
. _ —=———|=| == €— 0. (48
Bo(x—1), if I<x<d, ot  JE dt dT | dt nEy T.—To
Ep(x)= 0, if —I<x<l, (39
Be(x+l), if —d<x<-—I, We assume that the _superconducting slab is in thermal
- _ _ contact with a coolant with temperatufg and that the ex-
where the magnetic-field penetration deptis equal to ternal magnetic-field ramp rate is given, i.E/,(*d)=B,.
B In addition, the electric fielde(x) is equal to zero in the
e

|=d— _ (40)  inner region of the superconducting sla|E&l). As a re-
Mol c sult, the boundary conditions for Eqel6) and (47) are
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o(=d), (49 Rev, Imy

e(x1)=0, €'(xd)=0. (50

Let us present the solution f@(x) in the form

€ Ep(X) + €1(x), (52)

B n
- Tc_TO

where the first term corresponds to the approximation of a
“frozen-in” magnetic flux [see Eq.(14)] and the second
term describes the deviation from this approximation. It fol-
lows from Eqgs.(47), (50), and(51) that with the accuracy of
Bi<1 the equation fok;(x) takes the form

FIG. 2. The dependences of Résolid line) and Imy (dashed

j line) on Be.
- LT 0 (52 | o
nBe(|x|=1) The difference betweeB; andB; is small in the case when

with the boundary conditions the ramp rateB, is low, i.e.,B;—B;<B; if

180 s 222 ’
< _ —
el(x)=0, €)(xd)=—=—" (53 ¢ 27" t, \B, (59

T.—To’
. : It follows from Eg. (57) that Rey=0 if B,=B;, i.e.,
We consider here the case #f 1, i.e., the case when to Bean’s critical state is stable B.<B;, where the flux-jump

. . . . 71 < . .
the first approximation in7~ <1 the magnetic flux is field B; is given by the Eq(32. We find also that at the

frozen-in in the bulk of the superconducting slab. This mean o R s .
that during the stage of the rapid heating the magnetic—flu%tabmty thresholdfor Be=B;) the value ofy is imaginary,

LS . . : I.e., y=iw. Thus the magnetothermal instability is preceded
redistribution takes place only in a thin surface layer with the, = . ;

. : by magnetothermal oscillations with the frequencygiven
thicknessé,<d—1. In other words, the functiom,(x) de- by the formula

cays inside the superconducting slab and differs from zero

only if d—|x| is less or of the order of the skin depfh. In >n3B3h 1/4
the regiond—|x|<d—1 Eq. (52) takes the form 0= i c ) «B34, (60)
1] (d°C*(Te—To) °
yB} o . . o
1— 0. (59 The approximation of the frozen-in magnetic flux is valid

€1 o p 2617
NBeBed if the surface layer wheree;(x)#0 is thin, i.e., if

6s<d—I. Using Egs.(35), (40), (56), and(60) we find the

The solution of Eq.(54) matching the boundary condi- applicability criterion of the above approach in the form

tions (53) reads

. B 1/3
nBdsh  [|x|—d B.>B ( P ) (61)
=— iZPal 2g | -
€1(X) T —T, ex;( 5 )" (55 7B,
where we introduce the value of the skin depthas IV. SUMMARY

NBeB, To summarize, the flux-jump instability of Bean’s critical
5s=d 57 (56)  state in type-ll superconductors is considered. We show that
Y5p under the conditions typical for most of the magnetization
experiments this instability arises in the flux-creep regime.
The flux-jump fieldB; that determines the critical state sta-
bility criterion is found. We show that Bean’s critical state
stability is determined by the slope of the current-voltage

To find the values of Rg and Imy we integrate Eq(46)
overx from —d to d. Using Eqs(49), (51), and(55) we find
the equation determining in the form

nB.B2 B.n2B2 curve. The dependence Bf on the external magnetic-field
h— —2_e—e=—ycd— —Qe—e (57) ramp rateB, is calculated. We find the frequency of the
2pale(Te=To) Yol e(Te=To) magnetothermal oscillations preceding a flux jump as a func-

We show schematically the dependences of Bed Imy on  tion on the external magnetic field ramp réig.
B, in Fig. 2, where the field; is determined by the equation
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