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We study the formation and dynamics of normal domains in Rutherford-type superconducting 
cables. We use an effective circuit model to account for the electric current redistribution process 
between the multifilamentary strands in the presence of a normal zone. We obtain and integrate 
numerically the diffusion equations for the temperature and the current-density distributions in the 
cable. Our simulations show the formation of stable normal domains propagating along the cable. 
We derive an analytical expression for the threshold current I, above which the propagating normal 
domains exist. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

The study of normal zone in current-carrying supercon- 
ductors has been continuously a subject of interest in the 
field of applied superconductivity (see, for example, Ref. 1 
and references therein). It is well known that in a homoge- 
neous superconductor an initial normal seed is always ,un- 
stable. If a normal seed nucleates, it will shrink when the 
current is less than a certain value ZP, while for the higher 
currents, [>I,, , this normal seed will expand. If inhomoge- 
neities in the physical properties of the superconductor are 
present, stable normal domains (normal zone of a finite size) 
can exist in their vicinity. These localized normal domains 
were also found in composite superconductors, in the pres- 
ence of a high-resistance transition layer between the super- 
conductor and the stabilizer.’ In this case the domains are 
stable for a finite range of currents. Namely, a normal do- 
main shrinks when the current is less than a certain value I,, 
while for currents higher than Z*(Z*>I,), the initial domain 
undergoes a periodic process of splitting. This splitting re- 
sults in a string of stationary normal domains formed along 
the composite? 

Recently it was found experimentally that normal do- 
mains can propagate along the multifilamentary composite 
superconductor with a large amount of stabilizer outside the 
multifilamentary area.” A number of theoretical studies were 
performed to investigate this effect?-7 It was shown that the 
existence of these propagating normal domains is a result of 
the high Joule power generated in the superconductor during 
a relatively long current redistribution process between the 
superconductor and the stabilizer. 

Rutherford-type superconductor cables are considered 
for use in superconducting particle accelerator magnets.8-‘0 
These cables consist of multifilamentary composite strands, 
twisted together, and shaped into a fat keystoned form. Due 
to the twisting, each strand goes successively from the inner 
edge of the cable to the outer edge, and back to the inner 
edge, over a characteristic length I, . Over the distance 1, the 
strand crosses over and has electrical contact with all the 
other cable strands (see Fig. 1). If a normal seed nucleates in 
some part of the cable, the current in this region starts to 
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redistribute between the strands due to the existence of the 
interstrand electrical contact. The current redistribution pro- 
cess affects the normal zone dynamics in the cable, as in the 
case ~of a multifilamentary composite superconductor with a 
large stabilizer. 

In a recent study” we considered the formation and 
propagation of a normal zone in Rutherford-type supercon- 
ducting cables. We used an effective circuit model7 to ac- 
count for the current redistribution process between the mul- 
tifilamentary strands in the presence of a normal zone. Our 
results show the existence of two different regimes of normal 
zone propagation. In the first regime, the nucleation of a 
normal seed in one of the multifilamentary strands compos- 
ing the cable results in a quench propagation. In the second 
regime (cryostable regime) we observed the formation of two 
normal domains propagating in opposite directions in this 
particular strand, while the other strands remain in the super- 
conducting state. 

In this article we present a detailed study of the propa- 
gating normal domains in Rutherford-type superconducting 
cables based on the effective circuit model. We consider both 
numerically and analytically the threshold current I, above 
which a stable normal domain can propagate along the cable. 
We obtain the current Id as a function of the dimensionless 
parameters characterizing the cable and the cooling condi- 
tions. This article is organized as follows. In Sec. II we re- 
view the effective circuit model and the main equations de- 
scribing the temperature and the current-density distributions 
in a cable in the presence of a normal zone. In Sec. III we 
present the results of the numerical simulations and describe 
the analytical method to calculate the threshold current I,. A 
brief summary is given in Sec. IV. 

il. MAIN EQUATIONS 

In this section we review the effective circuit model. We 
derive the equations describing the dynamics of the tempera- 
ture and the current density distributions in a Rutherford- 
type superconducting cable in the presence of a normal zone. 
We consider the case when an initial normal seed nucleates 
in one of the multifilamentary strands composing the cable. 
To simulate the process of current redistribution between the 
strands, we model the cable by a rectangular conductor. The 
geometry of the model is shown in Fig. 2(a). We represent 
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FIG. 1. Principal scheme of transposition of a Rutherford-type cable in case 
of four multifilamentary strands. 

the strand consisting the initial normal seed by a flat super- 
conductor (referred to as Sl) of thickness dr , while other 
strands are represented by a flat superconductor (referred to 
as S2) of thickness d,(d,>d,). To account for the relatively 
high interstrand resistance in the cableI we consider the 
presence of a transition layer of the thickness d,(d$d, ,d,) 
between these flat superconductors. This rectangular conduc- 
tor carries a transport current I, and is kept in thermal contact 
with a heat reservoir of temperature TO. 

The dynamics of a normal zone in the described above 
conductor is determined by both the temperature and the 
current density distributions. A complete treatment of the 
problem requires the solution of the heat diffusion equation, 
which defines the dynamics of the temperature field and the 
set of Maxwell equations, which define the dynamics of the 
current-density distribution. These equations form a set of 
three-dimensional time-dependent, nonlinear equations, 
which are difficult for either analytical or numerical investi- 
gation. 

We simplify the problem by using the effective circuit 
model proposed by Kupferman and co-workers7 In the 
framework of this model the temperatures of both supercon- 
ductors Tt and T2, as well as the corresponding current den- 
sities jr and j?, may be regarded as almost uniform in the 
plane transverse to the sample axis (x axis). In this case we 
can consider their average values T,(x,t), T2(x,t), j,(x,t), 
and j,(x, t) which are functions only of the coordinate along 
the conductor, x, and time, t. 

The process of current redistribution is modeled by the 
effective electrical circuit sketched in Fig. 2(b). Each com- 
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FIG. 2. (a) Schematic structure of the rectangular conductor representing the 
cable; (b) effective electrical circuit describing the current distribution in the 
rectangular conductor. 

ponent of the rectangular conductor is described by a discrete 
chain of resistors. The upper chain of resistors represents the 
superconductor Sl, each resistor of resistance RI 
= pl(T1 ,jt)Axld,, where Ax is an arbitrary discretization 
length. Similarly the lower chain of resistors represents the 
superconductor S2, each resistor of resistance R2 
= p2(T2,jz)Axld2. Here p1 ,p2 are the resistivities of the 
superconductors S 1, S2, which depend on both the local tem- 
perature and the current density in the corresponding super- 
conductor. The values of p1 and p2 are equal to zero in the 
superconducting phase, and are finite above the normal tran- 
sition. Both chains are linked through a third kind of resistor 
Ri = Pidi /Ax representing the transition layer (pi is the resis- 
tivity of the transition layer). Finally, the inclusion of a char- 
acteristic time scale in the electric current diffusion process 
is accomplished by taking into account the inductances of 
both superconductors, Z?r = yLpOdlAx and .ZZ = yIluo 
d2Ax, where yI is a numerical factor of the order of one. 
Applying Kirchhow’s laws on this circuit we obtain the fol- 
lowing equation for the current-density distributions jr (x, t) 
and j,(x,t) in the superconductors Sl and S2: 

Next, we consider the heat diffusion equations for the 
temperature distributions T,(x,t) and T,(x,t) in the super- 
conductors Sl and S2, 

(T,-Tz)+Q1, 

G9 

&G-W+Qz. 

(3) 

where ki is the heat conductivity of the transition layer and 
h, is the heat transfer coefficient to the coolant with the 
temperature T,. We assume that the heat capacities Cr and 
C2 and the heat conductivities kl and k2 of the supercon- 
ductors Sl and S2 are equal, i.e., C, = C2 = C, and kl = k2 
= k, . As usually,’ we suppose that the values of C k k. 5 3 S? II 
and ho are constant. This assumption simplifies the numeri- 
cal simulations and does not change qualitatively the ob- 
tamed results. The functions Qt and Q2 are the effective 
rates of Joule heating per unit volume in the superconductors 
Sl and S2. They both have contributions coming from the 
superconductor when it is in the normal state and from the 
transition layer. As a result, Q, and Q2 are given by the 
following formulas: 

(4) 
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We consider the “step model” for the resistivities of the 
superconductors,’ i.e., we assume that pl(Tl,jl) and 
p$IT2, j2) are given by 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (6) 

where 77 is Heaviside step function [v(x) = 0 if x<O and 
r(x) = 1 if x>O], and j,(T) is the critical current density in 
the superconductor given by 

i 
iT- To) j,G”)=jc l-(Tc-To) (7) 

where T, is the critical temperature of the superconductor. 
We introduce, for convenience, the following dimension- 

less variables, the temperatures 0,) 0, and the current densi- 
ties i, ,iz in the superconductors Sl,, S2 

TI-To T,-To . Jl 4 .h z- O1-TT,.-To, @pTceTo, ZI=~T h=xj, (8) 

We define I,, the characteristic thermal length, and tth, the 
characteristic thermal relaxation time, 

4k.t p+ ~ di Cs 
h 9 Ql=--p 

where h z ho + ki ldi. We define l,,, , the characteristic length, 
and t,n, the corresponding characteristic time, for the current 
redistribution process, 

We introduce also the dimensionless parameters 

ddhiit ki 
a= 2h( T,- To) ’ W=a, 

where (Y is the ratio of characteristic rates of Joule heating 
and the heat flux to the coolant, and W characterizes the 
thermal coupling between the superconductors. 

Finally, we use dimensionless time t expressed in units 
of Q-a, and dimensionless coordinate x expressed in units of 
Ith. Equations (l)-(3) take then the form” 

de* 28, 
-“T-el+we24-2~i~~(il-1+elj++aX2 2 , 

i 1 

2 

-z 
dt cw 

’ (12) 

di2 .) d2i2 ’ * 
7x=X-T-- 477 z-i+e2 +ilr(i,-l+e,j. ( i (14) 

The dimensionless parameters r,r, and A are defined by 

(15) 

Let us now study the dependence of the normal zone 
propagation velocity u in the conductor on the entire current 
i. To calculate the function u(i) analytically we consider the 
process of current redistribution between the superconductor 
(S 1) and the stabilizer (S2j in the presence of a normal zone. 

The perpendicular current density in the transition layer We begin with a case of an unstablized superconductor, 
is small, i.e., j, 4 j, , j, if the electrical resistance of the con- where the current inside the normal zone is constant and 
ductor is dominated by the transition layer. In this case the equal to i. In this case the propagation velocity ZJ of the 
relation between the dimensionless~ current densities i, ,i, normal zone can be calculated exactly.’ The dependence u(i) 
can be written as is given by the formula 

where i = j/j, is the dimensionless total current density in the 
conductor. 

Ill. RESULTS AND DISCUSSION 

In order to study the behavior of a normal zone in 
Rutherford-type superconducting cable, we perform numeri- 
cal simulations of model Eqs. (ll)-(14). We observe how 
the temperature and the current-density distributions evolve 
in time, when the conductor is initially in the superconduct- 
ing state, except for a normal seed of length 21ti located in 
the superconductor S 1. As we already mentioned two differ- 
ent regimes of normal zone propagation exist. In the first 
regime the initial normal seed results in a quench propaga- 
tion. In the second regime the initial normal seed results in 
the formation of two stable normal domains propagating in 
the opposite directions along the superconductor Sl. In the 
second regime the superconductor S2 remains in the super- 
conducting state during the current and heat diffusion pro- 
cess, and functions as a stabilizer with zero electrical resis- 
tance. 

To study the dynamics of the propagating normal do- 
mains we consider the values of the dimensionless param- 
eters LY, r, X, W, and r for which the conductor is in the 
second regime. We observe that for a given set of the dimen- 
sionless parameters there is a dimensionless threshold cur- 
rent id, above which normal domains are formed. A se- 
quence of the temperature distributions tr, and 0, in the 
superconductors Sl and S2 for the values of the dimension- 
less parameters in the second regime and for i>i, is shown 
in Fig. 3 (note that due to the symmetry of temperature dis- 
tributions we show only the left-hand-side half of the 
sampIe). We observe that the initial normal seed starts to 
expand during the diffusion of current into the superconduc- 
tor S2. After it reaches a certain length, the center of the 
normal zone starts to cool down, while the outer sides con- 
tinue to expand (the heat generation there is maximal). As a 
result, superconductivity recovers at the center of the normal 
zone, and we find two separated normal domains traveling 
away in the opposite directions. The system tends to a steady 
state with two normal domains propagating along the super- 
conductor S 1 with a constant velocity, while superconductiv- 
ity recovers behind. Note that the superconductor S2 remains 
in the superconducting state (0,<1) during the formation of 
the propagating normal domains in the superconductor Sl. 
For the values of current below the threshold current id, i < id 
the initial normal seed shrinks and disappears, i.e., the super- 
conductivity recovers in a whole conductor. 
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FIG. 3. Temperature distributions 0, (solid Iine) and 0, (dashed line) in the 
superconductors Sl and S2 for the current i=O.55(i>i,). The parameters 
are a=2, W=O.O5, X=20, r=8, and ~100; (a) t=40, (b) t=80, (c) t= 140. 

u(i)=u* 
a,i2+2i-2 

(l-i)(Lu,,P+i--I)’ 
(17) 

where u&~/T~ is a thermal velocity, and a;, is a Stekly 
parameter for the unstabilized superconductor. This param- 
eter is determined by the ratio of the characteristic rate of 
Joule heating inside the normal zone and characteristic 
heat flux to the coolant and is equal to 
a;,=d,p&2h(T,-T,) (d, is a thickness of the unsta- 
blized superconductor). The velocity u (i) is positive, i.e., the 
normal zone expands along the superconductor, when the 
current i is higher than i, , i>i, . The current i is known as 
the minimum normal zone propagation currentf and is given 
by the formula 

(18) 

The velocity u(i) of the normal zone expansion can be 
considered as a linear function of the current for the current 
interval 0 <i - i,+ ip , where 

u(i)=uo(i-i,) (19) 
and u 0 is obtained by means of Eq. (17) and is given by the 
expression 

fx,,ip + 1 

u0e2utiJ(1-i,)(a,,i:-l+i,)~ 
cm 

Let us now consider the current density distribution in- 
side the normal domain in the superconductor Sl while the 
superconductor S2 functions as an electric current stabilizer 
(cryostable regime). In this case the current in the normal 

domain is not a constant anymore and redistributes into the 
stabilizer by diffusion. As the redistribution of current re- 
quires a finite time interval, the stabilizing mechanism suf- 
fers an effective delay time of the order of 7. During this 
time interval the superconductor S 1 behaves as a temporarily 
unstablized superconductor. The Stekly parameter cu,, asso- 
ciated with this temporarily unstabilized superconductor is 
equal to ffun =~cY, where (r is defined by F!q. (11). The length 
Id of this temporarily unstabilized superconductor, i.e., the 
length of the region at the front of the normal zone where the 
current redistributes into the stabilizer, can be obtained from 
Eq. (14). The value of Id is given by the formula 

2x2 
ld= 

-uv+l/~’ (21) 

where u is the propagation velocity of a normal domain. The 
parameters 7 and X are the characteristic time and length of 
the current redistribution process defined by Eq. (10). 

The normal zone propagation velocity is determined 
mainly by the temperature distribution in the vicinity of the 
front of the normal domain. We now define 2, , the length of 
this region, by the following reasoning. 

If the characteristic time 7 of the current redistribution 
process is sufficiently large, *l, then 1,%-l,, i.e., the cur- 
rent in the region of the length I, at the front of the domain 
is confined in the superconductor Sl and is equal to the 
entire current i. In this case the velocity u(i) of the domain 
propagation coincides with the normal zone propagation ve- 
locity for the unstabilized superconductor and is given by 
Eq. (17). The threshold current id coincides with the mini- 
mum propagation current i, and is given by IQ. (18). 

To estimate the propagation velocity of the normal do- 
main for a wider range of 7 we introduce an effective current 
i,, in the superconductor Sl. The effective current i,, is a 
function of the ratio l,/ld and is equal to the entire current i 
in the case of the unstabilized superconductor (1, Q Id). In the 
first (linear) approximation, we obtain the formula 

iefF=i (22) 

Substituting the effective current ieR instead of the entire 
current i in Eq. (17), and using Eq. (21) for Id we obtain the 
following implicit formula for the propagating velocity u of 
a normal domain: 

u=uo i-i, 
i 

hJ -is[--u7+ 1 - i (23) 

This equation has a solution for the velocity u if the current 
i is in the range id< i < 1, where the threshold current id is 
obtained from EXq. (23) and is given by the following implicit 
formula: 

u07(id-ip)‘=41uid, (24) 

where the values of i, and u. can be calculated by means of 
Eqs. (18) and (19). Given the value of the length I, one can 
use J5q. (24) to calculate the dependence of the threshold 
current id on 7. In general the length 1, depends on was well 
as on other dimensionless parameters (a; W, X, and r). We 
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PIG. 4. The threshold current i, as a function of r. The dots represent the 
results of numerical simulations. The parameters are ff=2, W=O.O5, X=20, 
and r=8. The solid line represents the threshold cnrrent i, calculated by 
means of the analytical expression Eq. (24)’ 

found however, that the dependence of I, on r becomes weak 
for large r (0 100) and the length 1, can be considered as a 
constant for this range of 7. Therefore, we calculate the value 
of 1, from numerical simulations for a given set of param- 
eters CY, W, X, r, and C-100. We use this value then to cal- 
culate the function id(T) from Eq. (24). 

We show in Fig. 4 the threshold current id as a function 
of 7 for the values of the dimensionless parameters a=2, 
W=O.O5, h=20, and Y= 8. We calculate the corresponding 
value of the length I, as Z,=3.5 (in the units of the thermal 
length Z&j. Points represent the results of the numerical simu- 
lations. The solid line represents the function id(r), calcu- 
lated by means of Eq. (24). For large values of r (0 loo), 
the implicit formula [Fq. (24)] gives the values of the thresh- 
old current id with a high degree of accuracy. In this range 
the maximum deviation from the numerical results is less 
than 2%. For small values of 7, deviation between the nu- 
merical and analytical results becomes sufficient mainly due 
to the fact that the linear approximation which was used to 
obtain Eq. (21) is insufficient for small values ‘of r. 

In Fig. 5 we show a comparison -of the velocity u(i) 
obtained by the analyticai solution [E’q. (23)] with the veloc- 
ity obtained by the numerical simulations. For large values of 
i, the roots of the implicit Eq. (23) give the velocity with a 
high degree of accuracy, deviating from the numericd results 
in less than .3%. 

IV. SUMMARY 

To summarize, we use the effective circuit mode; to 
study the formation and dynamics of normal domains in a 
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PIG. 5. The propagation velocity in units of utb vs current. The dots repre- 
sent the results obtained in numerical simulations, the solid Iines are the 
solutions of Eq. (23). The parameters are cr=2, W=O.O5, h=20, and r=8; 
(a) ~50, (b) r=300. 

Rutherford-type superconducting cable. Our simulations 
show the formation of stable normal domains propagating 
along the cable with a constant velocity. We find both 
numerically and analytically the threshold current density 
id above which the normal domains propagate in the cable. 
We calculate the propagation velocity of the normal 
domains. 
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