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We study the dynamics of normal domains in a multifilamentary composite superconductor with a 
large amount of stabilizer outside the multifilamentary area. We consider the case when there is a 
transition layer with high thermal and electrical resistance between the superconductor and the 
stabilizer. We show the existence of localized and propagating normal domains in these composites. 
We derive an implicit expression for the propagation velocity of a normal domain. 

I. INTRODUCTION 

The study of a normal zone of a finite size (normal do- 
mains) in current-carrying superconductors has been con- 
tinuously a subject of interest in the field of applied super- 
conductivity (see, for example, the review of Ref. 1 and 
references therein). It was showrrthat in homogeneous super- 
conductors normal domains are always unstable, i.e., if a 
normal domain nucleates, it will either expand or shrink.1 If 
inhomogeneities in the physical properties of the supercon- 
ductor are present, stable normal domains can exist in their 
vicinity. These localized normal domains were also found in 
composite superconductors, in the presence of a high resis- 
tance transition layer between the superconductor and the 
stabilizer.2 In this case normal domains are stable for a finite 
range of current. Namely, a normal domain shrinks when the 
current is less than a certain value I,, while for currents 
higher than I* @*>I,), the initial domain undergoes a 
periodic process of splitting. This splitting results in a string 
of normal domains formed along the composite.3 

Recently, it was found experimentally that stable normal 
domains can propagate along a multifilamentary composite 
superconductor with a large amount of stabilizer outside the 
multililamentary area.4 The existence of these propagating 
normal domains is a result of the high Joule power generated 
in the superconductor during the process of current redistri- 
bution between the superconductor and the stabilizer. A num- 
ber of theoretical studies were performed to investigate this 
effect. Huang and Eyssa5 performed numerical simulations 
for the diffusion of heat and the redistribution of current in 
the composite in the presence of a normal zone. Their simu- 
lations showed the formation of stable propagating normal 
domains. Dresne# proposed an analytical method to calcu- 
late the propagation velocity of a normal domain. He per- 
formed explicit calculations approximating the Joule power 
during the process of current redistribution by an exponen- 
tially decaying term. Kupferman et al.7 proposed an effective 
circuit model to study the nucleation and propagation of nor- 
mal domains in large composite superconductors. Using this 
model they performed numerical simulations which showed 
the existence of propagating domains in the cryostable re- 
gime. 

In this article we consider normal domains in a multifila- 
mentary composite superconductor with a large amount of 
stabilizer outside the multifilamentary zone. We consider a 
case when a transition layer with high thermal and electrical 

resistivity exists between the superconductor and the stabi- 
lizer. This transition layer considerably increases the charac- 
teristic space scale for current redistribution in the compos- 
ite. We use an effective circuit model to simulate the process 
of current redistribution in the composite in the presence of a 
normal zone. This model accounts for the final values of 
characteristic time and length scales of the current redistri- 
bution process. Using this model we present a detailed study 
of normal domains dynamics. We show the existence of both 
localized and propagating normal domains in a large mul- 
tifilamentary composite with a transition layer between the 
superconductor and the’ stabilizer. 

This article is organized as follows. In Sec. II we review 
the effective circuit modeh7 which is used to simulate the 
behavior of a normal zone in a large multifilamentary com- 
posite with a transition layer. We obtain the main equations 
describing the temperature and the current-density fields in 
the presence of a normal zone. in Sec. III we present the 
results of numerical simulations of normal zone origination 
and propagation for different values of the parameters char- 
acterizing the composite. We calculate the propagation ve- 
locity of a normal domain both numerically and analytically. 
Finally, we discuss the results. A brief summary is given in 
Sec. IV. 

II. MAIN EQUATIONS 

In this section we review the effective circuit model. We 
derive the equations describing dynamics of the temperature 
and the current-density distributions in a large composite su- 
perconductor in the presence of a normal zone. 

Let us consider for simplicity a rectangular conductor 
consisting of three ribbons, namely, a superconductor (hav- 
ing a thickness of d,), a transition layer (di) having high 
thermal and electrical resistance, and a normal metal (d,). 
We suppose that died, ,d, . The conductor carries a trans- 
port current I, and is kept in thermal contact with a heat 
reservoir of temperature Te. The geometry of the problem is 
shown in Fig. 1. The dynamics of normal zone in the con- 
ductor is determined by both the temperature and the current- 
density distributions. A complete treatment of the problem 
requires the solution of the heat diffusion equation, which 
defines the dynamics of the temperature field and the set of 
Maxwell equations, which define the dynamics of the 
current-density distribution. These equations form a set of 
three-dimensional, time-dependent, nonlinear equations, 
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FIG. 1. Schematic structure of the considered composite superconductor. 

which are difficult for.either analytical or numerical investi- 
gation. We simplify the problem by using the effective circuit 
model proposed by Kupferman et al7 In the framework of 
this model the temperature of-the normal metal T,, and of the 
superconductor T, , as well as the current density in the nor- 
mal metal j,Z and in the superconductor j, , may be regarded 
as almost uniform in the plane transverse to the sample axis. 
In this case we can consider their average values T,(x), 
T,,(x), j,(x), j,(x) which are functions only of the coordi- 
nate along the conductor. 

The process of current redistribution in the conductor .is 
modeled by the effective electrical circuit sketched in Fig. 2. 
In this model each component is described by a discrete 
chain of resistors. The upper chain of resistors represents the 
stabilizer, each resistor of resistance, R, = pnAxldn , where 
p,, is the resistivity of the stabilizer and Ax is an arbitrary 
discretization length. Similarly, the lower chain of resistors 
represents the superconductor, each resistor of resistance, 
R,= ps(Ts)Ax/d, . Here ps is the resistivity of the supercon- 
ductor, which depends on both the local temperature and the 
current density in the superconductor. It vanishes in the su- 
perconducting phase, and it is finite above the normal tran- 
sition. Both chains are linked through a chain of resistors 
R= yRp,,d,,/Ax, and Ri=pidilAX. Here R is the transverse 
resistance of the stabilizer (yR is a numerical factor of the 
order of one, depending on the geometry of the conductor) 
and Ri is a resistance of the transition layer (pi is the resis- 

FIG. 2. Effective electrical circuit describing the current distribution in the 
composite superconductor. 

tivity of transition layer, pi~>Pn ,p,). Finally, the inclusion of 
a characteristic time scale in the electric current diffusion 
process is accomplished by taking into account the induc- 
tance of the stabilizer 3’= yl,uuod,Ax. Here y1 is another nu- 
merical factor. Applying Kirchhow’s laws on this circuit we 
obtain the following equation for the current-density distri- 
butions in the superconductor js(x,t), and in the normal 
metal jn(x,t): .: 

2. 

S% =(yRd,p,+dipi) $-F j,+F j,. (1) 
II n 

One-dimensional heat equations for the averaged tem- 
peratures Ts(x, t), TJx, t) are 

.I 

--$.T.-Tsj+Q.. (2) 
r n 

--$ CT,-~,)+a,. (3) 
i s 

We use here the subscripts s, i, and n to denote the physical 
characteristics of the superconductor, transition layer, and 
normal metal, C is the heat capacity, and k is the heat con- 
ductivity, Wu is the heat-transfer coefficient to the coolant, 
jsI/d, is the maximum current density in the superconduc- 
tor. The function Q,( T,) is the effective rate of Joule heating 
in the superconductor per unit volume. It has contributions 
coming from the superconductor when it is in the normal 
state and from the transition layer. The function Q,(T,) is 
the effective rate of Joule heating in the stabilizer per unit 
volume. It has contributions coming from the stabilizer and 
from the transition layer. As a result, QJT,) and Q,(T,) are 
given by the following formulas: 

(4) 

* -. 
d”d. aj ’ 

Q,(r,)=‘~sjf+~ pi 2. 2 , -~ 
(. i 

(5) 

If the electrical resistance of the composite is dominated 
by the transition layer, then the perpendicular current density 
in the transition layer is small, i.e., j,+j, , j, . In this case 
the relation between j, ,j, can be written as 

4, 
2 j,+j,=j. 

5 

For convenience, we use the following dimensionless 
variables, the temperature in the superconductor 0,) the tem- 
perature in the stabilizer S,, , and the current density in the 
stabilizer i, : 

TILT0 Tn-To d,j, -- E- es=T,-To Y e~-T,-To.~ i”=djc’ (7) 
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where T, is the critical temperature of the superconductor. where time is measured in units of rti and length in units of 
We define L, the characteristic thermal length and qh, the La. The dimensionless parameters i, 7,) r, , L, , Li , and L, 
characteristic thermal relaxation time for the superconductor are defined by 

d&s p$!g ) rthE- 
W’ 

where W= W, + kijdi . We define I, the characteristic ther- 
mal length and t, the characteristic thermal relaxation time 
for the stabilizer 

i+$!! , Wn tar- 
w * 

We define I, the characteristic length and t, the corre- 
sponding characteristic time for the current redistribution 

S’d, 
If-yRdf, t,=------ . 

PTl 

We consider here the “step model” for the resistivity of 
the superconductor,’ assuming that 

(11) 
where 17 is the Heaviside step function (g=O if x<O and 
~‘1 if x>O), and j,(r) is the critical current density in the 
superconductor given by 

(12) 

Finally, we introduce four dimensionless parameters 

&,j: 

“=2d,W(T,-To) ’ 

k I.&d d. h=d,W, r Pn n,, 
(13) 

where 8 is the ratio of the resistances of the superconductor 
and the stabilizer per unit length, CY is the ratio of the char- 
acteristic rates of Joule heating and the heat flux to the cool- 
ant, h characterizes the thermal coupling between the super- 
conductor and the stabilizer, li is the transition length of 
current redistribution between the superconductor and nor- 
mal metal. Finally, the dimensionless Eqs. (i)-(1) take the 
form 

ae, a2e, -= 
at z-0~+he,+2a~(i-iJz~(i-i,fB,-I) 

(14) 

aen 2 a262 
rn dt =Ltl -jjg- -0,+h0,+2ai~ 

115) 

di, a?, 
7, -g =(Lf+Li) 7gp-i,+[(i-i,) 
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(16) 

j i=_, tn L 

Jc 
rn=--- ) 

rth 
r,=-) 

rth 

To complete the presentation of the model, we identify 
the characteristic time and length scales of the system. These 
scales are defined by Eq. (16). If the system is in its super- 
conducting state (v=O), current diffuses from the stabilizer 
to the superconductor with the characteristic length 
xqL$+Ly and the relaxation time r, . If the system is in 
its normal state (v=l), current redistributes into the stabi- 
lizer with a characteristic length X/(1+@ and a relaxation 
time rm/(l+$). Using the experimental data from Ref. 1 we 
estimated the values of Li and L, as LiElO-100 and 
L,=O.l-1. Thus the characteristic length scale of current 
redistribution is determined by the properties of the transi- 
tion layer and is relatively large, and the characteristic time 
scale of current redistribution r, is determined by properties 
of the stabilizer. Using the experimental data’ we estimate 
that rn=l, L,=lO, a=2, 5=llOO, h=O.l. 

III. RESULTS 

A. Numerical simulations 

We study the dynamics of a normal zone in a multifila- 
mentary composite superconductor with a large amount of 
stabilizer outside the multifilamentary area. We consider the 
case when a transition layer of high thermal and electrical 
resistance exists between the superconductor and the stabi- 
lizer. In order to study the normal zone dynamics in these 
systems we perform numerical simulations of Eqs. (14)- 
(16). We observe how the temperature and current-density 
distributions evolve in time. The composite is initially in the 
superconducting state, except a nucleus of the length Lth. 
Inside this nucleus the temperature equals to the critical 
value &=l. 

The results of the numerical simulations can be de- 
scribed using the i, rm diagram shown in Fig. 3. This diagram 
consists of five regions, labeled with numbers from 1 to 5. 
Each region corresponds to a different type of evolution in 
time of the initial normal seed. 

Region 1 in the i,r, diagram corresponds to the cry- 
ostable regime. In this case the initial normal nucleus decays 
after a time interval of the order of rth, and superconductiv- 
ity recovers in the whole sample. 

In region 2 in the i,rm diagram a stationary resistive 
domain exists2 The formation process of this domain is 
shown in Fig. 4. (Due to the symmetry of temperature dis- 
tributions we show only the left half of a sample in this and 
following pictures.) The initial normal nucleus [see Fig. 4(a)] 
reaches the steady state after a time interval of the order of 
7th [see Fig. 4(c)]. The final temperature distribution depends 
on the dimensionless parameters and is independent on the 
temperature of the initial nucleus. 
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FIG. 3. i,r, diagram representing the results of numerical simulations. 

In region 3 in the i,r, diagram a pair of stationary re- 
sistive domains exists. The formation process of this pair is 
shown in Fig. 5. The initial normal nucleus starts to expand 
during the diffusion of current out into the stabilizer. When 
the normal domain reaches a certain length, the center of the 
normal zone starts to cool down, while its outer parts con- 
tinue to expand [Fig. 5(a)]. As a result, superconductivity 
recovers in the center of the normal zone and two normal 
domains traveling in opposite directions appear [Fig. 5(b)]. 
When this splitting process is completed, the domains slow 
down and finally stop at a certain distance from each other 
[see Figs. 5(c) and 5(d)]. The distance between these do- 
mains increases when the values of the parameters i and r, 
increase. 

I , I 

oj-J-Jbs~ 
c~- 100 150 200 100 150 200 

x X 

FIG. 5. The dynamics of temperature distribution in the superconductor, 0,) 
in the case of a pair of resistive domains. The parameters are X=20, -r,,==3, 
i=O.5. 

In region 4 in the i,rm diagram a string of resistive nor- 
mal domains exists.3 The formation process of this string is 
shown in Fig. 6. Its first stage is similar to the one described 
in the previous paragraph. The initial nucleus expands and its 
center cools down. Two domains appear, recede, and grow in 
size. When the distance between them is of the order of Li 
each of them splits again into two domains [Fig. 6(a)]. Fur- 
ther propagation of the normal zone proceeds as follows. The 
outer resistive domains continue to move away from the I 
middle of the sample. Their length increases and each of 

FIG. 4. The dynamics of temperature distribution in the superconductor, 9,, 
in the case of a resistive domain. The parameters are X=20, ‘qx=3, i=O.3. 

FIG. 6. The dynamics of temperature distribution in the superconductor, 0,, 
in the case of a string of resistive domains. The parameters are X=20, ~~‘2. 
i=O.6. 
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FIG. 7. The dynamics of temperature distribution in the superconductor, 0,) 
in the case of propagating normal domains. The parameters are X=20, 
r,=S, i=O.6. 

them splits in two at a distance of the order of LZ from the 
place of the previous splitting [Fig. 6(c)]. Finally, a steady 
periodic string of resistive-domains appears. 

In region 5 in the i;7, diagram a steady state of propa- 
gating normal domains exists. The initial nucleus splits in 
two normal domains propagating with constant velocity in 
opposite directions, while superconductivity recovers behind 
them (see Fig. 7). The temperature field at the front of the 
propagating domain reaches a steady shape after a time in- 
terval of the order of Q . Note that the tail of the temperature 
profile reaches its steady state only after a relatively long 
time interval, which is of the order of the current distribution 
relaxation time 7,. The velocity of propagation attains its 
final value much faster than the time required to obtain the 
steady profile. 

B. Normal domains propagation velocity 

Let us consider an analytical solution of Eqs. (14)-(16) 
in the regime of propagating normal domains (region 5 in the 
i,r,,, diagram). In a reference frame moving along the con- 
ductor with an arbitrary velocity u to be determined Eqs. 
(14)-(16) take the form 

a2e, 
z -U 2 +es+hen+2~~(i-i,)2~(i-in+ 8,--l) 

. 2 

+ni2 2 ( 1% =o, (14) 

~,2 2  -T~V 2  -e,+he,+2d~+auh” 2 2=0, 
i 1  

(15) 

d2i, 
x2-plnmf&. z,+c(i-i,)v(i-i,+e,--l)=O. 

-W 
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We define x=0 to be the point where the normal transition 
occurs and x=m to be the point where superconductivity 
recovers. One can solve Eq. (16) in three regions, namely, 
x<O(~=O), OCxCm(~=l), and m<x(v=O). In each of 
these regions Eq. (16) becomes a linear equation with con- 
stant coefficients. In order to simplify the problem we use the 
fact that the recovery of superconductivity occurs far behind 
the propagating front and hence does not affect significantly 
the value of the propagation velocity.7 Thus, we can ignore 
the recovery of superconductivity and solve Eq. (16) in two 
regions. Namely, in the superconducting region, x<O(v=O), 
and in the normal region, OCU( v= 1). The analytical solution 
of Eq. (16) in these two regions is given by 

i,(x) = 
i 
A exp(k+x), at X-CO 
B exp(-k-x)+i&(t+l), at x>O, (17) 

where 

k 
+ 

=UT2+ &JT2)2+4hz 
2h2 > 

k-=-uT2+ jbr2)2+4i2(l+t) 
2x2 

In the case of a high thermal resistance of the transition 
layer the coupling constant h is small, i.e., hgl. It allows 
one to neglect the term h 0, in Eq. (14). The explicit expres- 
sion for i,(x) can be then substituted into Eq. (14) yielding a 
linear equation for e,(x). We  solve this equation in two re- 
gions, namely, x<O and x>O. The matching conditions and 
the requirement of self-consistency at the transition point 
i-i,(O) = 1 - e,(O) yield an implicit equation for ‘the veloc- 
ity v: 

(l-i)JPTT=- 
(rJ+ @Tz-4k+) 

2(k+ +k-)2 

k”_k2, 
X(4k:-2k,v-l) aX2i2- 

k-Q=. 
(k-fk,) ‘. 

118) 
Figure 8 shows the comparison of the velocity calculated 

by the numerical simulations with the velocity obtained from 
I$ (18). We  found that the velocity calculated by Eq. (18) is 
very close to the exact value, deviating from it less 
than 5%. 

C. Discussion 

Our results show the existence of both localized and 
propagating normal domains in a multifilamentary composite 
superconductor with a large amount of stabilizer outside the 
multifilamentary area. The formation of localized normal do- 
mains is a result of the relatively large characteristic length 
of current redistribution in the composite.2V3 The value of this 
characteristic length is determined by the transition layer ex- 
isting between the superconductor and the stabilizer. The 
stable propagating normal domains arise as a result of the 
relatively long process of current redistribution in the 
composite.7 The characteristic time of current redistribution 
is determined by the properties of the stabilizer. 
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FIG. 8. The velocity of a propagating normal domain in units of uti=L,/rti 
as a function of transport current. The parameters are CC+?, t=llll, (a) 
r,,=5 and X=20, (b) ~,=10 and X=20, (c) ~~‘5 and X=40. 

Let us now discuss the mechanism of a normal domain 
propagation in a large composite superconductor with a high 
resistance transition layer. Imagine that an initial normal seed 
originates in the superconductor. As a result the current starts 
to redistribute between the superconductor and the stabilizer. 
This process has a characteristic time scale r-/t and a char- 
acteristic length scale x/t. After the redistribution of the cur- 
rent is complete, the conductor cools down during a certain 
time interval which is of the order of the thermal relaxation 
time Q . When the temperature becomes less than the critical 
temperature, the superconducting state starts to recover and 
the current diffuses back to the superconductor. This process 
takes a time interval which is of the order of r,,, and takes 
place on the characteristic length X. 

tion of Eq. (16) for x>O (v=l), we find that the character- 
istic length of this region 1t is given by -. 

2h2 
II= 

-7Jrm+ (u7,)2+4&2 * 
(19) 

The second part (region 2 in Fig. 9) is the region where 
the temperature of the superconductor decreases towards the 
transition point. The current density, i,(x), in this interval is 
a slowly varying function of x and the current flows mostly 
through the stabilizer. The length of this region, I,, is deter- 
mined by the product of the propagation velocity of the nor- 
mal domain and the characteristic thermal relaxation time 

As the redistribution of current between the supercon- 
ductor and the stabilizer requires a finite duration, the stabi- 
lizing mechanism suffers an effective delay time Q-,/& Dur- 
ing this time the current is contined in the superconductor 
and Joule power is high as in the case of an unstabilized 
superconductor. The effective Stekly parameter determining 
the characteristic rate of Joule heating in this temporarily 
unstabilized superconductor is given by (Y,~=(Y&~ Note that 
in most cases of practical interest CY&+~. The presence of a 
temporarily unstabilized superconductor in the front of a nor- 
mal zone is the reason for the propagating domain’s exist- 
ence. 

12=UTth. (20) 
Behind the normal zone there is a superconducting re- 

gion where current diffuses back to the superconductor (re- 
gion 3 in Fig. 9). The characteristic length of this region, ls, 
can be obtained from the analytical solution of the Eq. (16) 
for x>O v=O and is given by 

2x2 
I,= 

-lJT2+J* 
(21) 

Using the implicit expression (18) and Eqs. (19)-(21) 
we calculate I,, I,, and I,. The results of these calculations 
are in a reasonable agreement with the results of numerical 
simulations. 

Let us now consider the temperature, e,(x), and current 
density, i,(x), distributions in a propagating normal domain. 
These dependences are shown in Fig. 9. It is seen that the 
temperature and the current density distributions in a normal 
domain have two characteristic parts. The first part (region 1 
in Fig. 9) is a region behind the transition point (es> 1 - i) 
where the current redistributes into the stabilizer. This is a 
region of a temporarily unstabilized superconductor where 
the heat generation power is high. Using the analytical solu- 

Iv. SUMMARY 

To summarize, we studied the dynamics of normal do- 
mains in a multif?lamentary composite superconductors. We 
considered the case where a transition layer exists between 
the superconductor and the stabilizer. The effective circuit 
model was used to account for a relatively large time and for 
length scales of this system. We found the existence of both 
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Fl[G. 9. Temperature distribution in the superconductor, 0,(x), (solid line) 
and current-density distribution in the stabilizer, i,(n), (dashed line) in a 
propagating normal domain. 
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localized and propagating normal domains. In the regime of 
propagating domains we found an analytical expression for 
the velocity of propagation. 
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