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Abstract-Quench propagation velocity in conductors 
having a large amount of stabilizer outside the multifila- 
mentary area is considered. It is shown that the current 
redistribution process between the multifilamentary area 
and the stabilizer can strongly effect the quench propa- 
gation. A criterion is derived determining the conditions 
under which the current redistribution process becomes sig- 
nificant, and a model of effective stabilizer area is suggested 
to describe its influence on the quench propagation veloc- 
ity. As an illustration, the model is applied to calculate the 
adiabatic quench propagation velocity for a conductor hav- 
ing a multiply connected stabilizer, consisting of an inner 
core and an outer sheath. 

I. INTRODUCTION 

The development of conductors with aluminium super- 
stabilizer for applications, such as detector magnets for 
high energy physics [l], energy storage devices [2-41, and 
others, has led to new problems. One of them is the effect 
of current redistribution process between the superconduc- 
tor and stabilizer on the quench propagation [5, 61. 

The quench propagation velocity is determined by the 
Joule heating in the vicinity of the transition front. Dur- 
ing the transition from the superconducting to the resistive 
state, the current is redistributed from the superconductor 
to the stabilizer. This redistribution occurs in two phases. 
First, the current is expelled from the superconducting fil- 
aments to the copper in the multifilamentary area. Second, 
the current diffuses into the stabilizer outside the multifila- 
mentary area. If the interfilament spacing is small, the first 
phase is very fast. On the other hand, if most of the sta- 
bilizer is located outside of the multifilamentary area, the 
second phase can be relatively long. In the vicinity of the 
transition front, where the quench-driving heat release oc- 
curs, the current may thus remain confined in a small frac- 
tion of stabilizer around the multifilamentary area. This 
results in a relatively high local value of Joule heating, 
leading to high quench propagation velocity [6]. 

In this paper, we shall consider the case where the 
quench propagation is effected by the current redistribu- 
tion process. We shall introduce the characteristic velocity 

*Operated by Universities Research Association, Inc., for the U.S. 
Department of Energy, under contract No. DE-AC35-89ER40486 

Manuscript received August 24, 1992 

at which this process becomes significant. We shall intro- 
duce a model of effective stabilizer area for fast quench 
propagation. We apply this model to calculate the adi- 
abatic quench velocity for a conductor having a multiply 
connected stabilizer, consisting of an inner core and an 
outer sheath, as depicted in Fig. 1 [7]. 
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Figure 1: The conductor cross-section. 

11. HIGHLY STABILIZED CONDUCTORS 

Most of the papers on quench propagation velocity con- 
sider the current redistribution process as instantaneous 
(see the review in reference [SI). To discuss the applica- 
bility of this assumption, let us estimate the characteristic 
times of the phenomena involved. The current redistribu- 
tion time, td, may be estimated as 

(1) 
pod2 

td=- ,  
Pn 

where pn is the resistivity, and d is the effective thickness 
of the stabilizer. In case of the conductor shown in Fig. 1 
there are two effective thicknesses: di for the inner core 
and do for the outer sheath, given by 

where A: and A:, and PA and P," are the cross-sectional 
areas, and contact perimeters of the stabilizer (see Fig. 1). 
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The characteristic time associated with the quench prop- 
agation, t , ,  is given by 

L 
t p  = U1 (3) 

where v is the quench propagation velocity, and L is the 
thickness of the zone where the quench-driving heat release 
occurs. In other words, L is the thickness of the region, in 
the vicinity of the transition front from the resistive to the 
superconducting state, where the Joule heating determin- 
ing the propagation velocity takes place. 

In case of instantaneous current redistribution, the 
power Q of the Joule heating in the conductor is given 
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Figure 2: The dependence of the parameter a on t 
0, 

T - Tci 
Q = p f  { I"T,-To, Tci < T < Tc; (4) mensionless current i. 

I .  
where T = t d / t p  is less than one. Using Eqs. ( 

Eq. (9), it is convenient torewrite 7 as I 
IC 

Tcj = Tc - i (Tc - To), i = - . 

Here TO is the coolant temperature, Tc is the critical tem- 
perature a t  the given field and TO, I is the transport cur- 
rent, IC is the critical current at the given field and TO, p is where we have 
the longitudinal electrical resistivity of the conductor, and 
A is the conductor cross-sectional area. An expression of 
p is given by 

For the conductor cons 
(6) teristic velocities: one 

the outher sheath, U:. 

where An is the total cross-sectional area of stabilizer, and [7] (assuming an interfilam 
A, and pa are the cross-sectional area and the resistivity of current density jc(5T, 4.2 
the multifilamentary area. In this paper, we shall represent stant external magnetic fi 
the power of the Joule heating in the conductor as a step and U," M 25m/s. 
function of temperature 

redistribution. The quen 
mined by the Joule heati Qr=px 1, Tt <T.  front. The thickness o f t  
the quench-driving heat 

Apnps 
Anps + Asp, ' P =  

Let us now consider the cas 

(7) 

The transition temperature, Tt, is determined so that the 
propagation velocity derived using Eq. (7) is equal to that 
derived using Eq. (4). It can be shown [9] that 

I 2  {O, < Tt; 

Tt = Tcj + a(i) (Tc - Tci), 

where a is a dimensionless parameter that only depends 
on i. This dependence is presented in Fig. 2. 

In most cases of practical interest, the cooling conditions 
are weak. Then, L is determined by the thermal diffusion 
along the conductor, and can be estimated as [6] 

It follows 

where 

IC 

is the difference in enthalpy 
between TO and Tt. For adi where IE and C are the thermal conductivity and the heat value of is given by Eq. (9) 

capacity per unit volume averaged over the conductor of q ,  and substituting the e cross-section, and taken at the given field and Tt. 
Thus, the current redistribution process can be consid- 

ered as instantaneous, only if the dimensionless parameter 

L = -  
C V '  
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In this model, the maximum of the quench propagation 
velocity, v,, is obtained for I = I,. Let us estimate v, for 
the conductor considered above. Using the data from [7] 
and Eq. (15), one gets: v, x 50mls.  

For adiabatic cooling conditions, a criterion defining 
highly stabilized conductors may be derived by comparing 
w, and v,. Let us define dimensionless parameter p 

p =  (z)2. 
Then, a highly stabilized conductor is a conductor with p 
larger than one. Combining Eqs. (11) and (15) leads to the 
following criterion 

where AH, is calculated by means of Eq. (14) at I = I,. 
For the conductor considered above: pi x .91 for the inner 
core, and Po x 3.7 for the outer sheath. It thus appears 
that actual conductors can exibit quench propagation ve- 
locities larger than v,. 

111. EFFECTIVE STABILIZER AREA MODEL 

Let us now consider the case where the current redis- 
tribution has to be taken into account while calculating 
the quench propagation velocity, i .e . ,  v >> v,. Then, in 
the vicinity of the transition front, the current remains 
confine to a certain fraction of stabilizer around the mul- 
tifilamentary area, leading to non-uniform quench-driving 
heat release. The cross-sectional area occupied by the cur- 
rent is determined by the parameter, T. The larger T, i e . ,  
the larger the ratio of v to w,, the smaller the fraction of 
stabilizer where the current has diffused. 

In most cases of practical interest, the cooling is weak 
and, at the same time, the ratio of the transverse thermal 
diffusivity to the magnetic flux diffusivity is high. It results 
that the temperature distribution over the conductor cross- 
sectional area is uniform, even if the heat release is non- 
uniform. 

The main difference between highly stabilized and con- 
ventional conductors is thus the non-uniformity of the 
quench-driving heat release. To find the exact expression of 
the Joule heating, we should solve the system of Maxwell's 
and heat diffusion equations. For most cases of practical 
interest, it cannot be done analytically, and is a compli- 
cated problem for numerical analysis. 

In this paper, we shall calculate the Joule heating consid- 
ering that the current is uniformly redistributed between 
the multifilamentary area and a certain area of the stabi- 
lizer, which we shall introduce as an effective area, A,R. As 
the fraction of the stabilizer where the current has diffused 
depends on the quench propagation velocity, the effective 
area of the stabilizer is determined by the ratio v/v,. In 
case of the conductor shown in Fig. 1 we have 

where A:, and A& are the effective stabilizer areas, and 
vt and v," are the critical velocities for the inner core and 
outer sheath. 

To find an expressions for f i  and f , ,  let us first discuss 
the asymptotic behavior of f j  and f , .  When the ratios 
v/v: and w/v% are small, the current redistribution process 
is almost instantaneous, and the current occupies the whole 
stabilizer cross-sectional area, i . e . ,  Atff  tends towards A:, 
and A& tends towards A i .  We thus have 

f o ( ; )  C = 1, 

On the other hand, when the ratios v/vz and v/v," are large, 
the current only diffuses into thin layers of stabilizer, li and 
I,, and the current redistribution process can be treated as 
in the case of a semi-infinite slab of stabilizer. Then, li and 
I, are determined by the magnetic flux diffusion length for 
a characteristic time of the order oft, 

Thus, the effective areas, i .e . ,  the cross-sectional areas of 
stabilizer occupied by the current are 

and, it comes 

-21 O 

A& = lop: = Af: 2, 
V 

v v," f o ( F )  C = 7 1  

Having determined the asymptotic dependencies for small 
and large values of v/vt and v / v s ,  we shall now define f i  

and f ,  for the full range of velocities. To match smoothly 
Eqs. (20 a) and (23 a), and Eqs. (20 b) and (23 b) we suggest 
the following functions 
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m 

d 1.8 
m 8 1.6 
d - 1.4 

al where lo(z) and I l ( z )  are modified Bessel functions of or- 
der 0 , l .  Note, that the Eq. (24a) is a generalization of 

4 

.d 0 

IV. ADIABATIC QUENCH PROPAGATION .d 

Eq. (24b) for the case of cylindrical geometry. 

In this section, we shall apply the above model of ef- 
fective stabilizer area to the computation of the adiabatic 
quench propagation velocity. To do it, we have to  calculate 
the quench-driving heat release. In the case of adiabatic 
cooling conditions, it is given by Eq. (12). Then, substi- 
tuting An by A,R in Eq. (12), it comes 

where we have replaced L by Eq. (9). An equation deter- 
mining v can be derived by equating Eqs. (25) and (13), 
and replacing A,ff by Eq. (18). It comes 

where 

60 1 
n - Eq. (26) 

- - - Eq. (15) 

- -  
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Figure 4: The dependence of the ratio v(Ic)/vm(lc) on z 

assumes an instantaneous current redistribution. 
be seen in Fig. 3, the difference in the results ca 
to 1.6 times. Note that Eq. (26) shows that the vel 
depends on the distribution of stabilizer between 
core and the outher sheath, i .e . ,  v is a function 
2: = 1 - z6. This dependence is illustrated in F 
I = IC). It can be seen that v goes through a minimu 
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