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We consider the initiating energy for traveling normal domains in large composite 
superconductors. We perform numerical simulations of normal zone initiation using the effective 
circuit model. The initiating energy is obtained as a function of transport current and four 
dimensionless parameters characterizing the composite and cooling conditions. We suggest an 
analytical expression determining the initiating energy for the traveling normal domains in the 
region of parameters of practical interest. 

I. INTRODUCTION 

Large composite superconductors have been recently 
tested for use in superconducting magnetic energy storage 
(SMES) systems.’ These conductors are composed of su- 
perconducting multifilament strands embedded in a large 
stabilizer, made from a normal metal, with high thermal 
and electrical conductivity. Due to the large size and rel- 
atively low electrical resistivity of the stabilizer, if a normal 
zone nucleates in the superconductor, the current in this 
region redistributes into the stabilizer. This process is fol- 
lowed by a significant decrease of the joule power and the 
recovery of superconductivity. Despite the above stabiliz- 
ing mechanism, it was found experimentally that normal 
domains of finite size can propagate along the conductor 
for transport currents larger than a certain threshold cur- 
rent Id.i 

The origin of such traveling normal domains can be 
explained qualitatively by the following arguments. If a 
part of the superconductor undergoes a normal transition, 
most of the current stays confined in the superconductor 
during the relatively long process of current redistribution 
into the stabilizer. The joule power is then much higher 
than after the current is redistributed across the conductor. 
This heat release results in a “hot” region at the front of 
the normal zone, and causes the expansion of the normal 
domain. After the current is redistributed in the stabilizer, 
the superconductor cools down towards the stable state 
and superconductivity recovers (in the cryostable regime). 

The dynamics of a traveling normal domain was inves- 
tigated in a number of theoretical studies. Huang and Ey- 
ssa2*3 performed numerical simulations for the diffusion of 
heat and the redistribution of current in the conductor in 
the presence of a normal zone. Their simulations showed 
the formation of a stable traveling normal domain. They 
compared the calculated velocity of this domain propaga- 
tion with the experimental data,’ obtaining reasonable 
agreement. Dresner4 proposed an analytical method to cal- 
culate the propagation velocity of a traveling normal do- 
main, assuming the time dependence of the joule power. 
He performed explicit calculations approximating by an 
exponential term the decay of the joule power during the 
process of current redistribution. In Refs. 5 and 6, we in- 
vestigated both numerically and analytically the nucleation 
and propagation of a traveling normal domain in large 

composite superconductors using an effective circuit 
model. We proposed explicit equations for the velocity of 
the domain and for the threshold current Ia 

We consider now the influence of a transient external 
perturbation of a total energy, Q,, on a large composite 
superconductor in the cryostable regime. We suppose that 
this perturbation creates a normal nucleus. In case ICI,, 
the superconducting state is stable with respect to such 
perturbations. For I > Id, the superconducting state is 
metastable. This means that it is stable against perturba- 
tions with sufficiently small Q,, so that the normal nucleus 
disapears after the perturbation is over. If the value of Q, 
exceeds a certain critical value Qi, (the initiating energy), 
the final state is a state with traveling normal domains. In 
general, Qi” depends not only on the parameters of the 
superconductor and the coolant, but also on the time de- 
pendence of the perturbation and on its spatial distribu- 
tion. An important particular case is when the length of the 
pulse is much shorter than the characteristic thermal 
length of the system and the duration of the pulse is much 
shorter than the thermal relaxation time of the system. In 
this case, the initiating energy depends only on the param- 
eters of the composite and cooling conditions. A large 
number of experimental and theoretical (usually numeri- 
cal) studies concerning normal zone initiation by localized 
pulses were carried out (see, e.g., Refs. 7-9). However, 
these studies considered the noncryostable regime, and cal- 
culated the minimum energy initiating the thermal quench 
of superconductivity Q,. In particular, simple analytical 
formulae for the quench energy were obtained by Pasztor 
and Schmidt,” Dresner,” and Gurevich et al. l2 

In this article we consider the initiating energy for 
large composite superconductors. We treat the cryostable 
regime in case, when it is unstable against the perturba- 
tions resulting in traveling normal domains. The article is 
organized as follows: In Sec. II we review the effective 
circuit mode1,5>6 which is used for the numerical simula- 
tions. We modify the equations such that they include an 
additional term representing external heating. In Sec. III 
we present the numerical results and show the dependence 
of Qi, on the transport current, the parameters of the con- 
ductor, and the cooling conditions. We suggest an explicit 
formula for Qi,, which we compare to numerical results. A 
brief summary is given in Sec. IV. 
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FIG. 1. The composite considered. 

II. THE MAIN EQUATIONS 

In this section, we review the effective circuit mode1.5T6 
This model describes the dynamics of the temperature and 
current density distributions in a composite superconduc- 
tor in the presence of a normal zone. 

Let us consider a rectangular conductor consisting of 
two ribbons of equal width, a superconductor of thickness, 
G?, and a stabilizer (normal metal) of thickness, d,, (Fig. 
1). The conductor carries transport current I, and is kept 
in thermal contact with a heat reservoir of temperature Tc. 

In order to obtain the initiating energy Q,,, the dynam- 
ics of the temperature and the current density distributions 
in the composite has to be considered. A complete treat- 
ment of this problem requires the solution of the heat dif- 
fusion equation for the temperature field coupled to the set 
of Maxwell equations for the current density distribution. 
These equations form a set of three-dimensional time de- 
pendent nonlinear equations, which is difficult for either 
analytical or numerical investigation. A one-dimensional 
model describing this process was proposed in.5J6 This 
model takes into account the main physical features of the 
problem, and can be described by the electrical circuit 
sketched in Fig. 2. The upper chain of resistors represents 
the stabilizer, each resistor of resistance, R,=p,hx/d,,, 
where p,, is the resistivity of the stabilizer and AX is an 
arbitrary descretization length. Similarly, the lower chain 
of resistors represents the superconductor and‘each resistor 
of resistance, R,= p&/d,. Here, ps is the resistivity of the 
superconductor, which vanishes in the superconducting 
phase, and is finite in the normal phase. Both chains are 
linked through a chain of resistors R = yRp,,d,,/Ax, where 
yR is a numerical factor of the order of one, depending on 
the geometry of the conductor. Finally, the inclusion of a 

R, R5 

FIG. 2. Effective electrical circuit describing current distribution in the 
conductor. 

characteristic time scale in the electric current diffusion 
process is accomplished by taking into account the induc- 
tance of the stabilizer (the inductance of the superconduc- 
tor is neglected) 9 = ypcd,,Ax. Here, yI is another numer- 
ical factor. This model yields a set of two one-dimensional 
diffusion equations for the current density distribution in 
the superconductor j,(x,t) and for the temperature field 
T(a) 

Yd, aj, i-1 2 a2js 
,,-y&s-js 

Pll 
(2.1) 

and 

-W(T)+Q(T)+Q&,t), (2.2) 

where c is the heat capacity and k is the heat conductivity 
both taken to be constant. The parameter j=I/d, is the 
current density in the superconductor far from a normal 
domain, where all the current flows through the supercon- 
ductor. The function W(T) is the rate of heat transfer to 
the coolant per unit volume, which can be written in the 
form W(T)=h(T)(T-T&/d, where dsd,+d,. The 
function Q(T) is the rate of joule heating per unit volume 
having three contributions: From the joule heating in the 
superconductor when it is in the normal state, from the 
current in the stabilizer, and from the perpendicular cur- 
rent. As a result (see, also, Fig. 2), Q(T) is given by 

Q( T> =f 
&Pll 

dsps.t+T Li-jJ2+y&,dfp, . 
n 

(2.3) 
The function Q,(x,t) is the power of the external heating 
per unit volume. The total energy of the pulse is given by 

Qp= A j-1 dx JTI dt Q&J), (2.4) 

where A is the cross-sectional area of the composite. For 
convenience, we use the following dimensionless variables; 
the temperature 

T-T, 
@EE- 

T,-To’ 

and the current density in the superconductor 

(2.5) 

where T, is the critical temperature of the superconductor. 
We define L,, the characteristic thermal length and rth the 
characteristic thermal relaxation time, 

L2 ~~Mz-td,)k (d,z+dsk 
th h > Tth= h , (2.7) 

the characteristic length of the current redistribution L, 
and the corresponding relaxation time r, 

94 L2,=3/Rd;, r,~--. 
Ptl 
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We assume here the “step model” for the resistivity of the 
superconductor,g 

p,(j,T)=p,r7[j,-j,(T)l, (2.9) 
where v is the,Heaviside step function (q=O if x < 0 and 
q= 1 if x > 0), and j,( T) is the critical current density in 
the superconductor given by 

(2.10) 

We treat perturbations with length L,(Lth and duration 
rq(rtti In this case, the function QJx,t) is proportional to 
a product of two delta functions: 

QpW) =2 8(xM(t), (2.11) 

where QP is the total energy of the pulse. 
Finally, we introduce three dimensionless parameters 

d;pd 
“=d,h( T,- To) ’ 

QP 
qL’==& f (2.12) 

where 5 is the ratio of the resistances of the superconductor 
and the stabilizer per unit length, a is the ratio of charac- 
teristic rates of joule heating and heat flux to the coolant 
(Stekly parameter), and qp is the dimensionless total en- 
ergy of the pulse, where 

&=&h(Tc--- To>. 

Equations (2.1) and (2.2) in the dimensionless form are 
given by 

de a28 ai, * 
~=~-~+a(i-i,)2+~ai~~(is+8- 1) +aA2 z 

( 1 

+9pS(dm, (2.13) 

ai, a*i, 
7dt=n2~-[1+~~(i~+8--l)lis+i, 

where time is measured in units of r& and length in units of 
J?& the dimensionless parameters i, r, and il are defined by 

i iz- rrn -J-E--, 
L’ Ttth 

III. RESULTS AND DISCUSSION 

The value of the dimensionless initiating energy gin 
= Qi”/Q,~ was obtained for a given set of parameters i, a, c, 
7, and il by means of numerical simulations of Eqs. (2.13) 
and (2.14) for different values of the energy qy The initial 
conditions were taken as follows: 

e(x,o) =0, i&O) =i. 

The large time behavior of the system determines whether 
9, <gin or q,,P> gina Namely, for qP <qii,, the system tends 
back to the initial superconducting state, whereas for qp 
>qin a pair of traveling normal domains propagate in op- 
posite directions along the system. The values of the pa- 
rameters were taken from refs. 1 and 4. Typical values of 6, 

0.00 j------i- .._.._ -,_-.._- --, 

0.45 0.55 0.65 0.75 0.85 
i, 

FIG. 3. Dimensionless initiating energy qin as a function of current. Solid 
lines represent the values calculated by the Eq. (3.8). Points represent the 
results of numerical simulations. 1. a=0.9, c= 120, ~=90. 2. a=0.9, 
g= 190, Q-=90. 

r, and d can be then estimated as g=lOO-200, T== 10 
- 100, and il =O. 1 - 1.0. Specifically, as we are interested 
in cryostable conductors, the case a < 1 is considered. 

We plot the initiating energy, gin, as a function of i, r, 
g, and a in Figs. 3-6. Note, that the dependence of qi’in on 
;1 was found to be practically negligible. In Fig. 3, the 
initiating energy qin is plotted as a function of the dimen- 
sionless transport current i. It can be shown that for i 
approaching 1, the initiating energy gin tends to zero pro- 
portionally to ( 1 -i) 3’2 Note that the value of gin does not . 
depend on any of the parameters g, r, and a when i- 1. 
The dependence of the initiating energy gin on r is shown in 
Figs. 4(a) and 4(b). In the range r < 30, gin is a sharply 
decreasing function of r. Above this range it varies rela- 
tively slowly. We present the dependence of gin on 5 in Fig. 
5. This dependence can be shown to be approximately pro- 
portional to c-1’2. Finally, the dependence of i, on a is 
shown in Fig. 6. 

Let us now estimate the value of the initiating energy 
gin from the following qualitative considerations. When a 
part of the superconductor undergoes a normal transition, 
the current is confined in the superconductor during a time 
interval of the order of T,J{. During this interval, the 
superconductor in the vicinity of the transition front is 
unstabilized as the value of i is higher than the minimum 
propagation current for the superconductor itself. The nor- 
mal zone boundary propagates with a certain velocity V. 
Thus, a region with the length of the order of ur,/& in 
front of the normal domain, becomes temporary unstabi- 
lized. The effective Stekly parameter aeff associated with 
this unstabilized superconductor is determined by the ratio 
of the characteristic rate of joule heating and characteristic 
heat flux to the coolant in this area, and is equal to aeff 
= a& 1 .5*6 
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FIG. 5. Dimekionless initiating energy as a function of & 1. i=O.5, 
a=0.8, r=90. 2. i=O.5, a=0.9, r=90. 

At the same time, the length of the unstabilized seg- 
ment in front of the traveling normal domain Id can be 
estimated as 

(3.3) 

For a&l, the velocity ZI of the normal zone boundary 
propagation is equal to5rb 

0.05 1 I I I I I I 
0.0 20.0 40.0 60.0 80.0 100.0120.0 

z 
0.25 

FIG. 4. Dimensionless initiating energy as a function of T. (a) 1. i=O.6, 
(x=0.9, g=lOO. 2. i=O.6, a=0.9, {=180. (b) 1. i=O.5, a=0.9, {=180. 

2. i=O.6, a=0.9, 4= 180. 
To initiate a propagating normal zone by a heat pulse, 

it is necessary to heat up to a temperature of the order of 
T,(i) a region with a certain length Ii,. In case the current 
in the superconductor is constant, the value of lin=lc can 
be estimated from the heat balance equation and for large 
aeff it is equal tog 

5 
o- 

0.15 

(3.1) 

(3.4) 

The value of initiating energy in that case qin=qc is equal 
0. 10 +~~---~-~~~-~~~ ~- 

to9 
0 . 75 0.80 0.85 O:~O---'O:'ii~- 1.00 

a? 

q&2.3 .s. (3.2) FIG. 6. Dimensionless initiating energy as a function of a. 1. i=O.5, 
g= 100, T=20. 2. i=O.6, 5= 100, r=20. 
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Substituting Eq. (3.4) in Eq. C3.3), we fhrd that the value < 0.85. The initiating energy qin, calculated by means of 
of 1, can be estimated as Eq. (3.7), is presented by solid lines in Figs. 3-6. 

~d=hh~ ;-Jf-J 
/- ’ 

(3.5) 

In case, when I,<&, which corresponds to +I, for- 
mula (3.2) is a good approximation for the initiating en- 
ergy pin. To estimate 4in for a wider range of 7; we have to 
take into account that the current is not constant in the 
normal domain due to the redistribution into stabilizer. To 
do it, we introduce the effective current &, which is a 
function of the ratio &/Id and &-t i, when i& In the first 
(linear) approximation, we obtain 

(3.6) 

where y is a numerical factor of the order of one. Substi- 
tuting Eqs. (3.1) and (3.5) in Eq. (3.6), we obtain 

Substituting ieff in Eq. (3.2) instead of i, we find the fol- 
lowing expression for initiating energy 

2 3 (l-i)3’2(c&-0.75)3’2 

qinz& ai2[cmi2-0.75( l-i)] ’ (3.8) 

where we obtain the value y=O.75 by best fitting to the 
numerical data. Equation (3.8) approximates the results of 
our numerical simulations with a maximum deviation less 
than 4% for the values of parameters 100 < c < 200, 40 < T 
< 100, 0.8 <a < 1.0, and the transport current 0.5 ci 
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IV. SUMMARY 

The initiating energy for traveling normal domains is 
obtained for a large composite superconductor as a func- 
tion of transport current and for dimensionless parameters 
characterizing the composite and cooling conditions. An 
effective circuit model is used for numerical simulations. 
An analytical expression for initiating energy is suggested. 
The initiating energy obtained by means of this expression 
is in good agreement with the results of numerical calcu- 
lations. 
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