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Abstract. - The energy of a pointlike vortex is calculated for a layered superconductor with very 
weak interlayer Josephson coupling. An energy barrier existing near the sample surface is found. 
Magnetization relaxation due to thermally activated penetration of pointlike vortices and 
quantum tunnelling of pointlike vortices are considered. An initial avalanche-type decay of 
magnetization is predicted. 

Magnetization relaxation measurements are an effective method to investigate flux 
dynamics phenomena, current-voltage characteristics and critical current in super- 
conductors [ 1-31, In type-I1 superconductors magnetization relaxation is determined by 
vortices penetration, flow and pinning. The flux penetration process begins when the 
external magnetic field H becomes higher than a certain edge field H*. In the case of a 
cylinder subjected to  a parallel field the value of H* is bigger than the lower critical field HC1 
and smaller than the thermodynamical critical field H ,  [4]. The difference between H* and 
Hcl depends on interaction of vortices with pinning centres and sample surface. In continuous 
superconductors attraction of Abrikosov vortices to  sample surface results in the Bean- 
Livingston barrier [5 ] .  This barrier prevents penetration of Abrikosov vortices inside the 
sample. The value of H* determined by the Bean-Livingston barrier depends on the surface 
roughness. It is maximal in the case of an ideal flat surface. In the absence of pinning centres 
in the bulk the edge field H* is equal to the thermodynamical critical field H,[4].  

The discovery of Bi- and T1-based high-T, superconductors stimulated theoretical studies 
of layered superconductors with weak interlayer Josephson coupling. In particular, specific 
pointlike (or pancake) vortices were introduced and investigated [6-81. Each of these 
pointlike vortices is residing only in one of the superconducting layers. The self-energy of an 
isolated pointlike vortex is proportional to ln(L/t), where L is the characteristic size of the 
sample in layers plane, and t is the coherence length. Thus, the self-energy of an isolated 
pointlike vortex diverges when LIE+ w and it cannot exist in the bulk of a macroscopic 
sample. 

The interaction of a pointlike vortex with sample surface consists of repulsion and 
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attraction. The repulsion results from the interaction with Meissner screening currents. The 
attraction results from the increase of the superconducting current density of the pointlike 
vortex caused by sample surface. The correlation between these two interactions is 
determined by the external magnetic field H. At a certain value of H competition of 
attraction and repulsion can lead to a stable state localized near the surface. The existence of 
this stable state effects the flux penetration process and, in particular, magnetization 
relaxation. 

In this letter we study the penetration of pointlike vortices into a layered superconductor. 
We show that the energy of a pointlike vortex G, has a minimum G, detached by an energy 
barrier G, from the surface. We show that G, is negative if the external magnetic field H is 
higher than a certain value H I ,  which is of the order of the lower critical field HC1.  We present 
a scenario of magnetization relaxation due to thermally activated penetration pointlike 
vortices inside the sample. We consider a case characteristic of high-Tc superconductors, 
when 5 << A and d << A,  where A is the London penetration depth, and d is the distance between 
the layers. 

To calculate magnetization relaxation, we find first the energy of a pointlike vortex 
residing in one superconducting layer in the vicinity of the sample surface. We use the 
Lawrence-Doniach model [9], where, for simplicity, we neglect the interlayer Josephson 
coupling. This approach is valid, when the space scale of the considered phenomena is less 
than the Josephson length AJ . As we take into account only electromagnetic interactions, the 
space scale is determined by A. Thus, we assume that A << E t J .  

Consider a semi-infinite layered superconductor subjected to a magnetic field H parallel to 
the surface and perpendicular to the layers. Suppose the z-axis is parallel to H and the x-axis 
is perpendicular to the surface. In the case 5 << A,  the energy of the pointlike vortex G, (x) is 
determined mostly by the magnetic field B(r), which for an isolated pointlike vortex can be 
written as 

The frst term represents here the magnetic-field penetration into the sample in the absence 
of vortices. The magnetic field b(r) results from a pointlike vortex. It can be calculated by 
means of the method of images, i . e .  to a pointlike vortex located at (x, y) we add an image 
pointlike antivortex located at ( - x, y) and take for b(r) the sum of the fields of this vortex 
and antivortex. Using the magnetic-field distribution B(r) we calculate G, (x): 

G, = (&)2d In( T) + 2 H d [ e x p [  - :] - 11, x 2 5 

The first term in eq. (2) represents the attraction between the pointlike vortex and its 
image. I t  is minimal near the surface and increases monotonically with increase of x. The 
second term in eq. (2) represents the repulsion of the pointlike vortex from the surface due to 
the external magnetic field and associated screening current. It is maximal at x = 0 and 
decreases monotonically with the increase of x. The function G,(x) is shown in fig. 1 for 
different magnetic fields H.  The dependence of G, on x increases monotonically if H < H o ,  
where 

@O Ho = e -  
4x1: 

(3) 

For H > Ho the curve G, (x) has a maximum G, at x = xg and a minimum G, at x = x, . The 
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explicit formulae for G,, xg, G, and x, can be derived by means of eq. (2) in the case when 
H >> Ho and In ( A / t )  >> 1: 

Note that while deriving formulae (4)-(6) we neglect the contribution arising from Josephson 
coupling of superconducting layers. The accuracy of this approach is of the order of 
xg /AJ < X, /AJ << 1 as we assume that A << AJ . 

It follows from eq. (5 )  that the minimum energy G, becomes negative when 
H > H1 > H,, , where 

We now consider magnetization relaxation for the magnetic field from the interval 
H1 < H < H * . Then the energy of an Abrikosov vortex is negative in the bulk. However, as 
the Bean-Livingston barrier is proportional to the vortex length, the Abrikosov vortex will 
not enter into a macroscopic sample. On the other hand, for H > H1 the minimum energy of a 
pointlike vortex G, is negative and the energy barrier G, is finite. At non-zero temperature 
it can lead to a thermally activated penetration of pointlike vortices into a sample and thus to 
a specific mechanism of magnetization relaxation in layered superconductors (l). This 
mechanism is especially effective if H1 < H < H * . 

(l) One has also to consider penetration into the sample of a nucleus of Abrikosov vortex (a vortex 
loop) [lo]. The energy barrier in this case is of the order of AG,/d >> G,. 
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We consider here, as an illustration, magnetization relaxation for the following problem. A 
semi-infinite layered superconductor is cooled down to a certain temperature T below the 
critical temperature in zero magnetic field. Then, the magnetic field H parallel to the sample 
surface is instantaneously turned on. We suppose that superconducting layers are 
perpendicular to H and H1 < H < H *  . There is only one mechanism of magnetization 
relaxation in this case, i .e. the thermally activated penetration of the pointlike vortices into 
the sample. We treat here the following scenario for this mechanism of relaxation. 

The initial magnetization M is equal to M = - H/4x .  The thermally activated penetration 
of pointlike vortices into the sample leads to decay of magnetization. The rate of this process 
is determined mostly by the energy barrier for pointlike vortices, and it depends 
exponentially on this barrier. After penetration into a sample the pointlike vortices reside 
randomly in superconducting layers in the vicinity of the plane x = x, . The interaction of the 
incoming vortex with these vortices changes the energy barrier. Thus, to find the 
magnetization relaxation rate, we have to determine this energy barrier shift 8Gg. 

The value of 8G, is determined by repulsion of pointlike vortices residing in the same layer 
and attraction of pointlike vortices residing in different layers. To find the energy barrier 
shift, we use formulae for the interaction energy of pointlike vortices and antivortices [7]. We 
also suppose that pointlike vortices are distributed randomly in each of the superconducting 
layers (2 = nd, where n is the number of the layers) along the line x = x, , x = nd. The result 
of the calculation shows that &Gg is proportional to the average linear concentration N of 
pointlike vortices: 

8 G g =  - Nd i @O i” 
where MO = H/47i, and yg is a number of the order of one. The main contribution to the 
decrease of the energy barrier results from attractive interaction with pointlike vortices 
residing in the nearest A/d  >> 1 layers. The entire number of these pointlike vortices is of the 
order of Nx,A/d >> 1. The formula given by eq. (8) is valid if the average distance I = N -’ 
between pointlike vortices in each of the superconducting layers is less than the penetration 
depth, i .e. NEL < 1. 

Similar calculations show that the increase of magnetization 8M due to pointlike vortices 
residing in superconducting layers is also proportional to N 

Using eqs. (8) and (9) we present 8G, as 

8Gg= - - 8M d - ln-’ ( ‘ i f H ) .  - 
Yg MO 

Thus, the energy barrier decreases with the increase of magnetization. This dependence 
results in initial avalanche-type thermally activated magnetization relaxation. 

To find the equation determining magnetization relaxation, we consider diffusion of 
pointlike vortices in the surface layer x e x,. To estimate the appropriate diffusion 
coefficient, we treat the motion of pointlike vortices as a viscous flux flow[llI. We also 
consider the dependence of the energy of the pointlike vortices G, on x as an external 
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potential. Finally, this approach results in the following equation: 

where 

[:TI' 
A2 - -  - y7 ~ e x p  - 

P n  C 

yr is a number of the order of one, ,on is the resistivity in the normal state, kB is the Boltzmann 
constant, and A 2 / p n c 2  is the characteristic time constant appearing in theory of 
non-equilibrium superconductivity [ 113. 

The solution of eq. (11) has the form 

M = M o  - l + a l n  - [ (4 
Thus, the thermally activated pointlike-vortices penetration into the sample leads to  a 
specific initial avalanche-type dependence of magnetization on time. The characteristic time 
of magnetization decay z strongly (exponentially) depends on energy barrier and 
temperature. The dimensionless amplitude a of magnetization relaxation is proportional to 
temperature and slowly (logarithmically) depends on the applied magnetic field. 

The dependence given by eq. (14) is valid until 

and the density of vortices N is less than a certain critical value N ,  - A- ' .  When N becomes of 
the order of N ,  Abrikosov vortices self-assemble from pointlike vortices and then penetrate 
inside the bulk. I t  follows from eqs. (9) and (15) that a noticeable increase of N starts when 
t -3 7. 

To estimate the values of the characteristic time constant 7 and the dimensionless 
amplitude of magnetization relaxation a we use yg = y; = 1 and the data obtained for a 
monocrystal Bi2Sr2CaCu208 [12]: A = 3 .  em, d = 1.5.lO-'cm, pn = 
= 10-5Qcm. Using eqs. (5), (15) and (16) we find that if T<< T,  and H 3 H1 = 0.013T, 
then 

em, 5 = Eab = 1.5 

m 

a = 1 In (500H),  
300 

where the temperature T is given in kelvin and the magnetic field H is given in tesla. 
Substituting in eqs. (16) and (17) T = 25 K and H = 0.04 T, we find T = 82 s and a = 0.25. 
These numbers seem to be reasonable for experimental observation of the main peculiarities 
of magnetization relaxation due to thermally activated penetration of pointlike vortices. 

At low temperatures the thermally activated mechanism of magnetization relaxation 
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becomes ineffective. Instead we consider quantum tunnelling of pointlike vortices in the 
potential G, (x). We treat this process in the limit of overdamped pointlike-vortices dynamics 
following the methods developed in [13,14]. This approach results in initial avalanche-type 
magnetization relaxation given by eq. (14) but with a and 7 different from eqs. (12) and (13). 
Numerical estimations show that in case of quantum tunnelling x = 0.1 and 7 = 8.103s, i .e .  
the dimensionless amplitude of magnetization relaxation a becomes smaller and the 
characteristic time of magnetization decay becomes sufficiently bigger. 

To summarize, we have shown that in an external magnetic field higher than Ho (eq. (3)) 
the energy of a pointlike vortex G, has a minimum G, detached from the sample surface by an 
energy barrier G,. The value of G, becomes negative in a magnetic field higher than H I  
(eq. (7)). We have calculated the time-dependence of magnetization relaxation due to 
thermally activated penetration of pointlike vortices inside the sample. We have shown that 
this process results in initial avalanche-type decay of magnetization. We considered quantum 
tunnelling of pointlike vortices as a mechanicm of low-temperature magnetization relaxation. 
We have shown that this process results in the same initial avalanche-type decay as the 
thermally activated penetration. 
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