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Quench propagation velocity in conductors having a large amount of stabilizer outside the 
multif i lamentary area is considered. The current redistribution process between the 
multif i lamentary area and the stabilizer can strongly affect the quench propagation. A 
criterion is derived determining the conditions under which the current redistribution 
process becomes significant, and a model of effective stabilizer area is suggested to 
describe its influence on the quench propagation velocity. As an illustration, the model is 
applied to calculate the adiabatic quench propagation velocity for a conductor geometry 
with a multif i lamentary area embedded inside the stablizer. 
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The development of conductors with an aluminium 
superstabilizer for applications such as detector magnets 
for high energy physics t and energy storage devices 2-4 
has led to some new problems. One of them is the effect 
of the current redistribution process between the super- 
conductor and the stabilizer on quench propagation 5. 
This effect can also be important for the conductors con- 
sidered for the next generation of high energy particle 
accelerator magnets, because these conductors contain a 
large amount of stabilizer outside the multifilamentary 
area. 

The quench propagation velocity is determined by the 
Joule heating in the vicinity of the transition front. 
During the transition from the superconducting to the 
resistive state, the current is redistributed from the 
superconductor to the stabilizer. This redistribution 
occurs in two phases. First, the current is expelled from 
the superconducting filaments to the copper in the 
multifilamentary area. Second, the current diffuses into 
the stabilizer outside the multifilamentary area. If the 
interfilament spacing is small, the first phase is very 
fast. Conversely, if most of the stabilizer is located out- 
side of the multifilamentary area, the second phase can 
be relatively long. In the vicinity of the transition front, 
where the quench-driving heat release occurs, the cur- 
rent may thus remain confined in a small fraction of 
stabilizer around the multifilamentary area. This results 
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in a relatively high local value of Joule heating, leading 
to high quench propagation velocity. 

This paper: 1, considers the case where the quench 
propagation is affected by the current redistribution pro- 
cess; 2, introduces the characteristic velocity at which 
this process becomes significant; 3, provides a model of 
effective stabilizer area for fast quench propagation; and 
4, presents a transcendental equation for the quench pro- 
pagation velocity in highly stablized conductors. 

Concept of highly stabilized conductor 

Most of the papers on quench propagation velocity con- 
sider the current redistribution process as instantaneous 
(see the review in reference 6). To discuss the 
applicability of this assumption, let us estimate the 
characteristic times of the phenomena involved. The 
current redistribution time, t~, may be estimated as 

~,j2 
td = - (1) 

Pn 

where 

d - An 
P. (2) 

Here d, A, and P. are the effective thickness, the cross- 
sectional area and the contact perimeter of the stabilizer 
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(see Figure 1), and p, is the resistivity of the stabilizer. 
The characteristic time ̀ associated with the quench 

propagation, tp, is given by 

Here To is the coolant temperature, T~ is the critical 
temperature at the given field and zero current and i is 
the dimensionless current defined as 

L I 
tp = - -  (3) i = -- (5) 

where v is the quench propagation velocity and L is the 
thickness of the zone where the quench-driving heat 
release occurs. In other words, L is the thickness of the 
region, in the vicinity of the transition front from the 
resistive to the superconducting state, where the Joule 
heating determining the propagation velocity takes 
place. 

In this paper, we shall represent the power of the Joule 
heating in the superconductor as a step function of 
temperature. In other words, we shall assume that the 
Joule heating is equal to zero for temperatures below a 
certain temperature, Tt, and is non-zero above Tt. In the 
following, we shall represent Tt by 

i ( i ) ,  
Tt= } To+ 1 - . ~  ~ (4) 

Contact Perimeter ~ Multifilamentary Area 

Stabilizer 

b 

Figure 1 Example of highly stabilized conductors: (a) cross- 
sectional view of the aluminium stabilized conductor used for the 
ALEPH solenoid1; (b) cross-sectional schematic of a highly 
stabilized conductor 

where I is the transport current and Ic is the critical cur- 
rent at the given field and To. It was shown 7 that Equa- 
tion (4) leads to satisfactory results when computing the 
quench propagation velocity. 

In most cases of practical interest, the cooling condi- 
tions are weak. Then L is determined by the thermal dif- 
fusion along the conductor and can be estimated as 6 

k 
L = - -  (6) 

Cv 

where k and C are the thermal conductivity and the heat 
capacity per unit volume averaged over the conductor 
cross-section, and taken at the given field and Tt. 

Thus, the current redistribution process can be con- 
sidered as instantaneous only if the dimensionless 
parameter z = td/tp is less than one. Using Equations 
(1)-(3)  and (6), it is convenient to rewrite r as 

Iz°Cd2 Y2--(~cc ) (7) r -- kp~ 

where we have introduced the characteristic velocity v c 
defined as 

1 ( k O n ~  1/2 P n (  kPn ~1/2 

Vc= \ 0c; = Z \ L c ;  (8) 

As an illustration, let us estimate Vc for the case of an 
aluminium superstabilized conductor 8. Using the data 
in Table 1 and Equation (8), one obtains v c ~ 0.7 m s -~. 

Table 1 Data used in calculations 

Multif i lamentary area 

Cu :Nb -T i  1.35:1 
Cu RRR 200 
A2 (mm 2) 8 

Superstabilizer 

AI RRR 2200 
An(mm 2) 118 
Pn (ram) 12 
P (ram) 3.6 

Critical current at the given field, B 

Bo 
Ic  - I o  

B + B o  
Bo (T) 1.04 
Io (A) 25820 

All estimations are done at 

To (K) 4.2 
I (A) 5000 
B (T) 1.5 
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These values appear to be of the same order of 
magnitude or even less than the quench propagation 
velocities measured experimentally. 

It follows from the preceding discussion that actual 
conductors can exhibit quench propagation velocities 
larger than vc. In these cases, the dimensionless 
parameter r is larger than one and the current redistribu- 
tion has to be taken into account while calculating v. The 
conductors where values of v occur that are of  the order 
of, or higher than, vc will be defined as highly 
stabilized. 

Criterion of highly stabilized conductor 

Let us first consider the case of instantaneous current 
redistribution. The quench propagation velocity is deter- 
mined by the Joule heating in the vicinity of  the transi- 
tion front. The thickness of this region is L and the 
power of  the quench-driving heat release, q, can be 
written as 

12 
q = p - -  L (9) 

A 

where p is the longitudinal electrical resistivity of  the 
conductor, defined as 

Ap.p~ p -  (lO) 
A, ps + AsPn 

In Equation (10), A is the conductor cross-sectional 
area, and As and Ps are the cross-sectional area and the 
resistivity of  the multifilamentary area. While deriving 
Equation (9), we considered that the currents IN and Is 
flowing in the stabilizer and the multifilamentary area 
were uniform and the ratio R = In ~Is was equal to 

AnPs 
r - (11) 

AsP, 

In all cases of  practical interest, the resistance per unit 
length of  the stabilizer, On~A,,, is much smaller than 
that of the multifilamentary area, &/As, and thus, 
r ~ . l .  

On the other hand, q is equal to the heat flux which 
heats up the superconducting zone to the transition tem- 
perature. It follows that 

q = v A A H  (12) 

where 

AH = C dT (13) 
To 

and is the difference in enthalpy per unit volume of con- 
ductor between T O and T t. If we assume adiabatic cool- 
ing conditions, the value of  L is given by Equation (6). 
Equating the two expressions of q and substituting the 
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expression of  L, lead to 

l ( kp ~ 1/2 
v = (14) 

a \Cal-I/ 

(The same formula can be derived by considering a non- 
zero heat transfer coefficient to the coolant and letting 
the Stekly parameter tend towards infinity6.) 

In this model, the maximum of the quench propaga- 
tion velocity, Vm, is obtained for I =  Ic and thus, 
T~ = (To + To)~2. Let us estimate vm for the super- 
stabilized conductor considered above. Using the data 
from Table 1 and Equation (14), one obtains Vm 
13 m s -I. As we can see, for actual conductors, the 
value of  v m can be much higher than the value of v c. In 
these cases, the current redistribution process has to be 
taken into account while calculating the quench propaga- 
tion velocity. 

For adiabatic cooling conditions, a criterion defining 
highly stabilized conductors may be derived by compar- 
ing Vm and v~. Let us define the dimensionless para- 
meter/3 

\v~ / 

Then, a highly stabilized conductor is a conductor with 
/3 larger than one. Combining Equations (8) and (14) 
leads to the following criterion 

/ 3 = E ( ~ n )  2 ~'°1~ z l  
,o. a/ - /~P.  ~ 

(16) 

where AHc is calculated by mean of Equation (13) at 
7", = (To + T~)/2, i.e. for I = I~. For the superstabilized 
conductor considered above /3 = 300., which is much 
larger than one. 

Model of effective stabilizer area 

Let us now consider the case where the current 
redistribution has to be taken into account while 
calculating the quench propagation velocity, i.e. 
v > vc. Then, in the vicinity of the transition front, the 
current remains confined to a certain fraction of  
stabilizer around the multifilamentary area, leading to 
non-uniform quench-driving heat release. The cross- 
sectional area occupied by the current is determined by 
the ratio, r,  of  the characteristic times associated with 
the current redistribution and the quench propagation. 
The larger r, i.e the larger the ratio of v to vc, the 
smaller the fraction of stabilizer where the current has 
diffused. 

On the other hand, as we mentioned before, in most 
cases of practical interest the cooling is weak, i.e. the 
Blot parameter, Bi, is much less than one 

A h  
Bi = - "~ 1 (17) 

P k t 

where P is the cooling perimeter, kt is the transverse 
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thermal conductivity of the stabilizer and h is the heat 
transfer coefficient to the coolant. In particular, for the 
superstabilized conductor considered above, and for 
h = 103 W m-3~ we obtain Bi  = 0.006, which appears 
to be much smaller than one. 

At the same time, the dimensionless ratio, tS, of the 
transverse thermal diffusivity, D t = k t / C ,  to the 
magnetic flux diffusivity, D m = pn//X0, is much larger 
than one, i.e. 

o, k, 
(~ - -  Om - ~0 p ~  ~ 1 (18) 

For example, for the superstabilized conductor con- 
sidered above, 6 ~- l0 s, which is much larger than one. 
It results from Equations (17) and (18) that the tem- 
perature is uniform over the conductor cross-sectional 
area, even if the heat release is non-uniform. 

As the temperature is uniform over the conductor 
cross-sectional area, we shall treat the temperature 
distribution as one-dimensional, depending only on the 
coordinate along the conductor. The main difference 
between highly stabilized and conventional conductors is 
thus the non-uniformity in the quench-driving heat 
release. To find the exact expression of the Joule 
heating, we should solve the system of Maxwell's and 
heat diffusion equations. For most cases of practical 
interest, this cannot be done analytically and is a com- 
plicated problem for numerical analysis. 

In this paper, we shall calculate the Joule heating by 
considering that the current is uniformly redistributed 
between the multi filamentary area and a certain area of 
the stabilizer, which we shall introduce as an effective 
area, Aef f. As the fraction of the stabilizer where the 
current has diffused depends on the quench propagation 
velocity, the effective area of the stabilizer is determined 
by the ratio v/vc, i.e. 

he f t :  A , f ( ~ )  (19) 

To find an expression for f, let us first discuss its asymp- 
totic behaviour for small and large values of v/v  c. 

When the ratio v/vc is small, the current redistribu- 
tion process is almost instantaneous and the current 
occupies the whole stabilizer cross-sectional area. This 
means that Aeff tends towards A, and 

f(vVc) = 1 for V--0Vc (20) 

On the other hand, when the ratio v/v  c is large, the 
current only diffuses into a thin layer of stabilizer, l, and 
the current redistribution process can be treated as in the 
case of a semi-infinite slab of stabilizer. Then, l is deter- 
mined by the magnetic flux diffusion length for a 
characteristic time of the order of t v 

1 = (Dmtp) t/2 - A ,  v c (21) 
e . v  

Thus, the effective area, i.e. the cross-sectional area of 
stabilizer occupied by the current, is 

Aef f = I e  n = A ,  vc (22) 

and it follows that 

f ( ~ )  Vc for v . . . .  oo (23) 
V V c 

Having determined the asymptotic dependences for 
small and large values of v/vc, we shall now define f for 
the full range of velocities. To match smoothly Equa- 
tions (20) and (23) we suggest the following function 

f(vVc) = t a n h ( ~ )  (24) 

Thus, we shall calculate the quench-driving heat 
release by considering that the stabilizer cross-sectional 
area is equal to A~ff as given by Equations (19) and 
(24). 

Adiabatic quench propagation velocity for 
highly stabilized conductors 

In this section, we shall apply the above model of effec- 
tive stabilizer area to the computation of the adiabatic 
quench propagation velocity. To do this, we have to 
calculate the quench-driving heat release. In the case of 
adiabtic cooling conditions, it is given by Equation (9), 
where the expression of p is given by Equation (10). 
Then, substituting A, by A~ff in Equation (10), and com- 
bining Equations (9) and (10), it follow that 

pnPs I2 k 
q = (25) 

Aeffp s + AsPn Cv 

where we have replaced L by Equation (6). An equation 
determining v can be derived by equating Equations (25) 
and (12), and replacing Aeff by Equation (19). It then 
follows that 

1( kp ~'/2( l+r ),/2 
v = A \ C A H J  \ 1  + rf(v/Vc) (26) 

Equation (26) is similar to the equation derived in 
reference 9, the solutions of which were shown to be in 
good agreement with experimental data 8. 

Let us now qualitatively discuss the dependence of the 
quench propagation velocity on the transport current. 
When the ratio v/v c is small, the current occupies the 
whole cross-sectional area of the stabilizer, i.e. f--~ 1. In 
this case, and as expected, the dependence of v on I coin- 
cides with that given by Equation (14). Let us note that 
Equation (14) gives the lower limit of the quench pro- 
pagation velocity. 
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When the ratio V/Vc is large, f =  vJv. It follows from 
Equation (26) that the dependence of v on I is given by 
the solution of the following second order equation 

12 kpr 
v 2 + rvvc - 0 for v~ < v (27) 

A 2 CAH 

where we assumed r >> 1. 
To illustrate these results, Figure 2 shows plots of the 

quench propagation velocity as a function of the dimen- 
sionless current, i, for the superstabilized conductor 
considered above. The solid line represents the velocity 
calculated by the combination of Equations (24) and 
(26), which takes into account the current redistribution 
process. The dashed line represents the velocity 
calculated by means of Equation (14), which assumes an 
instantaneous current redistribution. As can be seen in 
Figure 2, the difference in the results can be up to eight 
times. Note that the solution of the approximate equation 
(27) practically coincides with the solution of the com- 
plete Equation (26) for the whole range of quench pro- 
pagation velocities larger than vc. Figure 3 shows a plot 
of the dimensionless ratios Aeff/A n and In/l as a function 
of the dimensionless current, i. It can be seen that, even 
for relatively low values of effective stabilizer area, i.e. 
Aeff/A. < 0.01, more than 40% of the transport current 
is still flowing in the stabilizer. 

Conclusions 

For conductors having a large amount of stabilizer out- 
side the multifilamentary area, the current redistribution 
process has to be taken into account when calculating 
quench propagation velocity. To do so, we developed a 
model of effective stabilizer area. We applied this model 
to the case of weak cooling conditions and to a conductor 
geometry where the multifilamentary area is embedded 
inside the stabilizer. We derived a transcendental equa- 
tion, Equation (26), which determines the quench pro- 
pagation velocity. 
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