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This paper considers the nucleation and propagation of a normal zone in large composite 
superconductors, considering the relatively tong time of current redistribution in the 
stabilizer. A model is proposed for treating the composite as an effective electrical circuit, 
which yields two diffusion equations for the electric current and the temperature distribu- 
tions along the conductor. Numerical simulations have been performed of normal-zone 
propagation for cryostable and non-cryostable conductors, and analytical expressions 
obtained for the velocity of propagation. 
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Large composite superconductors have been recently 
proposed for use in energy storage devices. Such con- 
ductors are composed of superconducting strands 
embedded in a large normal metal matrix with high ther- 
mal and electrical conductivity to stabilize the conductor 
against superconducting-to-normal transition. The ther- 
mal stability of cylindrical conductors of 1 in (25 mm) 
diameter rated with currents up to 60 kA has been tested 
experimentally I. These experiments were done for a 
cryostable conductor: i.e., for all currents up to the 
critical current Ic, superconductivity recovers if the cur- 
rent is redistributed uniformly over the wire. However, 
it was found that these systems are unstable against the 
propagation of normal zones of finite size for currents 
above a threshold value Id and below Ic. The formation 
of these travelling domains was shown to be a result of 
the high Joule power generated in the superconductor 
during the relatively long process of current redistribu- 
tion between the superconductor and the stabilizer 1-11. 

Theoretical studies have been performed to investigate 
the propagation of a normal zone of finite size in the 
cryostable regime. The first approach was presented by 
Huang and Eyssa 2'3 who performed numerical simula- 
tions of propagating normal domains. The results are in 
reasonable agreement with experimental observations ~. 
An analytical approach, assuming that the time 
dependence of the Joule power is known, was first 
presented by Dresner 4'5. He performed explicit calcula- 
tions of the velocity for the case when the Joule heating 
decays exponentially. 
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In a recent study m-l~, the authors have proposed a 
model which allows one to investigate both numerically 
and analytically the nucleation and propagation of the 
normal zone in large composite superconductors. The 
composite is considered as an effective electrical circuit, 
consisting of two connected circuits, representing the 
superconductor and the stabilizer. This model yields two 
diffusion equations describing the dynamics of the 
temperature and the current density distributions along 
the conductor. Numerical simulations of these equations 
showed the existence of propagating normal domains in 
the cryostable regime, but the main advance was the 
analytical investigation. This approach supplied explicit 
formulas for the velocity of normal-zone propagation in 
superconductors with a relatively long time of current 
redistribution in the stabilizer. 

This paper presents a detailed study on normal-zone 
propagation for cryostable and non-cryostabie conduc- 
tors, based on the above model. It describes both the 
numerical and the analytical methods, and presents 
results for the propagating normal domains, for the 
normal-to-superconductor switching wave, and for the 
margins of stability. 

The basic equations 

In this paper, we consider a rectangular conductor, con- 
sisting of a plane layer of superconducting material, 
electrically and thermally bonded to a stabilizing normal 
metal. The thickness of the superconductor and the 
stabilizer are denoted by d, and dn respectively. The 
conductor carries a transport current I, and is kept in 
thermal contact with a heat reservoir of temperature To. 

In general ~2'~3, the dynamics of a normal zone in a 
composite superconductor are determined by both 
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temperature and current density distributions. A com- 
plete treatment of the problem requires the solution of 
the heat diffusion equation which defines the dynamics 
of the temperature field, and the set of Maxwell equa- 
tions which define the dynamics of the current distribu- 
tion. These equations form a set of three-dimensional 
and time-dependent non-linear equations, which is too 
difficult for either analytical or numerical investigation. 
We have shown ~°-~ that it is possible to reduce the 
complexity of the problem while preserving the main 
physical features. 
1 The total longitudinal flow consists of parallel flows 

through the superconductor and the stabilizer. 
2 A perpendicular (redistribution) current is allowed 

to flow from one component to the other at any point 
along the conductor. 

3 Variations in the longitudinal current have a finite 
duration which is of the order of relaxation time of 
current redistribution in the stabilizer, z,~ 
p.od2/pn, where p. is the resistivity of the stabilizer. 

The process of current redistribution is modelled by 
the effective electrical circuit sketched in Figure 1. 
Here, each component is described by a discrete chain 
of resistors. R, = pnz~/dn, represents the stabilizer (&x 
is an arbitrary discretization length; x is the axis along 
the conductor). Rs = p~Ax/d~ represents the supercon- 
ductor: P~fJ~, T) is the resistivity of the superconductor, 
Js is the current density in the superconductor, and T is 
the temperature. The two chains are linked through a 
third kind of  resistor, R = ~/Rp.d./Ax (3'R is a numerical 
factor of the order of one, which depends on the 
geometry of the conductor). Finally, we attribute to the 
normal resistors an inductance £ =-re/z0d.Ax, where 
3 ' ~ -  1 is another numerical factor. Applying Kir- 
chhoff's laws on this circuit, we obtain the equation for 
the current density in the superconductor 

(-%el~°dZn ) Ojs 02js js ( l  + Psd"l + j (1) 
o .  = Ox - o . d , /  

where j = I/d,. 
We suppose that rs/ds + rn/dn ~> h, where r, and K n 

are the heat conductivities of the superconductor and the 
stabilizer respectively, taken here as constant, and h(T) 
is the heat transfer coefficient. It means that the thermal 
relaxation time over the cross-section is much shorter 
than the thermal relaxation time between the conductor 
and the coolant. In this case the temperature distribution 
over the cross-section is almost uniform, and we can 
consider its averaged value T(x), which is a function 

Rn L Rn L .... I 
- - [ I 

R R 
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Figure 1 Effective electrical circuit describing the current 
distribution in the conductor 

only of the coordinate along the conductor. The 
temperature, T(x), satisfies the heat equation 

c at ax ~ - W(T) + Q(T) (2) 

where c is the heat capacity, and r is the heat conduc- 
tivity, both average values, obtained by weighting the 
values in each component with their relative cross- 
sectional area. The term W(T) is the rate of heat transfer 
to the coolant per unit volume, which can be written as 
W(T) = h(T) (T-  To)M, where d = ds + dn. Finally, 
Q(T, Js) is the rate of Joule heating per unit volume, 
which has three contributions: from the current in the 
superconductor when it is in the normal state, from the 
current in the stabilizer, and from the perpendicular cur- 
rent. As a result (see also Figure 1), Q(7) is given by 

1 [ d 0° 
Q(T) = ~ dspj  2 + dnn (j - js)z 

It is convenient to introduce the following dimen- 
sionless fields: 0, the temperature, and is, the current 
density in the superconductor 

T - T o  j~ 
0 - ~ ,  i s  . ( 4 )  

rc - -  1 0  J c  

where j¢ is the critical current density in the supercon- 
ductor at temperature To. We define Lth,  the 
characteristic thermal length and r~, the characteristic 
thermal relaxation time, by 

L,:. = (d. + (tin + dOc 
h ' Tth = h (5) 

with h =- h/To). We define Lm, the characteristic length 
of variations in the current distribution, and rm, the 
corresponding relaxation time, by 

L2m - 3'Rd~, T m ~ %:/z°d": (6) 
p. 

Then, we define the dimensionless parameters 

2 "2 ds p, j  c p,d. 
tx = 4(0, is) ----- (7) 

d,h(T¢ - To)' pnds 

where ~ is the ratio of the resistances of the supercon- 
ductor and of the stabilizer per unit length, and ot is the 
ratio of characteristic rates of Joule heating and heat flux 
to the coolant (the Stekly parameterl4). Finally, we use 
dimensionless scales of time and length. We express 
time in units of rth, and length in units of Lth. Equations 
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(1) and (2) then take the form 

oO 020 

at Ox 2 

 v(oq 2 
0 + o~(i - is) 2 + (0, is)Od 2 + \ax. , I  

ais = }2 a 2 i s  _ (1 + ((0, is))is + i 
r at- ax 2 

( 8 )  

(9) 

where the dimensionless parameters i, r and k are given 
by 

i =--- j/j~, r =- rm/rth, X = Lm/Lth (10) 

In this paper we consider the so-called step model, 
where the resistivity of  the superconductor is Ps in the 
normal state (is > 1 - 0), and vanishes in the supercon- 
ducting state (is < 1 - 0 )  13. The minimum current of 
normal zone existence, ira, is given in this specific 
model by im = [~/{ 1 + 4C~(~ + 1)} -- 1]/2C~. The 
composite is therefore cryostable (i m = 1), if ~ < 1. It 
should be emphasized that all properties of the system 
depend only on the four dimensionless parameters e ,  ~, 
r and X, as the final Equations (8) and (9) include only 
those parameters. 

Results 

In order to study the dynamics of normal zone, we first 
performed numerical simulations of Equations (8) and 

(9). The initial conditions were taken where the 
temperature is raised to the critical value 0 = 1 in a 
region of  length 2Lth. For currents in the range of  
values i m < i < 1 the normal state is always the one 
which propagates into the superconducting state. Figure 
2 shows a time sequence of  profiles of the temperature 
field for a cryostable conductor (~ < 1). This profile 
reaches a steady shape propagating with constant 
velocity after a time interval in the order of %. A 
region of high temperature is formed at the front of  the 
propagating wave. This temperature peak decreases 
rapidly in the direction of propagation, but decays 
moderately in the opposite direction, towards the stable 
superconducting state. We see how in the absence of a 
stable normal state, the superconducting state is 
recovered behind the propagating front. Figure 3 shows 
a time sequence of profiles of  the temperature field for 
a non-cryostable conductor (c~ > 1). For i < ira, there 
is a range of values i d < i < im, where the system is 
unstable against the propagation of  a normal zone of 
finite size. Again, we note the non-symmetric shapes of 
the fields on both sides of the normal zone. The velocity 
of propagation has a non-vanishing lower bound at 
i = id and for a non-cryostable conductor the point 
i = im is a regular point on the curve v = v(i).  

The steady propagating solutions of Equations (8) and 
(9) can be found analytically in the limit of Lm/~/~ ,~, 
Lth. We write the equations in a frame of reference 
moving along the conductor with an arbitrary velocity v 
to be determined. The matching conditions at the transi- 
tion point yield an implicit equation for v, which has the 
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following form. 

(1 - i)(co+ + co_) 

(co+ - 2k+)k 2 ~ 2 i 2  O~ + aX2kZ+ 

(k_ + k+) 2 (1 "1- ~)2 4k2+ _ 2vk+ - 1 

k_(co+ + co_) ( i  

k +k+ 1 + ~  

( c o _ _ 2 k _ ) k  2 (2i2 oe(1 + ( ) + o & Z k  2_ 

(k_ + k + )  2 (1 + ()2 4k 2 - + 2vk_ - 1 

o~i 2 
+ 6 0 _ - -  

1 + ~  
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Figure 5 The  marg ins  o f  s tab i l i t y  p resen ted  as a su r face  

= a(~, r) fo r  h = 0 . 3  

C O ±  ~ 

+v+w~v2  + 4  

2 
(12) 

and 

vr + x/(vr) z + 4X z 
k+ =- 

2X z 

- v r  + x/(vr) 2 + 4kz(1 + () 
k_ - (13) 

2k 2 

In the relevant limit ~ ~> 1 and ~ > 'Tm/'Tth , the solution 
of  this equation is 

v(i)  Lth , ] ot~i 2 2~rth 
= ,-,. i 2 ; rm 

v ~> 1 (14) 

In Figure 4 we present numerical results of  the velocity 
as a function of current for different values of  oe and 
7 = 7"rn/7"th, together with the results of the analytical 
approximation (14). Comparison of  the analytical 
approximation with the numerical results shows that the 
correspondence between them is very good. 
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Figure 4 V e l o c i t y  in un i t s  o f  Vth = Lth/t th as a f u n c t i o n  o f  cur-  
rent :  (a) r = 1 0 0 . 0 ,  a = 4 . 0 ;  (b) r = 1 0 . 0 ,  cx = 4 . 0 ;  (c) 
r = 1 0 0 . 0 ,  a = 0 . 9 ;  (d) r = 1 0 . 0 ,  ~ = 0 . 9  

.0  

As the stability of  the superconducting state is defined 
by the four dimensionless parameters or, ~, r and k, the 
margins of stability can be presented as a surface F(a,  
~, r,  X)=  0. In Figure 5 we show the margins of  
stability in the form a = a(~, r) for a fixed value of X. 
This surface was obtained from Equation (11), taking 
the limit iu = 0.95 as the stability criterion. In the step 
model, the velocity diverges at i -- 1, and i = 0.95 was 
taken as a cutoff value. 

Discussion and summary 

The above results can be explained qualitatively by the 
following arguments. When a part of  the superconductor 
undergoes a normal transition, the current is still con- 
fined in the superconductor during a time interval of 
order rm/~. The Joule power is then higher than the 
Joule power when the current is redistributed across the 
conductor, by a factor of  ~. This initial heat release pro- 
duces the 'hot'  region observed at the front of  the normal 
zone, and causes expansion of the normal zone. After 
the current is redistributed in the stabilizer, the conduc- 
tor cools down towards a stable state; in particular, if 
i < im, superconductivity recovers. The propagation of  
the normal zone is thus completely determined by a seg- 
ment of  length Vrm/~ at the front, which behaves like a 
temporary unstabilized superconductor. The effective 
Stekly parameter associated with this temporary 
unstabilized superconductor is equal to o~. Since the 
excess of  heat at the front should be high enough to sus- 
tain a propagating resistive domain, v cannot be too 
small. As the dependence v = v(i) is defined by the 
nearest vicinity of  the front, the point i = id is a regular 
point on the curve v = v(i) even in the case of a non- 
cryostable conductor. The temperature distribution has 
three characteristic parts. The length of each part is 
determined by the product of  the velocity of propagation 
of  the normal zone, and the characteristic relaxation 
time of the current redistribution in this region. The first 
part is a region of length Vrm/~ behind the transition 
point, where current is diffusing into the stabilizer. The 
second part is a region of length vr,h where the current 
flows mostly through the stabilizer, and the temperature 
is decreasing towards the transition point. Behind the 
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normal zone, there is a region of length Wm, which is 
in the superconducting state, and where current diffuses 
back into the superconductor. 

To summarize, a system of two diffusion equations 
has been proposed modelling the nucleation and pro- 
pagation of a normal zone in a composite superconduc- 
tor for a relatively long time of current redistribution in 
the stabilizer. This model contains all the main physical 
features of current and temperature dynamics. The pro- 
pagation of normal domains has been investigated. They 
exist if the current exceeds a threshold value. An 
analytical solution has been found for the temperature 
and the current density distributions in the steady state, 
for both normal domains and superconducting-to-normal 
switching waves, as well as an explicit expression for 
the velocity of propagation. 
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