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We study the nucleation and propagation of the normal zone in large composite 
superconductors, considering the relatively long time of current redistribution in the stabilizer. 
We propose a model treating the composite as an effective electrical circuit, which yields 
two diffusion equations for the electric current and temperature distributions along the 
conductor. Numerical simulations are performed to study the dynamics of propagating 
normal domains in cryostable conductors. We derive an analytical solution for the margins of 
existence and velocity of propagation of the domain. The effect of the boiling crisis on 
the dynamics of the normal zone is also studied. 

I. INTRODUCTION 

The study of the normal zone of finite size (normal 
domains) in superconductors has been continuously a sub- 
ject of interest in the field of applied superconductivity 
(see, for example, the review in Ref. 1, and references 
therein). It is well known that in homogeneous supercon- 
ductors normal domains are always unstable, so that if a 
normal domain nucleates, it will either expand or shrink. If 
inhomogeneities, such as local variations in dimensions, 
resistivities, etc., are present, localized stable normal do- 
mains can exist in their vicinity. Stable normal domains 
were also found in composite superconductors, in the pres- 
ence of a transition layer with high contact resistance be- 
tween the superconductor and stabilizer. In this case the 
domains are stable for a finite range of currents, shrinking 
when the current is less, while for higher currents the do- 
main undergoes a periodic process of splitting, until a 
string of normal domains is formed along the conductor. 

Recently, very large superconducting composites have 
been tested for use in energy-storage devices (see, for ex- 
ample, Ref. 2). Because of the large size of the stabilizer, if 
a normal zone nucleates, the current in this region redis- 
tributes into the stabilizer, followed by a significant de- 
crease of the joule power and the recovery of superconduc- 
tivity. However, it was found experimentally that normal 
domains of finite size can propagate along the conductor 
despite the above stabilizing mechanism.’ The formation of 
these traveling domains was shown to be a result of the 
high joule power generated in the superconductor during 
the relatively long process of current redistribution be- 
tween the superconductor and stabilizer,2-‘0 A number of 
theoretical studies were performed to investigate this new 
effect. Huang and E$ssa3 performed numerical simulations 
for the diffusion of heat and redistribution of current in the 
conductor in the presence of a normal domain. Their sim- 
ulations showed the formation of stable traveling normal 
domains. For example, they compared the velocity of prop- 
agation with the experimental data,2 obtaining a reasonable 
agreement. Dresne? proposed an analytical method to cal- 
culate the velocity of propagation of the domain if the time 
dependence of the joule power is known. He performed 
explicit calculations approximating the decay of the joule 

power during the process of current redistribution by an 
exponential term. 

In a recent study,” we proposed a model which allows 
one to investigate both numerically and analytically the 
nucleation and propagation of the normal zone in large 
composite superconductors. The composite is considered 
as an effective electrical circuit, consisting of two con- 
nected circuits, representing the superconductor and stabi- 
lizer. This model yields two diffusion equations describing 
the dynamics of the temperature and current-density dis- 
tributions along the conductor. Numerical simulations of 
these equations showed the existence of propagating do- 
mains in the cryostable regime, but the main advance was 
the analytical investigation which supplied explicit formu- 
las for measurable quantities. In this paper we present a 
detailed study on traveling normal domains based on the 
above model. We describe both numerical and analytical 
methods. Finally, we study the effect of the transition from 
nuclear boiling to film boiling” on the propagation of the 
normal domain. 

II. THE MODEL 

In this paper we consider a rectangular conductor, 
consisting of a plane layer of superconducting material, 
electrically and thermally bonded to a stabilizing normal 
metal (Fig. 1). The thicknesses of the superconductor and 
stabilizer are denoted by d, and d,, respectively. The con- 
ductor carries a transport current I and is kept in thermal 
contact with-a heat reservoir of temperature T,,. 

In general, the dynamics of the normal zone in com- 
posite superconductors is determined by both temperature 
and current-density distributions. A complete treatment of 
the problem requires the solution of the heat-diffusion 
equation, which defines the dynamics of the temperature 
field, and the set of Maxwell equations, which define the 
dynamics of the current distribution. These equations form 
a set of three-dimensional and time-dependent nonlinear 
equations; which is too difficult for either analytical or 
numerical investigation. Here we exploit the existence of 
different characteristic scales to reduce the complexity of 
the problem while preserving the main physical features. 
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FIG. 1. Schematic structure of the composite superconducto; !N, stabi- 
lizer; S, superconductor). 

It has been usually assumed that the characteristic 
time of current redistribution across the wire is shorter 
than all other characteristic time scales.“‘2 Under this as- 
sumption the current distribution is completely determined 
by the temperature distribution. As was mentioned in the 
Introduction, the relatively long time of current redistribu- 
tion is the origin of the formation of traveling normal do- 
mains in large conductors. Hence current redistribution, 
during the nucleation and propagation of normal zones, 
must be considered as a time-dependent process. Our 
model describes the process of current redistribution in a 
way which preserves the simplicity of treating one;dimen- 
sional fields, while taking into account the main features of 
the problem. 

(i) The total longitudinal flow consists of parallel flows 
through the superconductor and stabilizer. 

(ii) A perpendicular (redistribution) current is al- 
lowed to flow from one component to the other at any 
point along the conductor. 

(iii) Variations in the longitudinal current have a finite 
duration, which is of the order of the diffusion time of 
magnetic ffux in the stabilizer. It is proportional to the 
ratio of the inductance and resistance of a unit length of 
the conductor, r, cc p&/p,, where p,, is the resistivity of 
the stabilizer (we have neglected the inductance of the 
superconductor, because of its small size and its relatively 
high resistivity in the normal state). For example, in Ref. 
2, ?;n is estimated as approximately 0.3 s, but can attain 
even larger values in the range l-10 s for larger conduc- 
tors. 

The process of current redistribution .in the conductor 
is modeled by the effective electrical circuit sketched in 
Fig. 2. In this model each component is described by a 
discrete chain of resistors. The upper chain represents the 
stabilizer, each resistor being attributed a resistance R, 
= p&c/d,, where Ax is an arbitrary discretization length 
(X is the axis along the conductor). The lower chain rep- 
resents the superconductor, with R, = p,Ax/d,. pS is the 
resistivity of the superconductor, which depends on both 
local temperature and current density in the superconduc- 
tor. It vanishes in the superconducting state, and it is finite 
above the normal transition. The two chains are linked 

FIG. 2. Effective electrical circuit describing the current distribution in 
the conductor. 

through .a third kind of resistor, R = yH,dJAx, where 
YR is a numerical factor of the order of one, which depends 
on the geometry of the conductor. Finally, we attribute to 
the normal resistors an inductance Y = yypod,Ax, 
where yy .- 1 is-another numerical factor. Let j, be the 
current density in the superconductor and j = I/& be the 
current density in the superconductor if all the current 
flows through it. Then’ the current density in the stabilizer, 
j,,, is given by j,, = ( j - j,)dJd,,, and the current density 
in the perpendicular direction, j,, is given by j, 
= - d,( tljJ&) . We apply now Kirchhoff s laws on this 
circuit, obtaining thus the following equation for the cur- 
rent density in the superconductor: 

Next, we consider the temperature distribution in the 
conductor. We suppose that Kids + K,/d,, ) h, where K, and K, are the heat conductivities of the superconductor and 
stabilizer, respectively, taken here as constant, and h(T) is 
the heat-transfer coefficient. It means that the thermal re- 
laxation time over the cross section is much shorter than 
the thermal relaxation time between the conductor and 
coolant. In this case the temperature distribution over the 
cross section is almost uniform, and we can consider its 
averaged value T(x), which is a function only of the co- 
ordinate along the conductor. The temperature T(x) sat- 
isfies the heat equation 

-W(T) +Q(T), (2.2) 

where c is the heat capacity and K is the heat conductivity, 
both average values, obtained by weighting the values in 
each component with their relative cross-sectional area. 
The term W(T) is the rate of heat transfer to the coolant 
per unit volume, which can be written as W(T) = h(T) 
X ( T - To)/d, where d = d, + d,. Finally, Q( Tj,) is the 
rate of joule heating per unit volume, which has three con- 
tributions: from the current in the superconductor when it 
is in the normal state, from the current in the stabilizer, 
and from the perpendicular current. As a result (see also 
Fig. 2), Q(T) is given by 
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(2.3) 

It is convenient to introduce the following dimension- 
less fields: 8, the temperature, and i, the current density in 
the superconductor: 

T-TO . .h es- T,- To? “s’i,s (2.4) 

where j, is the critical current density in the superconduc- 
tor at the temperature Tp We define Lth, the characteristic 
thermal length, and r&, the characteristic thermal relax- 
ation time, 

L2 - (dn + dJK 
(d, + dsk 

th= 
ho 

, ?-Q, = 
ho ’ 

(2.5) 

with ho = h ( To>. We define L,, the characteristic length of 
variations in the current distribution, and rm, the corre- 
sponding relaxation time, 

YzPDd: 
L2,=yRd;, rm= -. 

Pll 
Then we defme the dimensionless parameters 

dh x 
a= d,,ho(Tc- To) ’ 

g(e *)& 
‘Is p,&’ (2.7) 

where c is the ratio of the resistances of the superconductor 
and stabilizer per unit length and a is the ratio of charac- 
teristic rates of joule heating and heat flux to the coolant 
(the Stekly parameter13). Finally, we use dimensionless 
scales of time and length. We express time in units of 7th 
and length in units of Ltk Equations (2.1) and (2.2) take 
then the form 

a0 a28 h(e) 
Z=g-- ho - 6 + a(i - is)’ + ~(~,iJai~ 

w-3) 

ai, 
5-z=A2z-- [l+~(&i,)]i,+i, . (2.9) 

where the dimensionless parameters i, r, and A. are given by 

i=j/j, r=rm/rth, d=L,/&,. (2. IO) 

The stationary uniform states of Eqs. (2.8) and (2.9) 
are determined by setting to zero all time and space deriv- 
atives. These states are described by the roots of the equa- 
tions 

h(O) 
- 8=a(i- is)’ + gait, 

ho (2.11) 
is= [ 1 + g(e, is>]-‘i. 

In general, Eq. (2.11) can have multiple solutions. For all 
currents below the critical current (i = 1 ), there is a uni- 

form stationary solution corresponding to the homoge- 
neous superconducting state, 8 = 0 and i, = i, as below the 
critical current, ,$(O,i,) = 0. Other states correspond to 
homogeneous states where the superconductor is in its nor- 
mal state, and the current flows through both supercon- 
ductor and stabilizer. The existence and properties of such 
states depend on the explicit form of the functions h( 0) 
and g-(&i,). 

In Sets. III and IV, we consider for simplicity the case 
where the heat-transfer coeflicient is constant, h (0) = ho, 
and where the resistivity of the superconductor is a step 
function at the normal transition p,( j,T) = psq[ j, 
- j,(T)], where 77 is the Heavyside function. We also as- 

sume that j,( T) = j,[l - (T - To)/(T, - To)]. In 
dimensionless notation we define c( &is> = &( is + t9 
- 1). Equations (2.8) and (2.9) take then the form 

ae a28 
- = Q - 8 + a(i - is>” + &aifq(i,+ e - 1) at 

(2.12) 

ai, 
A’%-- [1+&7(i,+ f3- l)]i,+i. Tt= ax (2.13) 

In this case there is only one steady normal state, given by 
8 = aQ2/( 1 + 5) and is = i/( 1 + 5). It exists only if j, 
> j,(T) (in the dimensionless notation, is > 1 - 0). The 
minimum current of normal-zone existence, i,, is given in 
this specific model by i, = [ J1 + 4aW + 1) - 11/2&C 
The composite is therefore cryostable (i, = 1) if a < 1. 

To complete the presentation of the model, it is impor- 
tant to identify the different characteristic time and length 
scales of the system. Equation (2.12) has one set of char- 
acteristic scales, both defined here to be equal to one. Equa- 
tion (2.13) has two sets of characteristic scales, depending 
whether the system is in its superconducting state (7 = 0) 
or in its normal state (11 = 1). In the superconducting 
state, current diffuses from the stabilizer to the supercon- 
ductor with a characteristic length scale L, and a relax- 
ation time r,, while in the second case current diffuses into 
the stabilizer with a characteristic length scale 
L,/ Gg and relaxation time r,/( 1 $ 5). It will be 
shown that the existence of these different space and time 
scales in this problem plays an important role in the for- 
mation of the traveling normal domains. 

It should be emphasized that all the properties of the 
system depend only on the four dimensionless parameters 
a, $, r, and A, as the final equations (2.12)-(2.13) include 
only those parameters. 

III. RESULTS 

A. Numerical simulations 

In order to study the formation and propagation of 
normal domains, we performed numerical simulations of 
Eqs. (2.12) and (2.13). We observed how the temperature 
and current-density distributions evolve in time when the 
system is initially in the superconducting state, except a 
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FIG. 3. Temperature distribution for i > iti The parameters are r = 100, FIG. 4. Temperature distribution for i < ib The parameters are r = 100, 
{=loO, a=0.5, /1=0.3, and i=O.34, and (a) t=l, (b) t=2, (c) g= 100, a=0.5, L=0.3, and i=O.33, and (a) t= 1, (b) t-2, (c) 
t=3, (d) r=4, and (e) t=5. t=4, (d)t=6, and (e) t=7. 

nucleus of length 2Lth, in which the temperature is raised 
to the critical value 0 = 1. The parameters were evaluated 
using experimental data from Refs. 1 and 2. We obtained 
the typical values ~-10-100, r-10-100, and L-0.1-1. 
As we are interested in cryostable conductors, we consider 
only the case where a < 1. 

For a given set of parameters, there is a threshold cur- 
rent id, above which propagating domains are formed. For 
id < i -C 1, the initial normal zone starts to expand during 
the diffusion of current out into the stabilizer. After it 
reached a certain- length, the center of the normal ,zone 
starts to cool down, while the outer sides continue to ex- 
pand (the heat generation there is maximal). As a result, 
superconductivity~ recovers at the center of the normal 
zone, and we find two separated normal domains traveling 
away in opposite directions. The system tends to a steady 
state where two normal domains are propagating with con- 
stant velocity, while superconductivity recovers behind. 

A sequence of temperature distributions for i > id is 
shown in Fig. 3. The temperature field at the front of the 
propagating domain reaches a steady shape after a time 
interval of the order of the thermal relaxation time 7th (one 
in dimensionless units). The “tail” of the profile reaches its 
steady shape only after a relatively long time interval, 
which is of the order of the current distribution relaxation 
time r,. The velocity of propagation attains its final value 
much faster than the time required to obtain the steady 
profile. It is consistent with the well-known fact that the 
velocity of the normal zone is determined only by the tem- 
perature at the front of the domain.’ In Fig. 4 we show a 
sequence of temperature profiles that were obtained for 
current below id, but very close to it. The initial heat re- 
lease in the normal zone forms a propagating domain, 
whose temperature gradually decreases, until it reaches the 
critical temperature, where superconductivity recovers. 
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To study the dependence of the velocity of propagation 
on the various parameters, we show in Fig. 5 plots of u(i) 
for different values of a and 7 (in units of $h=&/rth). 
The velocity is a monotonically increasing function of the 
current i, and it is finite at the threshold, in agreement with 
Refs. 3 and 5. The values of the threshold current id and 
the threshold velocity vd depend both on r and a. Above 
id the dependence of the velocity on r becomes less signif- 
icant, and it is mainly determined by a. At i-+ 1 the veloc- 
ity is relative to &. The velocity diverges as i approaches 

FIG. 5. Velocity in units of au, vs. current. The dots represent the results 
obtained in the numerical simulations, the solid lines are the solutions of 
Eq. (3.10), and the dashed lines represent formula (3.11). The parame- 
ters are 5 = 100, (a) r = 100, and a = 0.9, (b) r = 10 and a = 0.9, (c) 
r = 100 and a = 0.5, and (d) r = IO and a = 0.5. 
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the critical value one (this fact is due to the specific 1-V 
characteristic used here’). 

B. Analytical solution of the steady state 

e(x) = a&’ B2(a + ac + aA2k? ) 
__ - 

De-m-“+ 1 t-c 

For i > id the temperature and current-density distribu- Xe-B?k--x, x>O, 
tions of the steady state are the stationary solutions of Eqs. (3.8) 
(2.12)and(2.13),withi,=i,(x + vt)and8=8(x+ut), where 
which correspond to a frame of reference moving along the 
conductor with velocity a: *v+ Jm 

co&= 
a*e 
Q -vg --C3+a(i-i,)*+~azf7j(i,+~-1) 

2 * (3.9) 

o= The four unknown constants A, B, C, D and velocity v are 
determined by four matching conditions and by the re- 

(3.1) 
quirement of self-consistency at the transition point 
i,(O) = 1 - e(0). A closed equation is obtained for the . , 

a2is di, 
velocity: 

O=A2dj;z -vrz -[l +&(i,+8-- l>]i,+i, (3.2) (l--0(0+ +w-) 

where v still has to be determined. We define x = 0 to be 
the point where the normal transition occurs and x = I to 
be the, point where superconductivity recovers. Equation 
(3.2) is nonlinear, but it can be solved in the three regions 
X-CO (v=O), O(x<Z (q= I), and Z<x (q=O). In each 
region it becomes a linear equation with constant coeffi- 
cients. The explicit expressions for i,(x) can be then sub- 
stituted into Eq. (3.1>, yielding a linear equation for e(x). 
Finally, the boundary and matching conditions form a 
closed set of equations for the integration constants v and I. 

A considerable simplification of this procedure can be 
obtained by ignoring the recovery of superconductivity, 
thus performing the above procedure only in the two re- 
gions x < 0 and x > 0. As was shown in Sec. III, the recov- 
ery of superconductivity occurs far behind the propagating 
front and hence does not affect the propagation. This ap- 
proximation is found to be justified for most values of cur- 
rent i and breaks down only close to the threshold current. 

We start with’ Eq. (3.2). The boundary conditions at 
infinity are 

i,( - c0)=i, i,(o3)=i/(l +c). (3.3) 
The solution is given by 

I 
i-Aek+x , 

is(x) = 
x<o, 

i/(1 +c) +Be-k-x, x>O, 

where 

k+r 
‘Jr+ l/w2 

2a2 ’ 

(3.4) 

(3.5) 

and 

k-s 
- w + Jw* + 4A2( 1 + g> 

2A2 (3.6) 

Substituting the current distribution (3.4) into Eq. (3.1) 
with the boundary conditions, at infinity, 

(0 + ~ 2k., )kT pi” a + ail*@+ 
=- 

(k-m +k+)* (1 +5)24k2+ -2vk+ - 1 

k-C@, +w-) & (co- -2Uk: 
- - - 

k- +k+ l+ti (k- +k+)’ 

iT ‘i2 a( 1 + 6) + c&*kz- a&’ 

x(l+5)2 4k!- +2vk- - 1 +w- l+c’ 
(3.10) 

Calculations of v(i) show, in agreement with the dynami- 
cal simulations, that for any given set of parameters, Eq. 
(3.10) has solutions of u only if i is larger than a threshold 
value i+ For id < i < 1 there are two roots, where only the 
largest corresponds to a stable solution (the second root is 
a decreasing function of i). At the threshold there is only 
one root v& which has a finite value. 

As stated before, the relevant range of parameters in 
the case of large cryostable conductors is 6% 1, 1 <r< 6, 
and /z < 1. The computations show that in this regime of 
parameters, the right-hand side in Eq. (3.10) is dominated 
by the third term. Expanding the leading terms in powers 
of l/u, we find 

v(i)- j/w (u> 1). (3.11) 

Figure 5 shows a comparison of the velocity obtained 
by the numerical simulations with the velocity obtained by 
the analytical solution. For large values of r (T = loo), the 
roots of the implicit Eq. (3.10) give the velocity with an 
extremely high degree of accuracy in the entire range of 
currents. In particular, it gives with excellent agreement 
the threshold current id and the corresponding velocity 
ud. For smaller values of r (7 = lo), the velocity calculated 
by (3.10) is still very close to the exact vaiue, deviating 
from it in less than 5% for i > id, while the threshold 
current is about 10% less than the value obtained in the 
numerical simulations. This discrepancy is easily explained 
by the fact that when r is smaller, the length of the domain 
decreases, and the recovery of superconductivity affects 

O( - c0)=0, 0(~)=a&2/(1 +c), 

we obtain 

(3.7) 
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FIG. 6. (a) The threshold current id vs T _ In for (a) f; = 100 and a 
= 0.9, (b) 6 = 10 and a = 0.9, (c) { = 100 and a = 0.5, and (d) 5 = 10 

and a = 0.5. (b) The threshold velocity vd vs r- “’ for (a) g= 100 and 
a~0.9, (b) t= 10 and a =0.9, (c) g= 100 and a =0.5, and (d) < 
= 10 and a! = 0.5. 

more significantly the velocity. Equation (3.11) fits the 
roots of Eq. (3.10) for large values of i. As this formula 
was obtained by expanding the implicit equation in powers 
of l/v, it is accurate only if the velocity is sufficiently large. 
For v > 4 it is accurate within a few percent. 

As mentioned before, in this model all the properties of 
the system depend on the four dimensionless parameters CX, 
5, r, and 1. To obtain the dependence on the real physical 
parameters, it is necessary to use the definitions (2.5)- 
(2.10). The dependence of the threshold current on the 
parameters a, g, and r is demonstrated in Fig. 6(a). The 
threshold current id is approximately linear with respect to 
r-r’*, with a maximum deviation less than 3%. It is a 
decreasing function of both a and 6. Note that the equation 

i 

FIG. 7. V-I characteristic of a large composite superconductor in the 
presence of a traveling normal domain ( U is in units of p&L,,,). The 
parameters are T = 100.0, f = 100, and /2. = 0.3, and (a) a-3 0.9 and (b) 
a =0.5. 

id(a&T,A) = 1, defines the margins of stability. The 
threshold velocity ud as a function of a, g, and r is shown 
in Fig. 6(b). We find that ud is an increasing function of a, 
a decreasing function of r, and does not depend on the 
parameter 6. 

In the presence of a normal domain, there is a potential 
drop on the conductor. The voltage U is equal to 

U=j,p, 
s 

dx is(x). (3.12) 

Using Eq. (3.4)-( 3. lo), we obtain the plots U(i) shown in 
Fig. 7. It follows from the above discussion that the V-I 
characteristic starts at i = id, with a finite threshold volt- 
age. The curves U(i) are strongly nonlinear, with a diverg- . . mg derivatrve at i -+ i& 

IV. THE BOILING CRiSlS 

One conclusion arising from the above results is that 
despite the existence of a stabilizing mechanism, a region of 
high temperature can propagate along the conductor. It is 
well known that as the temperature gradient between the 
conductor and coolant becomes large, the heat flux to the 
coolant is strongly affected by the so-called boiling crisis- 
a transition from the nuclear boiling to the film boiling 
regime.” To study this effect, we will assume that h(0) is 
a step function, given by 

h(e) 1, @dbo 
-= 

ho I m, e> t&- 
(4.1) 

Experimental data for liquid helium at 4.2 K give typical 
values 6bC - 0.2 and m - $j. 

The stationary homogeneous states of this system are 
the solutions of Eq. (2.11), substituting the heat-transfer 
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8 

FIG. 8. Graphical solution of the uniform stationary states in the pres- 
ence of the boiling crisis. The parameters are a = 0.1, m = 0.05, and 
0, = 0.25. The number of states are (a) two, (b) three, and (c) five. 

coefficient given by (4.1). A graphical solution of these 
equations is shown in Fig. 8, where the states of the system 
correspond to the intersections of the dimensionless heat 
flux w( 0) = [h (0)/h&3 and the dimensionless joule power 
q(O).= ai2q(e + is - 1) [see Eq. (2.8)]. As a result of 
the N-shaped function w(e), there are ranges of parame- 
ters where there are three locally stable states. A conductor 
will be cryostable if the only intersection is 8 = 0.‘. This 
condition is satisfied for all i < 1 if a < me,. 

Figure 9 shows a typical sequence of temperature-field 
profiles during the formation of a propagating domain in a 
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FIG. 9. Temperature distribution in the presence of the boiling crisis. The 
parameters are r = 200, g = 100, cz = 0.02, A. = 1.2, i = 0.80, m = 0.02, 
andebe=0.5,and(a)t=l,(b)t=3,(c)t=5,(d)t=7,and(e)t=9. 

cryostable conductor. The horizontal dashed line repre- 
sents the temperature at which the boiling transition oc- 
curs. In the front of the domain, the temperature is usually 
above &; hence this region is hardly affected by this tran- 
sition. As a result, the propagation of the domain is as in 
the case of a composite superconductor with an effective 
Stekly parameter a/m corresponding to the Clm-boiling 
regime. Behind the propagating front, we see two distinct 
regions in which the temperature decays at different rates. 
In the region where the temperature is above Bbn the decay 
is moderate as a result of the small value of h (0). When 
the temperature crosses the transition point, the sharp in- 
crease of h causes the drastic change in the cooling rate. 

V. DlSCUSSlON 

Let us now discuss the physical mechanism of normal- 
zone propagation in large composite superconductors. 
Imagine that a part of the superconductor undergoes to the 
normal state. The current starts to redistribute between the 
superconductor and stabilizer by diffusion, a process which 
has a characteristic duration of r,/c. After the redistribu- 
tion of current is complete, the conductor cools down dur- 
ing a time period of the order of the thermal relaxation 
time rth. When the temperature crosses the critical temper- 
ature, the superconducting state is recovered, and the cur- 
rent rediffuses back to the superconductor during a time 
period of the order of r,. 

As the redistribution of current requires a finite dura- 
tion, the stabilizing mechanism suffers an effective delay 
time I-,/C. The joule power in the normal zone during this 
time interval is consequently high as in the case of a un- 
stabilized superconductor. The effective Stekly parameter 
K associated with this temporarily unstabilized supercon- 
ductor is determined by the resistivity of the superconduc- 
tor in the normal state, ps given by aC = p&&/ho(T 
- To) = af. We note that in most cases of practical 

interest (where a< 1 ), a<> 1. In the case of an unstabilized 
conductor, the normal zone expands with constant velocity 
v if the current exceeds the minimum normal-zone propa- 
g_ating current 5. In this range of parameters, < is given by 
i P - $?% and the velocity v is given by the approximate 
expression1”2 

vNvthdam, u(i)j+,. 

This. expression coincides with formula (3.11) when r/ ’ 
5~1, as in this limit the delay time of the stabilizing mech- 
anism becomes very long. 

The normal-zone expansion, accompanied with the lo- 
cal recovery of superconductivity at. each point, is the or- 
igin of the formation of traveling normal domains of finite 
size. As it is seen in Fig. .3, the temperature distribution has 
three characteristic parts. The length of each part is deter- 
mined by the product of the velocity of propagation of the 
normal zone and the characteristic relaxation time of the 
current redistribution in this region. The first part is a 
region of length vrm/c behind the transition point, where 
current is diffusing into the stabilizer. In this region the 
heat generation is the highest, and temperature distribution 
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there determines the velocity of propagation of the normal 
zone. The second part is a region of length vrth, where the 
current Rows mostly through the stabilizer and the tem- 
perature is decreasing toward the transition point. Behind 
the normal zone, there is a region of length vr,, which is in 
the superconducting state and where current diffuses back 
into the superconductor. 

To conclude, we proposed a system of two diffusion 
equations modeling the nucleation and propagation of the 
normal zone in large composite superconductors. This 
model contains all the main physical features of current 
and temperature dynamics. We investigated the propaga- 
tion of normal domains and showed that they exist if the 
current exceeds a threshold value. We found an analytical 
solution for the temperature and current-density distribu- 
tions for the stationary normal domains, as well as an ex- 
plicit expression for the velocity of propagation. 
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