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Abstract. A region of resistive  domains is found  in  composite  superconductors  with  thermal 
and  electrical  contact  resistance  between  the  normal  metal  matrix  and  the  superconductor. 
The V-I characteristic of 3 sample  with  resistive  domains is found. It is shown  that  the 
existence of resistive  domains  leads to the  emergence of hysteresis  upon  decay  and  recovery 
of superconductivity in the  presence of transport  current.  It is shown  that  the  degradation 
of composite  superconductors  with  contact  resistance  may  be  attributed to the  formation of 
resistive  domains. 

1. Introduction 

The distribution of a  normal  zone in composite  superconductors with electrical  and 
thermal  contact  resistance has  been  the  subject of frequent  studies (cf Kremlev  1967. 
1980. Keilin and  Ozhogina  1977).  Considerably less studied is the  problem of the  origin, 
evolution  and  stable  existence of normal  zone  regions of finite  size. The  presence of 
such  regions  (resistive  domains) defines the V-Z characteristics of composite  supercon- 
ductors  and  hysteresis  phenomena  therein  upon decay  and subsequent recovery of 
superconductivity. Of greatest  interest in this case is the possibility of the  stable existence 
of resistive  domains  in the regions of values of transport  current Z less than  those of the 
minimum  normal  zone  propagation  current Ips Note  that such is the  case,  for  example, 
in non-uniform  superconductors  (Mints 1975,  Gurevich  and  Mints  1981).  In  uniform 
composite  superconductors  without  contact  resistance. resistive  domains in the  preset 
current  mode  are  unstable  (Al’tov et a1 1975);  however,  they  can  be  stabilised in the 
preset  voltage  mode or,  which is the  same, in  a shunted  sample. 

As  shown in a  recent brief communication  (Akhmetov  and  Mints 1982) contact 
resistances  lead  to  the possibility of stable  existence of resistive  domains even in com- 
posite  superconductors  that  are  uniform  along  the  sample axis, with the minimum 
resistive domain  existence  current Z, G Zp under  conditions of high contact  resistance. 
Physically. the stability of resistive  domains in composite  superconductors with 
adequately high contact  resistance is due to the fact that,  under  these  conditions,  current 
flows from  normal  metal  to  superconductor  cver  a finite  length li exceeding the size of 
the resistive domain, while  normal  metal  becomes  an  ‘external  shunt’  relative  to  the 
superconductor.  Note  that  the  minimum resistive domain  existence  current (if Z, < Zp) ,  
is at  the  same  time,  the  superconductivity  recovery  current  (Mints 1979). 

The V-Zcharacteristics have  been  found by Akhmetov  and  Mints (1982) in the  region 
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of transport  current values I e I ,  where  the  length of resistive domain, 21, is considerably 
less than  the  characteristic scale of temperature  variation  in  the  superconductor ( l , )  and 
normal  metal (I,), as well as li. The condition l =e l,, l ,  , li helped  analytically to solve the 
problem of the  stationary  distribution of temperature in the resistive domain given an 
arbitrary  dependence of current density in the  superconductor  upon  temperature  and 
electric field intensity. 

In the  region of transport  current values where l ,  6 l ,  a specific V-I curve of the 
superconductor  should  be given for  calculating the resistive domain  characteristics  and 
the V-l characteristic of a  sample  with  resistive  domains. 

In this paper, we shall  consider  the  stationary  temperature  distribution  and  the 
process of evolution of the  corresponding initial heat pulse  in  a  composite supercon- 
ductor with  high thermal  and  electrical  contact  resistance in the  entire  region of values 
of transport  current in the  sample. Using the  obtained  temperature  distributions,  the 
V-I characteristics of a  sample  with  resistive  domains  have  been  plotted. 

2. Basic equations 

The distribution of the resistive and  superconducting  zones along an infinite  composite 
superconductor is found  from  the  heat-transfer  equation describing the  temperature 
distribution,  and  the  continuity  equation describing the electric current  distribution  over 
the  conductor  components.  Let,  for simplicity, the  sample consist of three  ribbons of 
equal  width,  namely,  superconductor (having  a  thickness of d , ) ,  interface  layer ( d i )  and 
normal  metal ( d , ) ,  with di d , ,  d,. Assume  further  that all transverse  electrical and 
thermal  resistance is concentrated in the  interface  layer.  Then, given the  parameter 
values  characteristic of composite  superconductors,  the  temperature of normal  metal 
T, and of superconductor T,, as well as the  current  density in normal  metal j ,  and in 
superconductor j , ,  may  be  regarded  as  uniform in the  plane  transverse  to  the  sample 
axis (x-axis).  Therefore,  the  temperature  and  electric field distribution  presents  a  one- 
dimensional  problem  described by (Kremlev  1980,  Akhmetov  and  Mints 1982): 

aT,  a2T, WO 1 d j ,  2 d d 2  6 Y - = K - - -  
at ax2 d ,  ( T ,  - TO) + j,E, + - - pis - - ( T ,  - T,) 2 !ax) d,   d id ,  

Here  and below, the subscripts S ,  i and n are  used to denote  the physical  characteristics 
of the  superconductor,  interface  layer  and  normal  metal, while v is heat  capacity, K is 
heat  conductivity, p is resistivity, WO is coefficient of heat  transfer  to  the  coolant, TO is 
temperature of the  coolant  and E is electric  field. 

As follows from  equations (1)-(3), the  characteristic scales of temperature  variations 
l, and l, and  the  transition  length li where  the  current flows over  from  normal  metal  to 
superconductor  are respectively equal  to 
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where W = WO + rci/di, the  values of l,, l, and 1, in practical  composite superconductors 
with  high contact  resistance ( K  e K, 4 p, 4 pi, U, < vs) correlate as 1,4 l, 4 l,. with 
li% l, 4 l:, while the  characteristic  heat  times 

r, = v,d,/W q, = undn/W 

satisfy the  inequality rn S t,. 

j ,  j - j n d n / d s  

The  current  densityj, may  evidently be  written  as 

where j = js(? E )  the  current  density in the  superconductor  at  an  adequate  distance 
from  the region  with  resistive  phase.  Assume  further  that  the  critical  current  density 
jc(  T )  may  be  written  as 

j c (  T )  = jO(1 - T/Tc) = j c ( l  - 8) 

wherej, = j c (  TO) ,  and  the  dimensionless  temperature 

8 = ( T  - To)/( T ,  - To). 

It follows from  the  foregoing  that j < j,(TO). 

6 and  dimensionless  current  density 
It is convenient  to  rewrite  equations (1)-(3) for  further use in terms  of  temperature 

in = jndn/ jcds  

so that 

= l:&' - 8, + 2aiSts + ai? ($l2 + he, 

Here 

The  parameter  adiffers  from  the conventionally  used  Stekly  parameter cvst (Al'tov 
er a1 1975) in that it is normalised  for  the  heat transfer  constant 

W = WO + Ki/di 

rather  than WO. However, if the  thermal  contact  resistance  between  the  superconductor 
and  normal  metal is high ( h  4 l), the  difference  between aand  cysusr is insignificant. Note 
that  for  practical  composite  superconductors in  usual  circumstances  the  value of h is of 
the  order of unity ( h  6 l), but in some special  cases h may  be  as low as 0.1 
(W, 2 5 x 10" W K" cm-2, K, = lo-' W K" cm-', d, = 2 x 10" cm). 

Under  conditions of arbitrary  correlation  between l, and  the resistive domain  length 
21, the  system of equations (4)-(6) may  evidently  be  solved  only if the  dependence 
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E, = &,(e,, is) is specified.  It will be generally  assumed in the  present  paper, with the 
exception of the l Q l, case,  that 

From  equation (7). we find E, in the  form 

E, = (is/?) v( is - 1 + 0,) (8) 

where ~ ( x )  is the  Heaviside  step  function ( v  = 0 at x < 0 and v = 1 at x 2 0). and r' = 
pnd,/psd,. Given  the  parameter values  characteristic of composite  superconductors. 

r 4 1. On substituting  equation ( 8 )  in the system of equations (4)-(6). we find: 

~ " b ,  = lie: - 9, + 2aii + al'(di,/dx)' + he, (9) 

where i = j / j c .  

normal  phase,  another  characteristic  length lb  emerges in the  problem,  where 
From  equation (11) it follows, in particular,  that if the resistive domain  contains 

Clearly, 11, defines the length  over which the  current flows from  the  superconductor in 
the  normal  state  over  to  normal  metal. 

3. Stationary resistive domain 

In  this  section, we shall  consider  a  stationary ( e ,  = e ,  = 0) resistive  domain in a 
composite  superconductor with contact  resistance. 

Let us consider first the case  when the resistive domain length 21 is substantially 
smaller  than  the  characteristic  heat  length l , ,  i.e. l Q l,. In  this case,  the V-Zcharacteristic 
of the resistive domain may be defined  accurately  at  any  dependence of E, upon 9, and 
is (Akhmetov  and  Mints 1982). 

Indeed, if l < l ,  4 li ,  the density of current is varies  but slightly over  the  length 1. and 
the  term 2a is& in equation ( 5 )  may  be presented  as  a  point  source of heat  and  written 
down in the  form  4ai,Qli6(x)  where 

and 
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is the  potential  difference in  a  sample  with  a  resistive  domain. The density of current is 
coincides in this  approximation with the critical current density at  the  'hot'  zone  bound- 
ary,  i.e. 

is = 1 - 8, e, = q o ) .  
Analogously,  in view of the  inequality 1 4 li, the  term E, in equation (6)  may be  presented 
as 2li0.6(x). As a  result,  the system of equations (4)-(6) assumes  the  form 

lie; - 8, + 2ai; + &l!( din/&) * + he, = 0 (13) 

lie:' - e, + 4a(l - e,)r,o.s(x) + al?(di,/dx)* + h e ,  = 0 (14) 

l,%: - in + 21i@a(x) = 0. (15) 

Note  that  equation (15) is valid at  any  correlation  between l and 1,. Since  it was derived 
only on the  assumption  that l 4 li. The stationary  resistive  domain is described by the 
solution of equations (13)-(15),  satisfying the following  conditions: 

e,(-. cc) = On(+ m) = in(+ x )  = 0. 

From  considerations of symmetry, it is further clear that 

% ( x )  = & ( - x )  e,@> = @ , ( - x )  in(x) = i n ( - x ) .  

With  the  aid of equation  (15), we find 

On substituting  equation  (16) in equations (13) and  (14), we finally obtain  for 8, and 
e, : 

1:O: - 0, + 4 a ( l  - O,)l,Q,S(x) + &Q2 exp (-- F) + he, = 0. (18) 

The system of linear  equations (17)-( 18)  may  readily be solved  accurately.  As  shown by 
the  appropriate  calculation,  the last  two addends in equation (18) make  a  contribution 
on the  order of &/li G 1 both  to  the V-I characteristic 4 = q(i)  and  to  the value &(x)  
proper in the 1x1 S 1, region.  Thus,  for  determining  the  temperature e,, we find 

&I: - e, + 4 a ( i  - e,)l,o.s(x) = 0. (19) 

The solution  to  equation (19)  may  evidently  be  expressed  as 

e, = e, exp ( - F) 
where 

In view of 

i,(o) + in(0) = 1 - e, + CD = i 



25 10 A A Akhmetov and R G Mints 

we find the  correlation  for  the  dependence @ = @(Q: 
1 

cP+ 1 + (2culj/l,)cP 
= j  

whence,  to  the  desired  accuracy: 

where 

The characteristic V-I curve cP = cP (i) is shown in figure 1. In the fixed current 
mode,  the  ascending  branch of the  curve (Q+) is apparently  stable  and  the  descending 

J 
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Figure 1. The curve @ = @(i) for = 2 ,  r = 0.O3.li/ls = 100, h = 0.1. 

one (0-) unstable.  Note  further  that,  at i > i,, the V-l characteristic of the  sample with 
resistive domain is practically linear, cP = i. In so doing,  the  resistance of the resistive 
domain will be  equal  to  that of the  normal  component  portion of the  composite  super- 
conductor, having  a  length of 21,. Indeed, using expression (12), we find that 

where S, is the cross-sectional  area of normal  metal,  and I is the  total  current in the 
composite. 

Physically, the  emergence of a  stable  resistive domain in a  composite  superconductor 
with contact  resistance  can be readily understood  based on the following  considerations. 
Upon  formation of a  ‘hot’  zone inside the  superconductor,  part of the  current flows out 
to  normal  metal such that  the  temperature in the  ‘hot’  zone  becomes self-sustaining  at 
a  level  exceeding 

e,(i) = 1 - i. 
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In so doing, practically all of the  current flowing in the  superconducting  composite  passes 
over  the  normal  metal  portion having  a  length of 21i. As a  result, given an  adequately 
high value of transport  current,  the  potential  difference across the sample is defined by 
the  relationship (22), the minimum  resistive  domain  existence current i, proving to  be 
substantially less than  the minimum  normal  zone  propagation current i,. Indeed, as 
shown by Kremlev (1980) 

i'p - I/CU 

i.e. 

Let us now  define the  range of applicability of the V-I characteristic (21). This 
evidently calls for  the  estimation  of  the  resistive  domain  length I and  for  the  observance 
of the  inequality I e l,. Using,  for  instance, the  model V-I characteristic (7) of the 
superconductor, we can  write 

From  the  latter  relationship, we find: 

l Q, 4 r 2 ,  
"" I, 1 - e, 1, 

Then, using expression (20), we obtain  the condition of applicability of all the  foregoing 
calculations in the  form 

We shall now consider  the case of arbitrary  correlation  between I and I,,  using the 
model  V-Icharacteristic of the  superconductor in the  form of equation (7). The solution 
of the  set of equations (9)-(11) describes  a  stationary resistive domain ( e ,  = 8, = 0) 
provided the  conditions en( t m )  = Os( -+ m) = in( 2 m) = 0 are  met. 

Let us first assume  that  the  addend he, in  equation (10) is small, then  an explicit 
solution to  equations (10) and (11) can be readily found.  With  the aid of the  distribution 
of temperature 0, = @(x)  and  density of current in = in(x), the  dependence l = I(i) can 
be  obtained  through  the use of the  relationship 

@(l )  = 1 - i + &(l ) .  

As a  result, we find a  rather bulky transcendental  equation  for  determining  the 
resistive  domain  length 1 = l(i). The solution to this equation, given an  arbitrary  corre- 
lation  between  the  constituent  parameters, can only be  obtained by numerical  calcula- 
tion.  Given  the  dependence 1 = l(i),  the V-I characteristic of a  sample with resistive 
domain  can  be readily found with the aid of the  relationship 

2 
Q,= 

tanh(l/lb) l i  
(1 + r2)2 ( E & )  + tanh(l/lb) !,(l + r2) ' 

+-- 
The numerical  calculations  have  revealed an  interesting  peculiarity  associated with 

the  formation of resistive  domains in composite  superconductors with contact  resistance, 
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namely,  that  the  stable  (under  conditions of fixed current)  one-domain  solution  disap- 
pears  at  a  certain  value of transport  current i = i2. A detailed  analysis of this  case  shows 
that,  at i = i2, the  domain  separates  into two domains.  Note  that  the  current iz for 
composite  superconductors with high contact  resistance is appreciably  lower  than  the 
minimum  normal  zone  propagation  current i,. 

A series of computer-calculated  dependences l = l ( i )  and @ = 0 ( i )  is presented in 
figures 2(a, b and c) and 3(a, b and  c).  The  dots  are  used  to  denote  the  current i2 at which 
the  one-domain  solution vanishes on each of the  curves.  It is clear that  the  upper 
(ascending  with  current)  branch of both  dependences  corresponds  to resistive  domains 
that  are  stable in the fixed current  mode,  and  the  lower  (descending with current)  branch 
to resistive domains  that  are  unstable in the fixed current  mode.  Both  branches of the 
curves 1 = l ( i )  and @ = @(i )  can  evidently be  observed  either in the fixed current  mode 
or  upon  proper  shunting of the  sample. 

In  the limiting  case of l G l,, which corresponds in the  present  model  to  the  observance 
of the (li/&)? < 1 condition,  one can make use of the  transcendental  equation defining 
l = l(i) to readily find i:,& = l (&)  and 0, = @(i,) in the following form: 

These  equations  describe well the  numerical calculation  results which coincide with 
those  obtained  earlier  under  arbitrary  assumptions with regard to  the V-Zcharacteristics 
of the  superconductor.  Shown by the  broken  curve in figure 1 is the V-Z characteristic 
of a  sample with  a  resistive domain,  calculated with the  transcendental  equation  for  the 
following  values of parameters: = 2 ;  r = 0.03; l,/l, = 100; h = 0.1. As is seen,  the 
agreement  between  the  numerical  calculation,  making use of the  model V-Z character- 
istic (7) of the  superconductor,  and  the  formula (21 )  appears  to  be  rather  good in the 
entire  range of transport  current  values.  This is due  to  the fact that  expression (21)  
describes  accurately  the  behaviour of the  function @ = @(i) both in the vicinity of i = i, 
and  at i S i, where it is formally  inapplicable. 

In the limiting  case of l2 = l ( i2)  S l,, which corresponds in the  present  model  to  the 
observance of the r(1i/ls) > 1 condition,  one  can  make use of the  transcendental  equation 
defining l = l(i) to  readily find the  expressions: 

4 a  2 rl, 

r (1.6 + 0.5  ( l , /rl i)  
l2  = - li In 

2 0.4 - 0.5 (l,/rli) 

Equations (24 )  and (25 )  describe well the  numerical calculation  results;  in particular, it 
follows  from equation (25 )  that  the  value of 12 under given conditions is independent of 
CY. This is also well seen in  figure 2. 

Note  further  that  the division of the resistive domain  apparently  takes place  when  a 
substantial  current  variation in the  superconductor  over  the  domain  length  becomes 
possible. In the case  under  consideration, this  length is represented by the  transition 
length lb over which the  current  from  the  superconductor in the  normal  state flows over 
to normal  metal.  Indeed,  as shown by equation ( 2 5 ) ,  12 - lb. The  problem of separation 
of the resistive domain  into  two  and,  subsequently,  more  domains will be discussed in 
a  separate  paper. 
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Figure 2. The  curves l = l(i) for 7 = 0.03, h = 0.1; A,  asr = 1; B, as, = 2: C. as, = 5 ;  D: 
asr = 10; ( U )  1,/lS = 50; ( b )  l1/L = 100; (C) ] , / l s  = 200. 
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4. Dynamics of resistive domain formation 

Let us now  consider the process of evolution of the initial heat pulse  leading to  the 
formation of a  stationary resistive domain in a  composite  superconductor with  high 
contact  resistance. To this end,  one should  apparently solve  numerically the  set of 
non-stationary  heat-transfer  equations (9)-(lo), given some initial perturbation,  For 

0 2 0 2  
I 
0 2  0 2  0 2  

Figure 4. The  computer-calculated  temperature  distributiw 6, = 6,(z) for various  values of 
time t f o r  ast = 2, r = 0.03,1& = 100, h = 0.1; ( a )  i = 0.3; ( b )  i = 0.5. 
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the following  calculations we have  taken  the initial  condition of a  rectangular  heat  pulse 
concentrated in the  superconductor, having  a  length of l = 1, and  amplitude  of 6, = 1. In 
solving equations (9) and (lo), the  current  distribution  at every moment of time is found 
with the  aid of equation (11). This  procedure helps to  study  the  dynamics of resistive 
domain  formation  and  to  evaluate  the  heat  interference of both  components of the 
composite  superconductor,  i.e.  to  take  account of the  addends he, and he,, in equations 
(9) and (10). 

First,  assume  that  the  addend he,, in equation (10) is small and  can  be  neglected. In 
this  case,  the  process of resistive domain  formation is described by equation (10). 
Presented in  figure 4(a, b )  is the  result of numerical  calculation of temperature distri- 
bution  in the z = x/l ,  3 0 region for  various values of time.  The resistive domain 
length I found  from  the  relationship 

&(l)  = 1 - i + i,,(l) 
is shown  in the figure by a  dashed  line. 

The process of evolution of the initial heat pulse  towards  the  stationary  state  takes 
a  time r - l(t = t/ts). The values of temperature  distribution e,, obtained  at t 9 1, 
coincide to a high accuracy  with  analogous  values  calculated  from the  stationary  equa- 
tions. The calculation  whose  results are  presented in figure 4(b) has  been  performed  at 
a  current  value of i = 0.5 that is close to  the value of i = i2 = 0.52. Therefore,  a  charac- 
teristic  dip is observed in the  curve 6, = OS(z) (at t >  2.5)  in the vicinity of the z = 0 
point,  prior  to  the resistive domain  separation  into two parts. 

In order  to  evaluate  the  heat  interference  between  the  normal  and  superconducting 
components of a  composite  superconductor with  adequately high contact  resistance, we 
have  solved  numerically  the full set of non-stationary  heat-transfer  equations (9)-(10). 
The result of the calculation is shown by the  broken  curves in figure 2 ( b ) ,  at h = 0.1 and 
li/l,, = 2 .  It is seen  that, by taking  into  account  the  normal  metal  heating,  the size of 
resistive domain is somewhat  increased.  This,  however,  has practically no effect  upon 
the V-Zcharacteristic of a  sample with a  resistive domain. Figure 5 shows the  calculated 

0 S 10 1 5  2 0  2 5  30 
z 

Figure 5. The computer-calculated  temperature  distributions 0, = &(z) and 0, = 0,,(z) for 
= 2 ,  r = 0.03, /,/Is = 100, i = 0.5: h = 0.1, L/In = 2 .  
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stationary  temperature  distribution in the  superconductor, 0, = 0,(z),  and in normal 
metal, 0, = 0,(z). The 0, = O,(z) curve  clearly  exhibits  a dip in the vicinity of the z = 0 
point,  prior  to  the division of the resistive  domain (i2 = 0.52). Figure 6 shows the results 
of calculation of the  superconductor  and  normal  metal  temperatures  at  the  centre of the 
resistive  domain  as  a  function of transport  current i, given the  same values of parameters 
as in figure 5 .  The  temperature of the  normal  metal is seen to increase  monotonically 
with current, while the  superconductor  temperature begins to  decrease,  starting  from 
some  current  value,  and  leading  to  the division of a resistive domain. 

Figure 6 .  The  computer-calculated  temperatures &(0) and &(0) for as! = 2. r = 0.03. 1,i 
l, = 100, i = 0.5, h = 0.1. 

5. Discussion of the results and conclusions 

The  present  paper shows the possibility of stable  resistive  domain  formation in composite 
superconductors with high thermal  and electrical  contact  resistance  between  normal 
metal  and  superconductor ( h  << 1, l& << 1). Note  that  the minimum  resistive  domain 
existence current i, turns  out  to  be considerably  lower  than the minimum  normal  zone 
propagation  current i,. Apparently,  the  current i, also  serves  as the superconductivity 
recovery  current if the  transition  to  superconductive  state  from  normal  state occurs 
while the  transport  current in the  sample  decreases. 

The existence of resistive  domains is responsible  for the  presence of hysteresis 
phenomena  upon  superconductivity decay  and  recovery by current.  It is due  to  the fact 
that  the  superconductivity decay current, in the  absence of strong local heat  release, will 
always be  higher  than  the minimum  resistive  domain  existence current, 

The V-Zcharacteristic of a  sample with resistive domains  has  been  found; it has  been 
shown that  the V-Zcharacteristic can  be  described, in a  wide  range of parameters, using 
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expression  (21). It is worthy of note  that  the V-Zcharacteristiccomprises both ascending 
and  descending  (with  an  increase of current)  portions.  The  presence of portions  with 
negative  differential  resistance  permits  the use of a  sample with resistive  domains as an 
active  circuit element. 

The  formation of stable  resistive domains in composite  superconductors with 
adequately high  contact  resistance  may  be  responsible  for  the  degradation of those 
superconductors,  inasmuch  as  an  excited resistive  domain cannot  be  eliminated  at 
currents  exceeding i,. 

The  heat  interference  between  normal  metal  and  superconductor  has little  effect 
upon  the  properties  and  conditions of formation of resistive  domains if both  components 
of the  composite  are  cooled  down sufficiently independently of each  other  and h 4 1. 
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