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Abstract

Dynamics of normal (N) zone regions (resistive do-
mains) in uniform and nonuniform superconductors has
been 1nvestigated both theoretically and experimentally.
Mo a@nalytical theory has been proposed to describe the
resistive domains® (RD) dynamics in nonuniform supercon-
ductors with the alternating current. The origination
and localization of RD have been considered. The self-
exited relaxation oscillations of the voltage were
observed experimentally. The oscillations are due to
the self-exited ones of the RD length when the induc-
tance of the circuit is large enough. The superconduc-
ting sample in our experiment was made from the multi-
filament Nb-40%Ti cable, the characteristic values of
the oscillations frequency f and the inductance L were
of the order of 1 Hz and ZO?AH respectively. The theory
proposed is in a good agreement with the experiment.

1. Theory
The unstationary N-zone propagation considered

below arises in superconductors with the alternating

1-4 etc. The

problem of N-zone origination and propagation is close-

current, in nonuniform superconductors

1y associated with the problems of steady-state stabi]i—
zation, energy losses and so on.

We shall consider the N-zone propagation by means
of the one-dimensional heat-transfer equation. Let us
write it in the following dimensionless form:

§=8"-@ + i2(t)[1+ FS(x)]n(8-Bc)
B(x,t)= hAP[T(x,t)-Tol/ Iﬁ(To)P (2)

where T(x,t) is the temperature, rz(x) = 1 at x20 and

(1)

n (x) = 0 at x « 0, h is the heat transfer coeffici-
ent, T, is the coolant temperature, TC(I) is the criti-
= I/IC(TO), I is the transport cur-
rent, IC(T) is the critical current, p is the speci-

cal temperature, i

fic resistivity in the normal statéfﬁA and P are the
area and the perimeter of the cross-section of the
sample, d = A/P. The formula for Ek is given by the
Eq.(2) where the substitution T(x,t) = TC(I) should be
made, The diyigsion1ess time t1 = t/tO and]coordinate
Xy = x/x0 are, used ( td = Cd/h, Xy = (dk/h) /2, k is
the heat conductivity, C is the heat capacity). The
term Fi° & (x;) in Eq.(1)
generation due to the nQnuniformity

describes the additional heat
13 gq.(1) is
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often used for the description of N-zone both in the
composite superconductors 5

and in the thin superconduc-
ting films 6

a) N-zone Tocalization on the nonuniformity

Let us consider the dynamics of the N-zone locali-
zation on the nonunifoemity (fig. 1). The equations des-
cribing the movement of the N-zone boundaries D+(t) and
D_(t) (see the fig.1) can be obtained as follows. After
Fourier transformation on X1 the Eq.(1) becomes the
first order linear differential equation for the
Fourier coefficients GK(t1).'The solution of this equa-
tion describes the temperature distribution in the super
conductor containing the RD. The conditions 8(D+(t),t)=

Ge lead to the set of two nonlinear integral equations
for D+(t) and D_(t1).

8
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The velocities of N-S interfaces are small (D<<1)
at I= Ip
currents. In this case the equations for D+(t]) and
D_(t]) may be reduced to the differentional ones:

where I_ is the N-zone minimum propagation

F0.+ z%= - %D + Fexp(De)-exptDD;) 2

where V(i) = 4 B, (i)/1% - 2 is the velocity of the N-S
interface in uniform superconductor at i=x 1p. Egs.(3)
are valid if Fe<1, D =D, _+D_»1, [v«1, i.e.

[T - Ip[<<1p (v(Ip) = Q) 5 It is the case that will

- be investigated below.

Consider the Tocalization of the N-S interface on
the nonuniformity when B(~00)=0, §(+00)= iZ, i =
In the case one has D, =@ and the solution of
Egs, (3) may be written in the form:

D(t) = ‘Zn{ZF/v+[expDo - 2F/v]exp(-vt')} (4)

where D0 = D_{0). At D_>> DC = 1n(2F/v) one obtains
from Eq.(4) that D_(t]) = D, - vt;. The velocity of the
N-$ interface decreases exponentially as it moves to-

const.
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wards the nonuniformity and D_(t]) becomes of the order
of D (F>0, v>0). The Tocalization of the N-S in-
terface arises when the .velocity v is small enough,
i.e. v¢ Ve = 2F. Thus, the N-S interface is localized
at I - I &41,~ FIp.

Consider now the localization of RD. Since the ana-
lytical solutions of Egs.(3) are bulky functions we
shall represent them graphically by the aid of the
phase plane (fig.2). The time evolution of the RD is
determined by the movement of the represent1ng point
along the corresponding phase track in fig.2. The ini-
tial position of the representing point depends both
on the Tength and the position (reiative to the nonuni-
formity) of the RD created by the external heat pulse.

Fig. 2.

The representing point moves toward the point 2
on fig.2 if the phase track is on the right from the
dashed 1ine AIB. This situation corresponds to RD loca-
lization on the nonuniformity. The RD disappears in
the opposite case. The phase tracks for this process
are on the left from the curve AIB in fig. 2.

The coordinates D, = D_ = Dy , of the points 1 and
2 are given by the formula:

Diz = En{[Fa(F2-2v)"* ] /v} (5)

Localized RD exists at F > 0, 0 € 2v % F2, i.e. at

I, - 161y~ For_ 1-3, Note that dIy~F &I, <« 1,
i.e. at F « 1 the N-S interface is localized in a
more wide current interval than the RD.

As it is seen from the fig.2 the localized RD is
stable against an arbitrary strong perturbations if the
representing point remains on the right from the dashed
Tine ATB. The minimum energy E needed to originate the
N-zone ‘near the nonuniformity at I='f-Ip is essentially
less than the corresponding value of E in uniform
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superconductors.

b) Self-exited RD oscillations

Let us consider the self-exited oscillations of
the RD. The equations for the RD length D(t]) and
I(t1) may be written in the following form:

b/4,+zf/r=-V(1)/_2+Fexp(—n/z)aexp D)
+(D+)I= 11, | | )

where L is the inductance of the circuit, r is the
shunt resistance, L and r are normalized by L0=r0to

and s respectively, Yo =.PX0/A’ I0 is the current of

"~ the external source.

In the case L > Le the 1oca11zed RD becomes un-
stable agalnst the sma11 perturbat1onsdb and 41 with
the frequency W . The expression for L may be obtain-
ed by the aid of the Eqs.(6),(7):

Le= (tLo/4Tp-2)expDo/ [1- F/2-exp(Do/2)] (&)

where D = (Ié/Ip ~ 1)}r s the "stationary"” RD Tength
at F& 1 (DO>> 1 if r~1 and I,>> Ip). The formula
for W is given by:
wi= 2L]dV¥
LeldTlL1, ()

Thus, the RD may be in the pulsing regime with the
frequency O.)-!vL -1/2 <« 1 if L2 L Do> DC =
= 2In{(2/F).

For L< Lc RD is stable against the current pertur-
bations only if their amplitude dI is small enough
(d1< Al). Al may be written in the form:

Axf,) wac ("' ‘LL'C)

where L. and @ are given by the formulae (8),(9). At
I0 > Ic and L » Lc any stationary state of the super-
conductor is unstable. In this case the self-exited
current oscillations with finite amplitude arise 7. The
oscillations may be represented as follows.

First RD originates in the "weak" point (I <1 )
then it expands into the length D and f1na11y d1sap—
pears. This process is a per1od1ca1 one with the period
determined by the time of the current relaxation tc =
= L/r. The time of the RD existance is of the order of
Tl 172 - In this case the formula for the os-

(10)

w
cillations frequency f may be written in the form:

f= 1 tlg %)

~t

(12)
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The dependence of Dm,on Io may be obtained in the
Timit D§<< L by integrating of the Eqs.(6),(7). Assum-
ing that i qn>> ior and neglecting the term exp(-D)<<1

one finds:

D 2{tn(E)- (L} (20" tgl) o

where & =‘Pj§d/(TC - To)h is Stekly's parameter,

g{d.) is some slowly changing function which is of the
order of unity. As the second term in Eq.(13) is negli-
gible then the maximum voltage along RD Um‘= i

P

D is
p-m
practically independent on Io. In the opposite case

7

2 .
L'»D0 one abtains Dm~DO .
The condition L > LC(IO) is not valid at Io > 1
(L = LC(Ik)) because LC(I0

) increases exponentially
with IO. Thus, the self-exited oscillations may dis-

k

appear at the current Io is large enough. Note that RD
stability may be violated by the strong perturbations
even though L< LC§(see for example Eq.(10)}). This
effect may be responsible for some hysteresis phenomena
accompaning the oscillation growbh.

2. Experiment

The superconducting sample was made from the multi-
filament cable containing 6 Nb-40%Ti filaments (@ 69pm)
in Cu matrix (the ratio Nb-40%Ti/Cu is about of 32%).

The sample was wounded on the textolite tube
$ 2,5 cm, and had the following parameters: d =7,5-10"
cm, the total length 1 = 32 cm, Ic =108 A, I =48A
(T, = 4,2°K, B = 0,5 T), T_(°K) = 9,37 - 0,528(7),

C = (1,237 + 0,114T°) « 107 70/em*°K, k=1,36 W/cm°K,

the specific resistance per unit length RO=3,5°10'%Q /e
the total contact resistance of the sample ends Rb =

= 5,05-10_6§2 . The experiments were performed at the
different magnetic fields Q<B< 4,57, and the currents
0 < IO< 250A; The electric circuit contained the super-

3

conducting sample (Ls = O,4f4H), the shunt (r = 12,3 -

10'6S2 ) and the superconducting coil (L =19,54H).
The accuracylof the measurements discussed below was
about 10%.

The voltage along the sample was measured simulta-
neously by the aid of 62 potential contacts to deter-
mine both the length and the position of the RD. (the
0,5 cm).

At IO> IC the pulsing voltage arised on some sec-

distance between the contacts was

tions of the sample 3-6 cm long. It is interesting to
note that the number of these sections depends on the
external magnetic field B. At low magnetic fields
(0<8B s]T) there exists one RD in the sample but at
high magnetic fields ( 2T< B <4T) there exist 2-4 RD.
In the latter case for example one RD arose- on the

end of the sample and two others arese inside the
sample.
\-I N
e n 3 1 1 1 i .
1
Fig. 3.

The observed oscillograms of the voltage applied
to the sample (Tower curve) and to the shunt (upper
curve) are shown in fig.3. The experimental dependence
of f on I, is described by the Eq.(11) with the accu-
racy 3-5%. The oscillogram of one voltage pulse is
shown in the insertion in fig.3.
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The dependence of Um on I0 is shown in fig.4. The
shunt resistance in our experiments is negligible com-
pared with the maximum RD resistance Rnszme‘ In this
case the Eq.(12) describes the experimental data with
the accuracy about 30% {(the value Um should be replaced
by 2U, to apply the Eg.(72) in the case when the RD
arises at the sample end). The distributions of the
electric field along the RD arised at the sample and
are shown in the insertion in fig.4 faor different

moments( B=1 T).
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